{
"cells": [
{
"cell_type": "markdown",
"id": "3e9d03ef",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Notebook: Discrete Time\n",
"\n",
"Shock elasticities quantify the (local) exposures of macroeconomic cash flows to shocks over alternative investment horizons and the corresponding prices or investors’ compensations. Here we cover shock elasticities for models that are exponential-quadratic. This model structure is particularly tractable with quasi-analytical solutions. \n",
"- Section 1 introduces the exponential–quadratic framework. \n",
"- Section 2 provides an illustration using a long-run risk model.\n",
"- Section 3 provides more details on the computation.\n",
" \n",
"This notebook provides both written explanations and accompanying code. Please refer to the following papers for further details:\n",
"\n",
"[\"Term Structure of Uncertainty in the Macroeconomy” joint research with Jaroslav Borovička – Handbook of Macroeconomics](https://larspeterhansen.org/wp-content/uploads/2016/10/macroterm_main.pdf) \n",
"\n",
"[\"Examining Macroeconomic Models Through the Lens of Asset Pricing” joint research with Jaroslav Borovička – Journal of Econometrics](https://larspeterhansen.org/wp-content/uploads/2016/10/Examining-Macroeconomic-Models-through-the-Lens-of-Asset-Pricing.pdf) \n",
"\n",
"[\"Shock elasticities and impulse responses\" joint research with Jaroslav Borovička and José A. Scheinkman - Mathematics and Financial Economics](https://link.springer.com/article/10.1007/s11579-014-0122-4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"# 1. Exponential-linear-quadratic Framework\n",
"\n",
"We suppose a linear-quadratic specification of the state dynamics:\n",
"\n",
"$$\n",
"\\begin{align}\n",
"X_{t}^0&= \\bar{x} \\notag \\\\\n",
"X_{t+1}^1&=\\Theta_{10}^x+\\Theta_{11}^x X_{t}^1+\\Sigma_{10}^x W_{t+1} \\tag{1} \\\\\n",
"X_{t+1}^2&= \\Theta_{20}^x+\\Theta_{21}^x X_{t}^1+\\Theta_{22}^xX_{t}^2+\\Theta_{23}^x\\left(X_{t}^1 \\otimes X_{t}^1\\right) \\\\ \n",
"&+\\Sigma_{20}^x W_{t+1}+\\Sigma_{21}^x\\left(X_{t}^1 \\otimes W_{t+1}\\right) +\\Sigma_{22}^x\\left(W_{t+1} \\otimes W_{t+1}\\right) \\notag .\n",
"\\end{align} \n",
"$$\n",
"\n",
"The code will take the coefficients as inputs. \n",
"\n",
"Furthermore, we suppose that the logarithms of macroeconomic and stochastic discount factor processes that interest us grow or decay stochastically over time with stationary increments. Let $Y$ be the logarithm of such a process. The process $Y$ will display linear growth or decay:\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"Y_{t+1} - Y_t &= \\Theta_0^y + \\Theta_{1}^y X_{1,t} + \\Theta_{2}^y X_{2,t} + \\left( X_{1,t} \\right)' \\Theta_{3}^y X_{1,t} \\\\\n",
"&+ \\Sigma_0^y W_{t+1} + \\left(X_{1,t} \\right)' \\Sigma_1^y W_{t+1} + \\left( W_{t+1} \\right)' \\Sigma_2^y W_{t+1} \\tag{2}\n",
"\\end{align*}\n",
"$$\n",
"\n",
"Following the steps of our approximation of $X$, we write \n",
"\n",
"$$\n",
"\\begin{aligned} \n",
"\\Theta_0^y &= \\kappa\\left({\\bar x},0,0 \\right) & \\Sigma_0^y &= \\kappa_2 \\\\\n",
"\\Theta_1^y &= \\kappa_1 & \\Sigma_1^y &= \\kappa_{12} \\\\\n",
"\\Theta_2^y &= \\kappa_{1} & \\Sigma_2^y &= \\frac 1 2 \\kappa_{22} \\\\ \n",
"\\Theta_3^y &= \\frac 1 2 \\kappa_{1,1} & &\n",
"\\end{aligned}\n",
"$$ \n",
"\n",
"where $\\kappa_i$ is the derivative of $\\kappa$ with respect to argument $i$ evaluated at $(\\bar x, 0, 0)$ and similarly for the second derivatives. \n",
"\n",
"In what follows, $M$ will be a macro growth process, a stochastic discount factor process, or a product of the two. The user inputs are the quadratic specifications in equation (1) and equation (2). "
]
},
{
"cell_type": "markdown",
"id": "e6fbe5c6",
"metadata": {},
"source": [
"We consider two types of multiplicative processes, one that captures macroeconomic growth, denoted by $G$, and another that captures stochastic discounting, denoted by $S$. \n",
"- The stochastic discount factor process, $S$, is typically computed from the underlying economic model to reflect equilibrium valuation dynamics. \n",
"- For instance, the growth process $G$ might be a consumption process or some other endogenously determined cash flow, or it might be an exogenously specified technology shock process that grows through time. \n",
"- The interplay between $S$ and $G$ will determine uncertainty compensations over multi-period investment horizons.\n",
"\n",
"Consider the pricing of a vector of payoffs $G_tW_1$ in comparison to the scalar payoff $G_t$. \n",
"\n",
"- The **shock-exposure elasticity** is constructed as from the ratio of expected payoffs $E[G_tW_1 |X_0 =x]$ relative to $E [G_t | X_0 = x]$. To calculate shock-exposure elasticity, the multiplicative functional $M$ is set as $G$.\n",
"\n",
" $$\n",
" \\varepsilon_{g}( x, t)= \\frac{(\\alpha_0 + \\alpha_1 x) \\cdot {\\mathbb E}\\left[\\left( \\frac {G_t}{G_0}\\right) W_1 \\mid X_0 = x\\right]}{{\\mathbb E} \\left(\\frac {G_t}{G_0} \\mid X_0 = x\\right)}\n",
" $$\n",
"\n",
" - This is done by the function *\\_exposure\\_elasticity*.\n",
"- The **shock-price elasticity** includes an adjustment for the values of the payoffs $E [S_t G_t W_1 | X_0 = x]$ relative to $E [S_t G_t | X_0 = x]$. To calculate shock-price elasticity, the multiplicative functional $M$ is set as the product $SG$. \n",
"\n",
"$$\n",
"\\varepsilon_{sg}( x, t)= \\frac{(\\alpha_0 + \\alpha_1 x) \\cdot {\\mathbb E}\\left[\\left( \\frac {S_tG_t}{S_0G_0}\\right) W_1 \\mid X_0 = x\\right]}{{\\mathbb E} \\left(\\frac {S_tG_t}{S_0G_0} \\mid X_0 = x\\right)}.\n",
"$$ \n",
"\n",
"The shock-price elasticity is: \n",
"\n",
"$$\n",
"\\varepsilon_{g}( x, t)-\\varepsilon_{sg}( x, t)\n",
"$$\n",
"\n",
" - This computation is done by the function *price\\_elasticity*. "
]
},
{
"cell_type": "markdown",
"id": "5111f4ff",
"metadata": {},
"source": [
"# 2. An Illustration using the Long-Run Risk Model\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "ca746c7b",
"metadata": {},
"source": [
"We will now cover how to use the code on a basic level. You can see the package requirements [here](../../requirements.txt)."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "12545561",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"fatal: destination path 'RiskUncertaintyValue' already exists and is not an empty directory.\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import os\n",
"import sys\n",
"workdir = os.getcwd()\n",
"!git clone https://github.com/lphansen/RiskUncertaintyValue \n",
"workdir = os.getcwd() + '/RiskUncertaintyValue' \n",
"sys.path.insert(0, workdir+'/src')\n",
"from IPython.display import display, HTML\n",
"display(HTML(\"\"))\n",
"import numpy as np\n",
"np.set_printoptions(suppress=True)\n",
"from scipy.stats import norm\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from numba import njit, prange\n",
"import seaborn as sns\n",
"\n",
"from lin_quad import LinQuadVar\n",
"from lin_quad_util import next_period, log_E_exp, kron_prod, distance\n",
"from utilities import mat, vec, sym\n",
"from elasticity import exposure_elasticity, price_elasticity\n"
]
},
{
"cell_type": "markdown",
"id": "269a21e2",
"metadata": {},
"source": [
"We use the long-run risk model adapted from {cite}`HansenKhorramiTourre:2024` as an example; the model is outlined in {ref}`section:solvingplanner`. In a later lecture, you will learn how to solve such models using expansion methods. For now, suppose that we have solved the model and have the following linear-quadratic approximations for the states $X_t = [X_{1,t},X_{2,t}]$ and consumption growth ${\\widehat C}_{t+1} - {\\widehat C}_t$:\n",
"\n",
"First-order approximation:\n",
"\n",
"$$\n",
"\\begin{aligned}\n",
"X_{1, t+1}^1 & = .9 X_{1,t}^1 + \\begin{bmatrix} 0 & .06 & 0 \\end{bmatrix} W_{t+1} \\cr\n",
"X_{2, t+1}^1 & = .8X_{2,t}^1 + \\begin{bmatrix} 0 & 0 & .5 \\end{bmatrix} W_{t+1} \\cr\n",
"\\log C_{t+1}^1 - \\log C_t ^1& = .01 + .03 X_{1,t}^1 + \\begin{bmatrix} .008 & .01 & 0 \\end{bmatrix} W_{t+1}. \n",
"\\end{aligned}\n",
"$$\n",
"\n",
"Second-order approximation:\n",
"\n",
"$$\n",
"\\begin{aligned}\n",
"X_{1, t+1}^2 & = .9 X_{1,t}^2 + X_{2,t}^1 \\begin{bmatrix} 0 & .06 & 0 \\end{bmatrix} W_{t+1} \\cr\n",
"\\log C_{t+1}^2 - \\log C_t^2 & = .01 X_{1,t}^2 + X_{2,t}^1 \\begin{bmatrix} .008 & .01 & 0 \\end{bmatrix} W_{t+1}. \n",
"\\end{aligned}, \n",
"$$ \n"
]
},
{
"cell_type": "markdown",
"id": "a1c24dce",
"metadata": {},
"source": [
"Note that the superscript refers to the approximation order and the subscript refers to the state. We store the approximations in objects of class `LinQuadVar`. For example, we can form the approximations described above as follows:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "49bcd65f",
"metadata": {},
"outputs": [],
"source": [
"n_X = 2 #Two states\n",
"n_W = 3 #Three shocks\n",
"\n",
"# State approximation where first row is X_1 and second row is X_2\n",
"X1_tp1 = LinQuadVar({'x': np.array([[0.9, 0. ], \n",
" [0. , 0.8]]),\n",
" 'w': np.array([[0., 0.06, 0. ], \n",
" [0., 0. , 0.5]])},\n",
" shape=(2, n_X, n_W))\n",
"\n",
"X2_tp1 = LinQuadVar({'x2': np.array([[0.9, 0. ],\n",
" [0. , 0.]]),\n",
" 'xw': np.array([[0., 0., 0., 0., 0.06, 0. ],\n",
" [0., 0., 0., 0., 0. , 0.]])},\n",
" shape=(2, n_X, n_W))\n",
"\n",
"### Log consumption growth\n",
"gc_tp1 = LinQuadVar({'c': np.array([[0.01]]),\n",
" 'x': np.array([[0.03, 0.]]),\n",
" 'w': np.array([[0.008, 0.01, 0.]]),\n",
" 'x2': np.array([[0.01, 0.]]),\n",
" 'xw': np.array([[0., 0., 0., 0.004, 0.01, 0.]])\n",
" }, shape=(1, n_X, n_W))\n"
]
},
{
"cell_type": "markdown",
"id": "8aa70213",
"metadata": {},
"source": [
"Next, we input these approximations into the `exposure_elasticity` function to compute exposure elasticities."
]
},
{
"cell_type": "markdown",
"id": "320eab86",
"metadata": {},
"source": [
"## 2.1 Exposure Elasticity for Consumption Growth\n",
"\n",
"To calculate the exposure elasticity for consumption growth using the *exposure\\_elasticity* defined above, we need six inputs\n",
"- Consumption growth, *gc\\_tp1*. This is a *LinQuadVar* object. \n",
"- First order expansion of the state evolution equations, *X1\\_tp1*. This is a *LinQuadVar* object. \n",
"- Second order expansion of the state evolution equations, *X2\\_tp1*. This is a *LinQuadVar* object. \n",
"- Time periods, $\\text{T} = 30$ years\n",
"- Shock index, $0$ stands for the growth shock, which means $\\alpha' =\\begin{bmatrix}1 & 0 & 0 \\end{bmatrix}$, $1$ stands for the volatility shock, $2$ stands for the consumption shock. The fourth shock alters dividend growth and its shock prices are zero. \n",
"- Percentile, $0.5$ stands for the median"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "09afaa54",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACaAAAAMJCAYAAAD/eQMTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwV2f8/8BcoISKKioUd2AEqdndgx9qutWuutcbafnTtVow11m5s7A5UUFExsEUEESnpvL8/+N3zvXMbuBd1fT0fDx/emXtm7pl7Z87MYd7zPiYymUwGIiIiIiIiIiIiIiIiIiIiIiIiojQy/dYVICIiIiIiIiIiIiIiIiIiIiIioh8TA9CIiIiIiIiIiIiIiIiIiIiIiIgoXRiARkREREREREREREREREREREREROnCADQiIiIiIiIiIiIiIiIiIiIiIiJKFwagERERERERERERERERERERERERUbowAI2IiIiIiIiIiIiIiIiIiIiIiIjShQFoRERERERERERERERERERERERElC4MQCMiIiIiIiIiIiIiIiIiIiIiIqJ0yfqtK0BERERERERERN+vhIQEeHl54dWrV4iKioKFhQVy5cqFokWLokaNGjAxMfnWVSQiIiIiIiIiIqJviAFoRERERET0TfXr1w9379416DrLlSuHY8eOGXSdRN8zxePI3t4ely5d+sY1Mjxvb29Uq1ZN4/vf6juYMmUKjhw5IqZ9fX11LqNrW74n58+fx6xZsxASEqLyXu7cueHh4fENamVcERERCA0NRYkSJdS+7+bmhqlTp4rpHTt2oFatWplVPSLSQFfb2rRpU3z8+BEA4OzsjJ07d2ZSzYhScR8lIiIiIqL/Mg7BSURERERERETfrdDQUEybNg2//PLLt65Khv1o23LhwgWMGTNGbfAZAJQvXz6Ta2RcMpkMhw4dQuvWrfHgwYNvXR0i0tPHjx8xcuRIjB8//ltXhUgt7qNERERERPQzYAY0IiIiIiIiIvounTt3DjNmzEB4ePi3rkqG/WjbkpSUhHnz5iElJUXMs7e3R926dWFra4uQkBA4Ojp+wxoa1ufPnzFmzBgGnhH9YHbv3o0lS5YgNjYW9vb237o6RCq4jxIRERER0c+CAWhERERERPRd4VBmRCR36dKlHyZgS5cfbVuePXuGwMBAMe3k5IR///0XFhYW37BWxvP27VsGnxH9gM6cOYPY2NhvXQ0ijbiPEhERERHRz4IBaERERERERET0w9u5c+c3+dyFCxdi4cKF3+SzjSkgIEAy3aVLl/9s8BkR/RwuXbr0ratARERERERE9J9l+q0rQERERERERERE3xflbC2FChX6RjUhIiIiIiIiIiKi7x0D0IiIiIiIiIiISCIlJUUynTUrk+gTERERERERERGRegxAIyIiIiIiIiIiIiIiIiIiIiIionTh46tERERERPSfFxwcDBcXF4SFhYl5gwcPxqRJk7Qu9/nzZ7i4uCA8PFzMW7FiBdq2bSump0yZgiNHjgAAmjVrBldXVwDAs2fPsH//fty9exefPn1CcnIy8uXLhypVqqBdu3Zo0qQJTExM0rQdCQkJcHd3x/Xr1+Hj44OQkBDExcXB1tYW9vb2qF27Nlq3bo1y5cqlab3Pnz/HqVOncO/ePbx9+xaRkZGwtLRErly5UKxYMdSuXRutWrVC0aJFta5H8bsAAF9fX70+v1+/frh79y4AwN7eHpcuXVIp4+bmhqlTpwIA8ufPj2vXrgEAjh49im3btuHdu3fImTMnihcvjubNm6NTp06wsbFRWU9ycjIuXryIK1euwNvbGyEhIYiOjkbu3Llhb2+P+vXro3379ihWrJhedc+IyMhIuLu749q1a/D19UVISAhkMhly586N0qVLo1GjRnBxcVG7HYbw7t07XLlyBZ6ennj9+jXCw8MRGRkJU1NT5MyZE0WLFoWjoyM6duwIBwcHvdf7/v17nDx5Ep6ennj16hXCw8NhZmYm9tNatWqhefPmGvdTxd9aWdmyZcXrzp07Y+HChWJan/1IWUJCAi5cuICLFy/Cx8cHnz9/RmJiInLkyIGSJUuiZs2a6Nq1K4oUKaJxHdr2+7Ruy8SJE3HixAkxf/369WjatKnO7ZBr1qwZ/P39AQCOjo7Yt2+f3ssCqtuiqH///pLpUaNGYfTo0WrLRkVF4cSJE/Dw8MCTJ08QGhqK5ORk5M6dG0WKFEG9evXQtm1bnW0KAKxZswZr164FADg5OWHv3r1ITk7Gzp07sW/fPgQEBCBv3rwoVaoUWrZsiQ4dOsDCwkLvbVb8HRRNnTpV8tvp057Fx8fj+PHjuHDhAl68eIEvX74ge/bsyJ8/P5ycnNCxY0dUq1ZN77opfvaZM2fg4eGBjx8/IiwsDNmzZ0fevHlRvXp1NGvWDI0aNUrzetMqJSUF165dw9mzZ/H48WMEBAQgPj4e1tbWKFq0KKpXr45OnTql6RxkyPOapvNEVFQU3N3dcfbsWbx9+xZfvnxBtmzZkD9/ftStWxcdOnRAhQoV9K5zRts4OcV9GwAuXryIwoUL6/x8fc61d+7ckRyz8jIxMTE4ffo0Tp06hXfv3iE4OBi5cuVCoUKF0LJlS3Tp0gW2traSdUVERODYsWM4c+YM/Pz8EB4eDhsbG5QvXx6tW7dGp06dYGZmpld9DXWdpPzdyX38+FFyTCu3U02bNsXHjx8BAM7Ozti5c6fGessZuz0DgJCQEJw4cQIXL17Ehw8fEBISAmtraxQqVAgNGjRAp06dULx4cZ3rzwhPT08cO3YM9+/fR2BgoPg9KleuDBcXF3Eu2rJlCxYvXgxA87lW8Td3cXHB0qVLERcXh02bNuHYsWMIDg5Gvnz5UL58ebRq1Qpt27aFqanqc/KhoaE4evQo7ty5A19fX3E9njt3bpQoUQINGjRA27ZtkS9fPrXbFBQUhIYNG4rp1q1bY9WqVVq/h7Nnz2LMmDFiukmTJtiwYYPWZc6dOyfZz3bv3g0PD4907aOaPHv2DMePH8fNmzcRFBSE2NhY2NnZoWjRomjdujXatGljtOtFIiIiIiIifTEAjYiIiIiI/vPs7Owwd+5cyQ2ef//9F23btkWlSpXULiOTyTB16lRJ8FmXLl0kwWfqpKSkYO3atVi/fr3KEHZ+fn7w8/PDyZMnUbFiRSxZsgSlSpXSaxvc3NywfPlyBAcHq7z3+fNnfP78GQ8ePMCGDRvQsmVLTJs2Dfnz59e6zoiICEybNg3nz59XeS8xMRGRkZH48OEDbty4gRUrVqBjx46YNm0arK2t9aqzsa1YsUJyUzAuLg5BQUG4c+cOmjdvrnIj7vr161iwYAFev36tsq6goCAEBQXh/v37cHV1RY8ePfDnn3/CysrK4PWWyWTYsWMHXF1dJfuX3MePH/Hx40dcvXoVq1evxqhRo9CvXz+Dfb6/vz+WLl2Ks2fPquyjcsHBwQgODsa9e/ewZcsWtG7dGvPmzdP628fHx2P+/Pk4ePCgynoTExMRExODjx8/4u7du1izZg2aN2+OWbNmabxxbGwnTpzA4sWL8fnzZ5X3QkNDERoaCi8vL2zatAn9+vXDhAkTYG5ubtQ6denSRRKAduLECb0D0Ly8vETwmXxdmS0lJQVbt27Fhg0bEBkZqfJ+YGAgAgMDxT7QuXNnTJo0Kc03zSdPniz5nuTHjJeXF1xcXDK8Helx9epVzJkzRwS3yCUkJCAsLAzPnz/Hnj170KRJEyxatAg5c+bUuc7g4GAsXLgQp06dgkwmk7wXHh6O8PBwvHr1Cvv370eVKlUwa9Ysjee0jLpx4wb+97//4d27dyrvyevy6NEjbNu2DR06dMCMGTN0/q7GOK8pu3btGqZPn46goCDJ/Pj4eISHh8PX1xf//vsvOnXqhDlz5mgNXvzR2jhlnp6emDx5sso+Kv+uvb29sWXLFqxfvx5Vq1YFkLpfT506FSEhIZJlQkJCcOPGDdy4cQN79+7F+vXr9f5tjHWdZGiZ1Z4dPXoU8+fPx9evXyXz5echHx8fbN68Gf3798fEiRPVBmplxOfPnzF16lTcuHFD5b0PHz7gw4cPcHd3R926dfH333+n6zMSExMxdOhQESSuuO5nz56hffv2kvIJCQlYtWoVdu7cifj4eJX1ydt8+fVp37598ccff6ico/Pnz4+KFSviyZMnAIDbt28jJSVF63d469YtybSnpyeSk5ORJUsWjctcvXpVvM6dOzecnJzg4eGhsXxaREdHY968eThy5IjKecDf3x/+/v64desWli1bhtmzZ+vspxARERERERkTh+AkIiIiIqKfQsuWLdGpUycxnZycjGnTpiEpKUlt+V27dkluxhUrVgzTp0/X+TmLFy/GunXrNAb2yD158gTdunXDvXv3tJZLSUnBpEmTMHXqVLU36ZXJZDKcPXsWXbt2xcOHDzWWi4qKQu/evdUGn6mTnJwMNzc3DBw4EDExMXotY0weHh4aM1JUqlQJhQoVkszbtm0bhg0bpjb4TFlSUhL27NmDvn37qg1Oyoj4+HiMHz8ef//9t9rgM2Xh4eGYN28eJk+ejMTExAx//pMnT9CzZ0+cPn1a5z4qJ5PJcPr0afz6669ITk5WWyYpKQlDhw7F/v379V7vhQsX0KdPH4N/x7rIZDLMnj0bEydO1Ouzk5OT8e+//+L3339HQkKCUetWu3Ztyb576dIlREVF6bXs8ePHxWtLS8tMvwkdFxeHwYMHY8mSJWqDNZQlJSXh4MGD6N69u9qgJk0OHz4sCT5T1KBBA1haWuq9LkNxc3PD8OHDVQJ71Ll8+TIGDx6sc196/vw5unfvjpMnT6oEHajz6NEj9O3bFxcuXNC73vratGkTBg8erPfvdPz4cfTv319jG2es85qys2fP4rffflMJPlO3/iNHjuCPP/7QWOZHauPUuXbtGgYOHKhzHw0JCcHAgQPx+fNnnDx5Er/99ptK8JmyJ0+eYPTo0RrPD8oMfZ1kDJnVnv3777+YPHmySvCZssTERGzZsgXz58/Xe936eP/+Pbp27ao2+EzZrVu30LdvXwQGBqb5c9avXy8JPlPUokULyXRoaCi6d++OzZs3qw0+UxYXF4fNmzejX79++PLli8r7TZo0Ea/Dw8NFMJomyoFjUVFROpeRZ1sEgMaNGxssSDA8PBz9+vWDm5ubzvNAREQExo8fj3Pnzhnks4mIiIiIiNKDAWhERERERPTTmDFjhiS44/nz59iyZYtKudevX2Pp0qVi2szMDMuWLUP27Nm1rt/Lywvbtm0DAFhYWOD333+Hu7s7Hj9+jGvXrmHevHmSz4+JicGIESO03hyfM2cOjh07JpnXrl07bNu2Dbdv38bjx49x7tw5lcwwwcHBGDp0KD58+KB2vUuXLsWrV6/EdL169bBx40bcuHEDPj4+Yiim3377TbLdjx8/xtatW7V+D8aWkpKCefPmaXy/ZcuWkulDhw5h4cKFkpvdzZo1w6ZNm+Dh4YHHjx/j8uXLmDdvnmSIqydPnmD48OEGDTqaOXMm3N3dxbSFhQX69euH/fv34969e3j48CFOnjyJsWPHSrKoHD16FIsWLcrQZ8fFxWHMmDGSG7S1atXCmjVrcPXqVTx+/BiPHz/GlStXsGrVKtSuXVuy/KNHj+Dm5qZ23du2bcOdO3fEdKVKlbBq1SpcuXIFjx8/xv3793Hy5ElMmDABuXPnFuX8/PywYsUKybq6dOkCX19f+Pr6onPnzpL35PN9fX0lw2+mhaurqxj2TK5FixZif/Dx8cGFCxcwYcIEyb5/8+ZNLF++PE2fldZtMTU1RceOHUWZuLg4vQKKEhIScPr0aTHdsmXLdGUqXLhwoajTggULJO/t2LFDUmfFjJJJSUkYO3asJHNM1qxZ8csvv2Dv3r3w9PTEw4cPcerUKZV9+927dxg8eLBeAZlRUVGStlmZ8rGvD/n27NixQzJ/wYIFku3V5ujRo0hOToa5uTl69OiBvXv34s6dO3j48CGOHDmC3r17S4YSfPz4sco+qCg4OBiDBw+WBHoUKVIEs2bNwoULF/D48WPcvn0b27ZtkwQaxsbGYuzYsWkK0tLl2LFjWLZsmWSes7MzVq9eLc4XV69exezZs5E3b15R5tmzZ5gxY4badRrrvKYoIiICf/75J1JSUmBlZYWhQ4fiyJEj8Pb2hqenJ3bt2qWSXfDy5csag7IN2cZ9C2PHjkVSUhIsLS0xcOBAHD16FA8ePMDdu3excuVKFCxYUJSNiYnBuHHjMGXKFMhkMtjb2+N///uf2NYLFy5g+PDhkoxQDx8+1CvwxVDXSaNHjxbHprOzs5hvb2+vsZ3SV2a1Zy9fvhRtv62tLcaNG4dTp07h0aNH8PDwwKZNm1CjRg3JMrt379YZDKWvmJgYDBs2TBIgaWdnh5kzZ+Ly5cvi2mj27NkoUKAAgNSMW/oMW6ro48eP+OeffzS+r9huR0dHY9iwYXj+/LmYZ2lpiaFDh8LNzQ337t3D/fv34ebmhiFDhkgCjr29vdVesykGoAGp53JtdX3//r3KfMVjX9nTp08l32GzZs0AGGYfffHihfi9HRwcMG/ePJw/fx6PHz/GzZs3sWTJEsl1q0wmw9y5c40eLE9ERERERKQJA9CIiIiIiOinYW1tjQULFkgCAdatW4c3b96I6cTEREycOBFxcXFi3pgxY1C5cmWd64+IiAAA5MmTBwcOHMC4ceNQqlQpmJubI3/+/OjevTtOnDghuaEYHh6uMbDoypUr2Ldvn5jOli0bNmzYgOXLl6Nu3bqwtbWFubk5ihUrhv79+8Pd3R3169eX1OePP/5QyZoQGxsrufnfsmVLbNmyBY0bN4adnR3MzMxgY2ODcuXKYfz48di6davkJt+uXbv0yshjLMHBwSJ4rnfv3jhz5gy8vb1x/PhxDB48GK1atRJl3717h//9739iOmvWrFi2bBlcXV3RqFEj5M6dG+bm5ihUqJD4fdq1ayfK+/j4YOXKlQap9/Hjx3H06FExnT9/fhw4cADTp09HtWrVYG1tDUtLS5QpUwbDhw/HyZMn4eDgIMrv3LlTMsxTWu3YsUNliMbt27ejZcuWKFCgAMzNzWFubo6CBQuidevW2L59O4YMGSJZx8mTJ9WuWzGYpmrVqti7dy9at26NggULwtzcHNmzZ0eZMmUwbNgw7N+/XxKgcezYMZ3ZXwzl7du3cHV1FdNmZmZYunQp1q5dK/YHMzMzFClSRNQ1V65covzOnTv1ynKVEcpDZ2rK9qXo0qVLku8ws4ff3L9/Py5fviymbW1tsWfPHsyZMwdOTk6wsbGBpaUlSpcujeHDh8Pd3R0VKlQQ5f39/TUGKyl68eIFQkNDkTVrVowcORKXLl3CgwcPcOjQIfTu3RuNGzc2xubpxc7ODrt378b//vc/ODk5IVeuXLC0tESFChUwa9YszJw5U1JesS1QNmnSJEmgaOvWrXHixAn07t0bRYoUgbm5OWxtbVG3bl2sWLECq1evhpmZGYDUc9jYsWMl57D0kmdgVPTnn39i586daNWqlThfFChQAL169YKbmxsKFy4syp47d04le5WxzmvK4uLiEB8fD3t7exw5cgQTJ05EhQoVkC1bNtjY2KBmzZpYv349fv31V8lyhw8fVru+H6WN0yQ6Ohq2trbYuXMnpk6divLly8PKygo5c+ZEmzZtsGXLFrEPAamBYomJiXB0dMTRo0fRo0cPsa1FihTB2LFjMWfOHMlnKAbBamLo6yRjyKz2LDIyEjKZDBUrVsSJEyfw+++/o3Tp0rCwsEDu3LnRqFEj7NixA61btxbLyLP1GYKrq6skW1vVqlVx6tQp9OnTB4UKFRLXRr169cKpU6dQs2bNdH3O/fv3kZCQACsrK0ydOhXXrl3DvXv3sHv3bvTu3RvVqlUTZdeuXYvHjx+L6SJFiuDYsWOYOHEiKlasCGtra2TPnh0VK1bEn3/+iSNHjsDe3l6Uf/TokUqgeMWKFSXD4GoLQFMeflNOWwDalStXxGsLCwvUq1dPY9n06tmzJ9zc3NC9e3cULVoU5ubmyJs3Lzp06IBDhw5JgtCCg4Nx/fp1g9eBiIiIiIhIHwxAIyIiIiKi70r//v1RtmzZdP8bMWKE1vXXrl0bAwcOFNPx8fGSwIDVq1fj6dOnYrpOnToqQTjaZMmSBevWrUO5cuXUvm9tbY1169bBzs5OzDt9+jT8/Pwk5WQymUrWlHnz5qlkclBet6urK8qUKSPmPXnyBBcvXpSUe//+vWQYzW7dukmC8pRVq1ZNkr0pLCxMZ0agzDBixAjMmjULJUqUQLZs2VC2bFlMmjRJciPun3/+kQRi/PXXX2jfvr3GdZqbm2PJkiVwdHQU8/bs2aNXNhNtUlJSsG7dOjGdNWtWbNiwQeN+AqQGqG3evFmSXUVxHWmlGDyWK1cuTJ8+XevvDqRm8FAMPlT3u0dGRkqCsjp27Ahzc3ON6yxatCgGDRokppOTk+Hp6anXNmTUP//8Ixl2948//oCLi4vG8mXKlMHkyZPFdFJSEg4dOmTUOhYtWlQSfOHh4aFzmELFgFJ7e3uV7HXGFBsbi/Xr14vpLFmyYO3atahatarGZezs7LBlyxZJO3ju3Dk8e/ZMr8+cM2cOxowZA3t7e1hZWaFy5cqYNWtWurK+GcrixYtRpUoVje/37t0bpUuXFtPPnz9HbGysSjkvLy9JEISjoyOWLl2KbNmyaVx3q1at8Ndff4npgIAAgwSp7N69WxI41atXL63nw/z58+Pvv/+WzNu/f794bczzmiarVq2SnBOUjR07VhIspi7Q5Edq47SZMmWKxn20VKlSkkA/IPV8uHLlSsk5SFG3bt0kGer0zcxlqOskY8js9szCwgKurq6SZRVlyZIF06dPR9asWcW827dv67MpWkVERGDXrl1iOk+ePNiwYQNy5syptry1tTU2bNigMrx5Wri6umLgwIHInz8/rK2tUaNGDcyaNUtchwQFBWHPnj2ivJWVFTZv3qz1+C1ZsiQ2b94saR/37NkjOWeamJhI2pgHDx5oHEpese2tVKmSeH3v3j3JtYMixeE369atq7WtTo8aNWpgzpw5kgBRRTly5MDYsWMl87y9vQ1aByIiIiIiIn0xAI2IiIiIiH4648ePl9zM9vT0xNGjR+Ht7Y3NmzeL+bly5cKiRYtgaqp/16lLly6S4CV1cuXKheHDh4vplJQUlcxST58+lQxB5OzsrDVwSs7CwgLTpk2TzFO8oQdAJXOMPsFkv/76K9asWYMjR47Ay8tLa+BUZsiVKxd+++03rWW+fv2K48ePi+lSpUqhV69eOtedJUsWjBo1SkzHxsZmOJjj+vXrkkwjXbt2lWRM0SR//vySOj98+DBdw28lJCSgbt26aN68OcqWLYuuXbvqHFIWSB36qlSpUmJaXRaf9OxPnTp1wooVK3Dw4EF4eHiIIauMSXmYSjs7O5XsR+p06NABtra2YpnMyGSkGPCZnJyMU6dOaSwbGhoqyXbSuXNnnYGFhnT9+nXJzf4OHTqoDBunTu7cuVVumiu3VeqULl0aXbt2TXM9jal27dqoW7euznINGzYUr1NSUhAQEKBSRjEoBEgNGtIUeKCoZ8+ekmEU9fkudVFsP83NzVV+L3Vq1aqF8uXLA0jNHKUY6GHM85o6NWvW1Jm91NLSUpLZKSYmBpGRkZIyP0obp02hQoUkw/uqoxxk1aJFCzH0ojomJiaSLJ2hoaF61cVQ10nGkNntWZs2bbR+x0Dqeads2bJiWtuw7fo6c+aMJAD2t99+kwRiqmNtbY1x48al6/MaNWqEOnXqaC3j7u4ueWBg0KBBWoPP5EqWLCk5l8fHx6tkMlQMQEtMTFQbECqTyeDh4SGmFfe/mJgYSWY2ubCwMMmQx8rD+hrCuHHjdJ7TGzRoICmjmO2WiIiIiIgoMzEAjYiIiIiIfjryLFeKN/UXL16MKVOmICUlRcybP3++JLuHPnr06KFXORcXF0lgm/KQQMrTaQm4qFOnDooWLSqm7927h4SEBDEtH75Hbs2aNdi5cyfi4+M1rrNYsWJo2bIlKlSogBw5cuhdF2OpVauWJDOXOsrb3bZtW72DCWvXrg0rKysxrW34JX0oZyzRlnVLmfINzfTUxdzcHFOmTMG6detw/PhxTJo0Se9lFQPVkpOTVYIxbGxsJMNbHThwAKtWrUJUVJTGddrZ2aFt27aoUqWKzpvehvLo0SNJMEybNm0kWWU0yZo1Kw4dOoT79+/jxo0beg2tllFt2rSR7H/ahuF0d3dHYmIigNSAkE6dOhm7ehLKbVW3bt30XtbFxUWynfpk9mnYsGGmBtjpQ5/gMwCSoeIAqAQ6AdLvoHDhwpLh6bTJkiWLJMDt5cuXegcEqRMYGCgJmm3QoIFkOFptNmzYAE9PT9y+fRtr164V8415XlPH2dlZr3UrZ3VSzo70o7Rx2tSsWVPncZMnTx7JdPXq1XWuVzFjlqasUsoMdZ1kDJndnum7jyq2HeoyJ6aVYtYuExMTdOjQQa/lWrduna5Mk4ptkyYZ+e6V9ynl775OnTqSa0Z1+9KzZ88QFhYGIDUAsmnTppLMdOquva5fvy76DcqZ1gzB0tJSZ7AmkBocqHgsfushf4mIiIiI6OfFADQiIiIiIvqu7NixA76+vun+5+rqqtfnlC9fXpLlKiQkBG/fvhXTvXr1QvPmzdNUdysrK8mQPdrY2NhIMjsoD9X06NEjybQ+N4IVOTk5iddxcXF4+fKlmM6ePbvkZmNCQgLmzZuH2rVrY/jw4di9e7fku/ge6ROUcf/+fcm0PCuPPrJmzSrJ/JXR4YwyUhfFDDOGqIsusbGx8PHxwd69ezFu3DiVrB+KQZpyilnaZDIZXF1dUadOHQwaNAhbt27F8+fPVQLXMpvyMaZtuERlhQsX1itjnKFkz54dLVu2FNM+Pj4aj0nF4TednZ1RpEgRo9dPkWJbZWZmlqbv1cLCAhUrVhTTfn5+Ooe71TcgKzMpBkZpoxicAkAlgOrNmzciAAJIWzsBQJIlSSaTqZxH0iIjx0uBAgXUDttozPOaOoptuDbKQ+YlJyerlPkR2jhtihUrprOMckCuYkY9TfTJzqfIkNdJxpDZ7Vl69lFNQ0GmheJ2FitWTGT51MXc3FyyjfrSp91WrFOhQoX02v/kChYsKAkkVW5rLC0tJRnYFIfaVDfP2dkZpqamkuCvu3fvqixz9epV8bpKlSoah1JNr8KFCyNLlix6lVW8RtEVnEtERERERGQsuh/1JSIiIiIi+o8aOnQorly5ggcPHkjmly5dGlOmTEnz+kqVKpWm4TqLFCmCN2/eAACio6MREREhMhgoZq4xMzNLc1CJ8rBFISEhkukpU6bg0aNHePHihZgXExODS5cu4dKlSwBSb+jVq1cPDRs2RIMGDVSCJ74lfTLTffr0STI9YsSIdH9eWFgYkpKS9MqYpU9d0hp4oUhxeLCMCAoKwsOHD/Hq1St8+PAB/v7+8Pf3R2BgoNZACnXvDRkyBHfu3JFkHUlISMDNmzdFppE8efKgTp06aNiwIRo1aqR3NiVDUR7uMLMDtdKqc+fOOHr0qJg+ceIExowZIynz5s0byY32Ll26ZFb1BMW2qlChQpLsivooXry4ZDi0kJAQrftGWrNSZgbFzDNpoXwsKQ+td/78eUlQWVplpK0wxvFi7POaMn0zNSmft9UF2f4IbZw26cnCZoxzviGvk4whs9szfTPKKn5nGQ10jIuLw+fPn8V0Wo/DEiVKpDkTq652OykpSZK1S5+hN5UVL15ctFvR0dGIj4+HhYWFeL9p06a4fPkygNQMkUFBQZJ6KQag1a5dG0Bq5sBz584BSH2QICEhQewTycnJuHHjhljGGMPsqgvkJSIiIiIi+p4xAxoREREREf20smTJgsmTJ6vM7969u87hHdVJ601R5RuPisN5KWbNSM9wR8o3rSIiIlQ+e8+ePejZs6fG7AqBgYE4dOgQxowZg9q1a2PcuHF49epVmutiDPp814Yegkj5O0wLQ9YlI/UAUjN29OnTB40aNcLo0aOxatUquLm54e7duwgICFC5ua1P0J25uTk2bdqE33//XXLDV1FISAhOnjyJSZMmoV69ehg2bJhK8KcxKQ+Xl57jKjPVqlVLMuyaumE4FbOfZc+eHa1atcqUuilSbKvSMzyvrrZKmTGDT9JL3ww1umT02FamK/uSNsY4Xox9XlOWnvO4Jj9CG6dNWgOpABhlqFtDXicZQ2a3Z5r2JWNSvh5J67GYnqAoXb97RESE5NrDEN+9cvvXuHFjyT6tGHCWkJCAe/fuiWl5AJr8fyA1O6xiwLe3t7fkM4wRgJbehx6IiIiIiIi+FQagERERERHRT23Tpk0q81xdXVUy0egjrTeKlIf5UlxeXQaWtFBeXl2ARI4cOTB37lxcvnwZkydPRo0aNTRuQ3x8PNzd3dGhQwfs2LEjQ3UzBH2G/TLEMFWK4uLi0r1sYmLiN69HQkICpkyZgmHDhsHLy0ttFhUTExMULVoUbdq0wbRp03Du3DnJsHfaWFhYYNy4cbh69Spmz56N+vXrawx6SEpKwtWrV/HLL79g8eLF6dqetDJGMIUxmZiYoHPnzmLaz88PDx8+FNMymUwSlNa2bVuVoQQzQ0az8ejTVilK65B/PxJDt1nx8fHpXtYYx0tmnNeM6Xtv47T5Xto/Q14nGUNmt2ffg7Qel+n5jnQFQGa0bVC3DuXvPl++fKhQoYKYlmcuBIB79+6Jays7OzsxNKqDgwPy5s0ryilmfrt27Zp4XbRoUZQuXTrD20BERERERPSj42M0RERERET00zp06JAYblJRREQE/vrrL2zZsiVN60trZg7l8ooZHxSHbEpPxg/lDBfahtLKnz8/Bg0ahEGDBiEyMhKenp64c+cO7ty5g+fPn0tuNiYnJ2P+/PkoWrQoGjdunOZ6qWPI4CxFytkwbt68KbmRmJly5syJL1++AABKliyJ06dPZ3od/v77bxw5ckQyr2rVqqhduzbKlSuHkiVLonjx4ipZg5QDAHSxtbVFr1690KtXL8TGxuL+/ftif3r8+LHK+rZs2QJ7e3v06dMnfRumJ+X9ITo62qifZwidOnXCunXrxDF44sQJVK1aFUDqDfOPHz+Kst9i+E0g9XuVD/UYGRmZ5uXT0lb91ynvoxMmTMCwYcO+i7oY4njJzPOaMX3rNs5Y58zMYMjrJGP4Gdoz5SFBM/qbGIJyhjRjffdNmzbFkydPAAAeHh6QyWQwMTGBh4eHKKOY9Uw+ffLkSQCpAWgjR44EkJpNVs4Y2c+IiIiIiIh+RMyARkREREREPyV/f3/8/fffYjpHjhyoWbOmmL5x4wZ2796dpnUGBASkqfzbt2/Fazs7O8nNMsVAqcTERHz48CFN637z5o1kulChQnotlyNHDjRt2hRTp07F0aNHcf36dUyfPh0FChSQlFu7dq3KssoZVvTN5hMWFqZXubTKkyePZNrPz88on6OP3Llzi9cBAQFpDurKqOfPn2Pv3r1iOnv27Ni6dSsOHDiA8ePHo23btihXrpzaIesycrM5W7ZsqFevHsaPH4/9+/fDw8MDCxYsQMmSJSXl1q9fb/TvRHl/8Pf313vZsLAwhISEGLpKOhUpUkTSLp0/f168PnfunHhdvHhxvTPVGZqdnZ14HRAQgISEhDQtr9xWFSxY0CD1+hEp76NpbfcNKSPHS1RUFIKCglQyJX2r85oxZaSNUz5n6tsGZmRo1W/NkNdJxvAztGfm5uaSa5L379+naXljtEvm5uaSIDTF311fr1+/Fq9z5cqldl9p0qSJeP3lyxf4+voCgM4ANDlvb2/Ex8cjKCgIz549E/ObNm2a5voSERERERH9FzEAjYiIiIiIfjopKSmYMmWKJKPL5MmTsWjRIskNqyVLluDdu3d6rzcgIEDvIJWQkBDJDX1HR0fJ+1WqVJFM37t3T+96yGQyPHjwQEybmZmhaNGikjKJiYl4/fq1pJw6dnZ26NevHw4fPizJmvH06VOVLCzKwx3FxMTorGtSUlKab0jrq3LlypJpxRuM+njz5g1CQ0MNUhfF3zMuLk7n964oOTkZL168yFAg2LFjxyTTEyZMQL169fT6bOWbzeqG30pOToafn59keCp1cubMiS5duuDw4cMoXry4mB8cHGy0/UCuUqVKkmkfHx+9l92wYQPq1q2LatWqoW3btgbbL/ShmNns06dPePz4MQDg8uXLYn7Xrl0zrT7KFPftxMREyTChusTGxkpu4hcsWBDW1tYGrd+PpEyZMpIg0Nu3b6dp+S9fvsDf398gQ3lm5Hhxc3NDw4YNUaVKFbRq1QrPnz8HYPzzmjEZo41LzzkT+LbB1BllyOskY/hZ2jN5Jk0A+Pjxo97ntOTkZJFBzNAUv/vAwMA0XRN8+PBBZK4DoHE4zIoVKyJ//vxi+ubNm4iOjsbTp0/FPOUAtDp16ojX8fHxePDggST7Wa5cuVC9enW960pERERERPRfxgA0IiIiIiL66Wzbtg2enp5iuk6dOujevTvs7e0xbtw4MT82NhaTJ09OU2Ym+TA9uhw9elQyrTycZa1atSTThw4d0rsOHh4ekqH5qlWrJglqGDFihAikGT58OFJSUnSuM2/evHB2dhbTycnJKpnLsmfPLplWvBmoyYMHD9KcYURfzs7OkgwzR44c0TswIygoCB06dECdOnVQtWpV9O3bN0N1Uf49Dx48qPey58+fh4uLC6pXrw5nZ2csXbo0zZ+vnE1EuT6a3LhxQyUoQnl/mTdvHqpWrYoWLVpg4MCBKsNgqWNlZSXJRAJADFGqSDlDUEZUrlwZ5ubmYvrMmTN67fsAcP36dQCpbcLXr18l2WP0ld5tadWqlSQw9sKFC3j16pUIQsmSJQs6duyYrnUbQkbaqpMnTyIuLk7jujKTIfe19DI3N5dksvPz80tTENq0adPQrFkzVK5cGY0aNUpT8IyyQoUKwd7eXkxfu3ZN7yBY+fGSkJAAf39/EShmzPOaMRmrjUvPOfPjx48/dAAaYLjrJGP4r7RnujRo0EC8lslkcHd312u5GzduGC1rreI1JpC27165rLbvXnE/unnzJu7duyeuDQsXLozChQtLyivPu337tiQArVGjRirBpERERERERD8rBqAREREREdFP5cWLF1i5cqWYtrKywv/+9z8x3bdvX0mWDW9vb2zcuFHv9f/zzz+IiIjQWubLly/YtGmTmLa2tkbr1q0lZapWrYry5cuLaU9PT71u2iYkJGDBggWSeZ06dZJMFy5cWNxsCwsLw9mzZ3WuF5AOwWZhYQFbW1vJ+8pDTV28eFHnOletWqXXZ6dHwYIF0ahRIzH94cMHbNmyRa9llyxZIjK8xcXFoUKFChmqS8uWLSVBSydOnICXl5fO5eLi4rBixQoxHRERgWrVqmWoLoB+w55GRUVh7ty5KvOVM98VKVJEzEtJScGBAwf0qoPykH7qhipTvqmrb8CYOpaWlmjfvr2YDggIwL59+3Qud+XKFcnQXsrHqr7Suy1WVlaSz7x48SIuXbokpuvVqyfJ6JLZmjdvLhlaUd99OywsTOX4V26rMpMh97WM6Nmzp2R6wYIFkqAWTW7duoUrV64ASK17QkJChtstxex7sbGxWL9+vc5lnj9/jps3b4rphg0bigBKY57XjMlYbZzyEKIXLlzQuU5jnjMzi6Guk+SyZs0qXmf0uP2vtGe6dOzYURLYvGnTJkRGRmpdJjExEcuXLzdanbp06SIJEt+2bZteWYjfvXuHHTt2iGkTExOtQdmKw2V6eXnhxo0bYlox25kixfnXr1+XZNRt1qyZzjoach8lIiIiIiL6njEAjYiIiIiIfhqJiYmYNGmSJOPW+PHjUaRIETFtamqK+fPnw8zMTMxzdXXVe8ih4OBgjBw5UmOmmNDQUPz2228IDw8X84YOHaqSCQUAhg8fLpmePn26ZNg9ZdHR0Rg5ciRevHgh5pUoUQIdOnSQlFMerm/evHmSABt1Dhw4IBmiqEGDBpLvCFC9cbd161a8efNG7fqSkpIwd+5cSSY6Y/j9999havp/Xd+VK1diz549WpfZtGkTTpw4IaYtLS0xePDgDNXD0tISgwYNEtPJyckYNWqU1iHoEhISMGHCBMkN2PLly+t1s1NZqVKlJNMbN27UmtnPz88PAwYMUAmgAKASDOPi4gILCwsxvXbtWp037K9duyYJUCxfvjwKFCigUk7xBjkAyXGTHoMHD5bcCF60aJEkk4myt2/fYvr06WLazMwM/fr1S9dnZ2RbFAOBXr58KQmcU3zvWzA3N5ccH/J9W1v2rZCQEAwZMkSS8cnZ2Vnjzf/MoNwGZ3RfS6+WLVuiTJkyYvr58+cYNWqU1uxjvr6+mDBhgmTeb7/9ptJGp1Xv3r0lQwhu3bpVa/bGL1++YPz48ZK2RbHdA4x3XjMmY7VxNWvWlLRHR48e1XpO2LRpk8pwyj8iQ14nAdK2NSIiQu0w0fr6r7RnulhbW2PgwIFiOigoCCNHjpQMTa8oISEBf/75pxhO1xjy5s2LHj16iOmYmBgMGTJEaxDau3fvMGTIEEmm1k6dOqFYsWIal6lTpw6yZcsGIHVITcU2TXn4TcVl5Hx8fMT3ZG5ujvr162vfMBh2HyUiIiIiIvqeMQCNiIiIiIh+GmvWrMGzZ8/EtJOTE/r06aNSrlSpUpKb5PLAtfj4eL0+x9PTEy4uLjhw4ACCgoKQkJCAjx8/YufOnXBxcYGPj48oW6VKFY3BTa1atZLcjIuNjcXw4cMxYcIEeHh4IDw8HAkJCfDz88OuXbvQtm1bXLt2TZS3tLTE4sWLJRklAKBs2bKSTFBfvnxBt27dsHz5cjx+/BhRUVFITk5GeHg47ty5g8mTJ2PmzJmivJmZGUaPHq1S37Jly6JSpUpiOiwsDH379sX27dvx4cMHxMfH48OHDzh06BC6dOmC3bt3A1DNAmNIjo6OGDlypJhOSUnBnDlzMGDAAJw9exZfvnwRw8SdP38evXr1wrJlyyTrmDRpkkEyTA0ePFhyEzMsLAz9+/fHX3/9hTt37iAiIgJxcXF4/fo1du/ejdatW0sy4lhYWGDevHnpGirQxcVFstz169cxcOBAXLt2DREREUhMTMSnT5/g4eGBadOmoWPHjpL9VJFylpTcuXNLbmTHxsZiwIABmDt3Lry8vPD161ckJycjMjIS3t7emDdvHkaMGCGygJiYmEiGvlVkZ2cnmV6yZAkiIiKQkJCgM4OOOqVLl5Z8VlxcHH7//XdMnToVXl5eiIyMREJCAl6/fo1169aha9eukqCCkSNHar2xrU1GtqVGjRpiGEMAYijCXLlypSsg0dAGDhwouQkfFhaG3r17Y/bs2bh//z4iIyMRFxeHV69eYePGjWjbtq1k/8qdOzf+/vvvb1F1Qfn32bVrF168eIGkpCSEhoZmWj1MTU2xcuVKScDC9evX0bp1a2zZsgWvX79GfHw8wsLC8PDhQ8yePRvdunWT1FHTuS2tcufOjXnz5onplJQUTJ8+HSNHjsSNGzcQHh6OxMREfPjwAdu3b0fHjh0lwczdu3dHzZo1Jes01nnNmIzVxuXMmVNy/MbHx2Po0KFYu3Yt3r59i/j4eAQGBsLd3R29e/cW5yZjnjMzi6GukwDpsRsTE4OVK1ciJiYG8fHxeg8bq+i/0J7pY/jw4ZLg9Dt37qB9+/bYt28fAgICkJCQgM+fP+PYsWPo1KkTTp8+rbIOQw9d/Oeff6JcuXJi+sOHD+jUqROWLl2KJ0+eIDo6GjExMXj69CmWLVuGjh074sOHD6J88eLFMXXqVK2fYWFhIbkWUwxe0zR0p6bAtNq1a2sMjFRk6H2UiIiIiIjoe5VVdxEiIiIiIqLM079/f4OsZ9SoUZIgqQcPHmDz5s1i2sLCAvPnz5dkx1I0bNgwnD17Fr6+vgCAV69eYfny5TpvbNWqVQt37txBQEAAZsyYobVs2bJlsWHDBq1ZambMmIGYmBgxTJlMJsPJkyd1DluWI0cOrFmzBlWqVFH7/syZM/HixQuRVSYmJgYbN27UOdxolixZsGzZMskNQuX1DhgwALGxsQBSM4P8/fffGm/GNmzYEG3atNH5vWbEyJEjERkZiX///VfMu337Nm7fvq1z2WHDhhkkkANIDSxZtWoVRo8ejTt37gBIzQR3+PBhHD58WOuyFhYWWL58uSTALy3KlSuHgQMHYtu2bWLe3bt3cffuXa3LmZubo3bt2pIAkA8fPqBEiRKScvIMMfLvNCkpCbt37xZBhtpMnTpVMlSqIuXhRt3c3ODm5gYgNXvQrl27dK5f2eDBgxEcHCz2h5SUFMl6NenevTt+//33NH+eXEa2RT6k2Jo1ayTz27dvn6mBOJqYmppixYoVGDNmjBiaLCkpCXv37sXevXu1Lps/f35s2rRJkonyW8iTJw+KFCkighkCAwPh4uIi3r9w4UKm1bF06dJwdXXF2LFjRRao4OBgLF68GIsXL9a6bPny5bFmzZoMZz+Ta9OmDYKCgrBo0SIRUHXhwgWdw0U2bNhQErisyFjnNWMyVhv3559/wtPTUwQQRkdHY82aNSrHulzFihXxxx9/YNiwYenckm/P0NdJ1apVk7QzGzZswIYNGwCkZsNatGhRmur3X2jP9GFubo5Nmzahb9++CAwMBJA6NPWsWbM0LlO+fHlER0fDz89PrMOQLC0tsXHjRvz+++/igZHY2Fj8888/+Oeff7QuW7p0aWzatAk5c+bU+TlNmzaVDGUtX145EFkuT548cHBwkGRilK9HH4beR4mIiIiIiL5XzIBGRERERET/eTExMZg8ebJkWLBRo0ahZMmSGpcxMzPD/PnzkSVLFjFv+/btInBIkw0bNkiyi6mTNWtW9O7dG/v27UOePHm0ljU3N8eyZcswc+ZMnWXlmjVrhqNHj2od/ilnzpzYuXOnzroqKleuHLZv345WrVppLFO1alVs3rxZkq1JHVNTUwwaNAjr1q2TfMfGYGJigqlTp2L58uWwt7fXaxk7OzssX75cZVi7jMqZMye2bt2KUaNG6ZU1A0gNONizZw+aN2+eoc+ePHkyhg4dqjHoUpmjoyMOHjyIMWPGSOarC9yT38ju16+f3r9n4cKFsW7dOgwYMEBjmZo1a0qCgBQp3wjWl3x/WLRoEfLly6ezvJWVFaZPn57u7HNyGd2Wzp07q3z+tx5+U5GNjQ02b96M0aNH67VvZ8mSBV26dMHRo0c1BrRmthkzZmgMdJEHI2eWOnXq4ODBg2jcuLFe5U1NTdG7d2/s2rULefPmNWhdBg4ciA0bNqB48eI6y5qZmWH48OFYv369xuAUY53XjMlYbVyRIkWwY8cOVKhQQef6OnXqhO3bt+t97vheGfo6ycXFRSXTnlx6j9v/Qnumj8KFC2P37t16DSPZrFkzbN++XZKd0RgB0AUKFMDevXvRr18/vdZvYWGBQYMG4eDBg3pf4zVu3FjlfKopy5mm901MTPQOQDPGPkpERERERPQ9YgY0IiIiIiL6z1u4cCHev38vpitWrKh1OCe5ypUrY8CAAdi6dSuA1CwtU6dOxfHjx2Ftba12GSsrKyxbtgzdu3fHoUOHcP/+fQQHB8Pc3BzFixdHvXr10K1bN50BWsr69OmDzp07w93dHTdu3MDTp08RGhqK2NhYWFtbo2TJknB2dkb79u1RpkwZvdaZK1cuLFu2DMOHD8fJkyfx8OFDvH79GpGRkUhMTESuXLlgZ2cHJycnNGnSBHXr1tUreKlGjRo4deoUTp06hfPnz+PZs2f48uULrKysUKBAAdSrVw+dO3fWu56G0q5dO7Rs2RLnz5/HjRs38PDhQ3z58gVRUVGwtLRE3rx5UalSJTRq1AgtW7aEpaWlUeqRNWtWjB49Gv369cOpU6dw69YtvHjxAqGhoYiLi4O1tTXs7e1RuXJltG7dGrVr1zbIMFcmJiaYOHEiOnfujIMHD8LT0xMfPnxAdHQ0zM3NkSNHDhQvXhwVKlRAs2bNxM1SmUwGe3t7Mezj0aNH8ccff8DCwkKyfgsLC0yfPh0DBw7EqVOn4OXlhdevXyMsLAwJCQnImTMn8uTJg8qVK6Np06Zo2LChXjeXlyxZgurVq+PYsWN49+4dIiMjYWVlhYIFCyIiIkKvbCfqdOrUCa1bt4a7uzuuXbuGp0+fIiQkBPHx8ciVKxfKlCmD+vXro2vXrsiVK1e6PsOQ22Jvb4+aNWuKrHUODg6oWLGiQeplKFmzZsWoUaPQp08f0VbJ9+3ExETY2NigdOnSqFOnDlxcXFC4cOFvXWWJRo0aYc+ePdi2bRvu37+PkJAQZMmSBXnz5hVZHTNT0aJFsXHjRjx58gTnzp0TWaPkWdFy5syJ0qVLo2bNmujYsaPewRfp0ahRI9SrVw/nz5/H1atX4e3tjZCQEMTGxiJHjhwoWbIk6tSpg+7du+s9ZLExzmvGZKw2rkyZMjh8+DDOnz+Ps2fP4tGjRwgODoaZmRkKFCiAGjVqoHPnzqhatWombKXxGfo6KUuWLNi6dSv+/fdfnDlzBv7+/oiOjoa1tXWGzuM/enumL3t7e2zZsgW3bt3C6dOnce/ePQQHByM+Ph558+aFk5MTunTpgrp16wJIHbpaLnfu3EapU7Zs2TB9+nQMGTIEJ0+exK1bt/D27VuEhYUhKSkJtra2cHBwQIMGDeDi4qJ3IKucnZ0dKlWqhMePH4t5ugLQ6tSpgx07dojpihUr6t3WGWsfJSIiIiIi+t6YyGQy2beuBBERERER0Y9qypQpOHLkiJhmJgMiMgaZTIZmzZqJQMC//vpLa2YlIqLvAa+T/ltq1qyJr1+/AuDwkURERERERCTFDGhERERERERERN85T09PEXxmbm6ODh06fOMaERHRj+jly5d4//49ChcujMKFC2vM6qvMz89PBJ8BqZk4iYiIiIiIiOQYgEZERERERERE9J07cOCAeN2mTRvY2tp+w9oQEdGPytfXFxMmTBDTGzduROPGjXUuJx+SXk4+VDcRERERERERAJh+6woQEREREREREZFmvr6+OHPmjJjm0JtERJRelStXlkxv2LABcXFxWpc5fPgw9u/fL6YdHBxQpUoVo9SPiIiIiIiIfkzMgEZERERERERE9J0ICQnB169fYW9vj9jYWNy8eRN///03EhMTAQBNmzZFxYoVv3EtiYjoR1WsWDHUrl0bt2/fBgA8ePAAnTp1Qp8+fVCnTh3kz58f2bJlQ3h4OJ4+fYpjx47h1KlTkMlkAICsWbNi1qxZ33ITiIiIiIiI6DvEADQiIiIiIiIiou+Ev78/evToofY9GxsbzJ49O3MrRERE/znz5s1D79698fnzZwDA27dvMW/ePJ3LZc2aFfPmzUONGjWMXUUiIiIiIiL6wXAITiIiIiIiIiKi70TRokXVzre2tsbatWuRP3/+TK4RERH91xQpUgQHDhxA48aN9V7GwcEBO3fuROfOnY1XMSIiIiIiIvphMQMaEREREREREdF3wtbWFs2aNYO3tzciIyORL18+1KtXD0OGDNEYnEZERJRWBQsWxMaNG/Hs2TO4u7vD29sbb9++xdevX5GcnIzs2bOjcOHCqFSpElq0aIH69evDxMTkW1ebiIiIiIiIvlMmMplM9q0rQURERERERERERERERERERERERD8eDsFJRERERERERERERERERERERERE6cIANCIiIiIiIiIiIiIiIiIiIiIiIkoXBqARERERERERERERERERERERERFRujAAjYiIiIiIiIiIiIiIiIiIiIiIiNKFAWhERERERERERERERERERERERESULgxAIyIiIiIiIiIiIiIiIiIiIiIionRhABoRERERERERERERERERERERERGlCwPQiIiIiIiIiIiIiIiIiIiIiIiIKF0YgEZERERERERERERERERERERERETpwgA0IiIiIiIiIiIiIiIiIiIiIiIiShcGoBEREREREREREREREREREREREVG6MACNiIiIiIiIiIiIiIiIiIiIiIiI0oUBaERERERERERERERERERERERERJQuDEAjIiIiIiIiIiIiIiIiIiIiIiKidGEAGhEREREREREREREREREREREREaULA9CIiIiIiIiIiIiIiIiIiIiIiIgoXRiARkREREREREREREREREREREREROnCADQiIiIiIiIiIiIiIiIiIiIiIiJKFwagERERERERERERERERERERERERUbowAI2IiIiIiIiIiIiIiIiIiIiIiIjShQFoRERERERERERERERERERERERElC4MQCMiIiIiIiIiIiIiIiIiIiIiIqJ0YQAaERERERERERERERERERERERERpQsD0IiIiIiIiIiIiIiIiIiIiIiIiChdGIBGRERERERERERERERERERERERE6cIANCIiIiIiIiIiIiIiIiIiIiIiIkoXBqARERERERERERERERERERERERFRujAAjYiIiIiIiIiIiIiIiIiIiIiIiNKFAWhERERERERERERERERERERERESULgxAIyIiIiIiIiIiIiIiIiIiIiIionRhABoRERERERERERERERERERERERGlCwPQiIiIiIiIiIiIiIiIiIiIiIiIKF0YgEZERERERERERERERERERERERETpwgA0IiIiIiIiIiIiIiIiIiIiIiIiShcGoBEREREREREREREREREREREREVG6MACNiIiIiIiIiIiIiIiIiIiIiIiI0oUBaERERERERERERERERERERERERJQuDEAjIiIiIiIiIiIiIiIiIiIiIiKidGEAGv30tmzZgrJly6Js2bKoX7++3suNHz9eLFe2bFnMnj1br+WioqJQoUIFsdzt27fFe4rr0+bLly8ICgpS+96UKVPEOtzc3PTeHvo5PHnyxGDrioqKwvv37w22PkPStp1NmzYVx4i/v38m1oq+JT8/P0RFRal9r1+/fmKfuHPnTibXLP3c3NxEvadMmfKtq2Nwa9asEdu3Zs2ab10dIiIA7DvQz4V9B/Yd6Oem6djw9/cXx0XTpk0zuVY/jv96+6HvdQgRUUaxD0Y/E/bB/vvXUJntW127p6Sk4NmzZ2rfu3PnjqhTv379VN7X1U7qu498z8dAevyXr7/Zx/xvYQAa/fRq1aolXgcHB+t1QSOTyeDh4SGZd+vWLb0+z9vbG8nJyQAACwsLODk56V1XmUyGAwcOoE2bNnj37p3eyxHFxMRg4cKF6N69u0HWd/78ebRt2xb37t0zyPoMxdDbST++xMREbNy4Ee3bt0d4ePi3rg4REf3g2HegnwH7DkQ/t48fP2Lo0KFYuHDht64KERER+2D0U2AfjP5LfH198csvv2D79u3frA7f6zFA9DPI+q0rQPStVahQATY2Nvj69SuA1A5G4cKFtS7z7NkzhIaGSua9f/8e/v7+OpdVPNlVr14d5ubmetd1ypQpOHr0qN7lieTatWuHgIAAg6xr9erVWLdunUHWZWiG3E76b/j111/h6en5ratBRET/Eew70M+AfQein9eLFy/Qs2dPxMTEwNnZ+VtXh4iIiH0w+imwD0b/FTdv3sSwYcOQlJSEkiVLfpM6fM/HANHPgBnQ6KdnamqKGjVqiGlvb2+dy9y8eVO8LlOmjNr5mih2YOrUqaNnLVPxwozSy5D7zve8H37PdaNvg/sEEREZEvsO9DNg34Ho5xUWFoaYmJhvXQ0iIiKBfTD6GbAPRv8VQUFBSEpK+qZ14H5G9G0xAI0I0jTODx480Flenq7ZxMQEQ4cOFfN1dWCSkpLw+PFjMV27dm3J+76+vuIfERERERF9f9h3ICKin1nhwoXF+efSpUvfujpERPQTYB+MiOi/o1atWqIt3blzZ5qXv3TpklheV1ZLIsp8DEAjgrQj4evri7i4OI1l4+PjxVMwZcqUQfPmzWFmZgYAuH37NlJSUjQu+/TpU/EkqY2NDSpVqmSI6hMRERERUSZh34GIiIiIiCjzsA9GRERE9GNgABoRgLJlyyJXrlwAgMTERPj4+Ggs6+Xlhfj4eACAs7MzsmfPjsqVKwMAIiIitC6rmL65Vq1aMDXlIUhERERE9CNh34GIiIiIiCjzsA9GRERE9GPI+q0rQPQ9MDExgbOzM86dOwcA8Pb2Ro0aNdSWVUzTXKdOHfH//fv3xftVqlRRu6y8jOKyisqWLSteK6ZxVpwv179/f/F6wYIF6NKli9rPBICHDx9i3759uHv3LoKDg2FlZQV7e3u0atUK3bp1Q+7cuTUuq49+/frh7t27sLKywoMHD/D69WssWbIEd+/eRdasWVG4cGE0b94cI0aMUFu3o0eP4s6dO/j8+TMSEhKQN29eVKlSBW3atEHLli1hYmKisw5Xr17FyZMn4e3tjc+fPwMAbG1tUaZMGdSrVw9du3ZFjhw51C67Zs0arF27FgCwe/du1KhRA3fv3sXOnTvx6NEjhISEIEeOHKhQoQJcXFzg4uKCLFmy6PXdGGr7AODDhw84ePAgbt68iXfv3iE+Ph42NjYoV64cWrRogc6dO8PS0lKUv3PnjmQ/kVPcny5evKh3itqmTZvi48ePknlTp07F1KlTAQCjRo3C6NGjVZZLSEjAyZMncfHiRfj4+CA0NBQWFhbInz8/nJ2d0bFjR1SrVk2vOqhjiO08ffo0jh07Bh8fH4SHhyN37twoWbIkOnToABcXF/GUnDaJiYk4fvw4Lly4gGfPniEkJATZsmVDgQIFULduXXTv3h2lSpVK30Zq8OTJE+zZswd3797Fp0+fYGlpiRIlSqBt27bo1asXLCws0Lp1a7x9+xYAVNLDu7m5id9v1apVaNq0KdatW4cjR44gIiICdnZ2qF69OkaNGoUiRYpIlg0MDMS+ffvg4eGB9+/fIzo6Grly5ULx4sXRsGFDdO/eHba2tip1njp1Ktzc3AAAI0eOxJgxY9RuW2xsLGrWrInExEQAwKJFi9CpUye1ZX19fdGhQwcAQJUqVbBixQo0a9ZMpZzivB07dkjS9yu7ceMGDh8+jAcPHiAkJAQ2NjYoWrQo2rVrh86dOyN79uwal00LLy8vHD9+HF5eXggMDERSUpL4HuVtl52dnd7r+/TpE3bu3Ilr166J47VAgQKoV68efvnlF733wUePHuHw4cPw8vLCp0+fkJiYiNy5c6NChQpo1qwZOnTooNdxAQBfvnzBwYMHcfXqVbx58wbR0dGwtrZGmTJl0LhxY/To0QM2NjZ6b6OihIQEDB8+HDdu3AAAWFlZYfPmzahevXq61kdEpA/2Hdh3YN9BN/YdtPsWfYeoqCgcPnxYDFcSGRkJKysrlChRAvXr18cvv/yCfPnyaV1HSkoKLly4gDNnzsDb2xshISEwNTVFvnz54OTkhHbt2qF+/foal/f39xfX5H369MHMmTMRHR2NgwcP4syZM/Dz80NkZCTy5MkDJycndOnSRev65DJyTa3YJ+rcuTMWLlyo9bPkbRigvk8h35eaNWsGV1dXxMbG4vDhwzh58iTevXuHuLg45M+fH/Xq1cOAAQNQrFgxsWxQUBD27NmDCxcuICAgACYmJqJ/17dvX1hYWGj9Trt164b58+cjODgY27dvx8WLFxEYGAgTExMUK1YMjRo1Qt++fdV+F4ptm9zdu3fF9tjb24vhNhU/U3G+Ohk9phWP2UmTJmHw4MEICQnB/v37ceHCBXz8+BGxsbHIly8fatWqhR49eqBq1aoa15cWX79+xZEjR3DlyhX4+vri69evyJYtG/LmzQsnJyc0b94cTZo0SdM6DdF+REdHw83NTdQrPDwc2bNnR8GCBVGnTh107doVpUuX1rtOV69exYkTJ+Dt7Y2goCBxTDs6OqJ79+6oWbNmmrZR0c2bN/Hbb7+Jfn2rVq2wYsUKvc+LRERy7IOxD8Y+mG7sg2ln7D7YoUOHMG3aNACAg4MDTpw4oXOZo0ePYvLkyQAAR0dH7Nu3T6VMRvtgaREeHo7jx4/j9u3bePHiBcLDwxEXF4ccOXIgX758qFmzJjp27CiCehVNmTIFR44ckcw7cuSImOfs7CyG21TcJxTn60txX1fcd/Q5BgYNGoR69eohNjYWAPDvv/+qbe8VJScno0GDBggJCQEAXLhwQeV+mT4+f/6Mw4cP48aNG3j16hWioqJgbW0tvts2bdqk6do7KSkJR44cwalTp/DixQtERkYib968KFu2LDp37qx3+xUWFoYDBw7gxo0beP36Nb5+/YocOXKgcOHCqFevHnr06IFChQrpVafk5GScPXsWp0+fxuPHj/HlyxeYmZmhYMGCqFGjBnr16oXy5cvrvY3K3Nzc8Ndff0EmkwEABgwYgL/++ivd6yPjYAAa0f9Xq1YtSQdGk1u3bgEAsmbNKlI/161bF+vWrRPvDx8+XO2yih0YxbTRxpKcnIz//e9/2L17t2iMgdQ01GFhYfDx8cGOHTuwatUqg92s9/f3R58+fRAWFibmRUREoGDBgpJyMTExmDFjBk6ePKmyjo8fP+Ljx484ffo0KleujJUrV2q8+IyIiMAff/wBDw8PlfcCAwMRGBiIa9euwdXVFXPnzkXr1q11bsPatWuxdu1ayXcWGhqKGzdu4MaNG9izZw82bNigteNnqO0DUn/HFStWYNu2bUhKSpK8FxISgps3b+LmzZvYtm0bVq9ejXLlyuncxszi5eWFSZMmqVz0JSQkIDIyEq9evcKePXvQpk0bzJs3D9bW1plav7CwMEyZMgWenp6S+UFBQQgKCoKHhwf279+P1atXI3/+/BrX8+jRI/z555949+6dZH5CQgIiIiLg6+uLHTt2YMCAAfjzzz8z/PRccnIyFi9ejO3bt0v204SEBDx8+FD80cLV1TVN6/3zzz9x5swZMf3hwwcEBgaKTpD8s9evX48NGzaIPyLLBQcHIzg4GJ6enti4cSMmT56MHj16SMo0bNhQBKB5eHhoDEDz8vKSrP/u3bsaA9CuX78uXjdu3FivbdUkLi4OY8aMwdmzZyXzv3z5gi9fvuD+/fvYuXMnXF1dM9QhTUhIwNSpU9W2EZ8/f8bnz59x9+5drF+/HhMnTkS/fv10rtPNzQ3/+9//xFABcq9fv8br16+xd+9eTJs2Db169dK4jvDwcMycOVNl+4H/a1MvXryIDRs2YPHixXB0dNRap3///RcrVqxQGRohPDwcnp6e8PT0xLZt27B06VKdHT1lKSkpmDhxogg+y5YtGzZu3MjgMyLKFOw7sO8gx76D4bDvYJy+AwCcPHkSc+fORUREhGT+169fRf9h+/btmDt3Ltq1a6d2HS9evMDEiRNVHmoBgHfv3uHdu3dwc3ND7dq1sXTpUr0eonj8+DHGjh0Lf39/yfzAwECcOnUKp06dQps2bbBkyRK1N5WMcU1tSK9evcLo0aPx5s0byXz593X06FGsW7cOderUwbVr1/Dnn38iPDxcUtbHxwc+Pj5wd3fH9u3bde73jx49wogRIxAcHCyZ/+zZMzx79gw7d+7EihUr0KhRI4NsozbGOKavX7+OSZMmITQ0VDL/w4cP+PDhAw4fPowBAwaIm0zp5eHhgXHjxknOT0DqjcuvX7/izZs3OHToEKpUqYK1a9dqPeYBw7Uf586dw8yZM1XqFR4ejvDwcDx79gzbt29Hr169MGXKFK03Yz98+IA///wTDx48UHnPz88Pfn5+OHbsGDp06ID58+fD3Nxc6zYqe/DgAUaNGiX69c2aNcOyZcsYfEZE6cY+GPtgcuyDGQ77YIbrg7Vu3Rpz585FfHw8Xrx4gVevXul8KMDd3V28dnFxUXnfGH0wTbZv345Vq1YhOjpa5b3Q0FCEhobi+fPn2LlzJ3r06IFZs2Yha9YfL8wke/bsaNasmTj2T506pfO+hIeHhwg+q169erqCz06ePIkZM2ao3LuRX8e/ePECu3fvRqNGjbB8+XKdx9qHDx8wYsQIvHjxQjI/ICAAAQEBuHz5Mho3boxly5ZpXdfevXuxePFilXrJf/NHjx5hy5Yt+P333zFixAitAW1PnjzBpEmT8OrVK8n8xMREcY/q4MGDGDhwICZNmqR3cK/c+fPnMX36dNH29+nTh8Fn36kfr2UgMhLFp1Y1dWDkJ1gAqFy5smi0q1atCisrK8TExODBgweIjo5WyY7z7t07fPnyBQCQP3/+NAUu9OzZEwBw6dIl8UfEJk2aiKeTS5QooXa51atXi6dJ8ubNi6pVq8LGxgYvX74UqaaDg4MxevRonDp1Sm22orSaOnWqyh/CAEj+iB0dHY3+/ftL0l2XLFkSFSpUQNasWfHu3Ts8evQIKSkpePz4MXr27Ik9e/ZIngwGAJlMhjFjxuD27dsAAFNTU1SuXBnFihWDqakpAgICcP/+fSQlJSEiIgLjx49H3rx5NT4dBQAHDx7E0aNHAaReiNSpUwfZs2fH06dP8fLlSwCpT8X06dMHu3fvVtuJMdT2yU2YMAGnT58W0zly5ECNGjWQM2dO+Pn5wdvbGykpKXj//j0GDBiAQ4cOoUiRIsiXL5/Yd/bv3y+Wl8+Tb6O+XFxcEBYWhjt37ogLdWdnZ7H/VapUSVL+6tWrGDFihOh0mZiYoEqVKihRogTi4+Nx//59BAUFAUh9guX169fYs2ePxiedNMnIdo4YMUIcIyVKlECFChVgYmKCBw8eiE6Xt7c3Jk+ejH///VftOjw8PDB8+HDxxISZmRkcHR1RuHBhxMTE4OHDhwgMDERycjK2bt2Kjx8/YtWqVWm+uFI0a9YsHDx4UEzb2trC2dkZFhYWePr0KV69eoW3b9/i119/VQkS0+To0aO4fPmyyvw6deqI/Vwmk2Hy5MmSp3eyZ88OZ2dn2Nraihs8CQkJiIqKwowZMxAYGIg//vhDlK9fvz6yZs2KpKQkPH78WG17CUAc13JeXl4a664YgNakSRNkz55d/P4nTpwQF8/t27cXn6Upu8P06dPFPmFvb49KlSohW7ZsePz4MV6/fg0gtT0fM2YMjhw5kuY/wsvNmjVL8geOsmXLokyZMjA3N8enT59w//59xMXFIS4uDvPmzYOtrS3at2+vcX03btwQTxNZWlqiRo0ayJcvHz59+gRPT08kJiYiMTERc+bMQenSpdU+SfP161f07dtXtHVA6vnK0dER2bJlw5s3b/Do0SPIZDL4+flhwIABWLNmjcabV4sXL8aWLVvEtLxednZ2on1OTEzEly9f8Ntvv2Hnzp1pylYwY8YMEShnYWEBV1dXODs76708EVFGsO/AvgPAvoM27Dv8q3Yd36LvsHv3bsydO1dMyz/T3t4enz9/xoMHDxATE4OoqChMnDgR5ubmaNGihWQdT548Qd++fSV/lC5btizKli2L5ORk+Pj44P379wBSr+O7d++O3bt3w97eXmO9Pnz4gKFDhyIsLEzyPcj3G/lnnT59Gvb29vjzzz9V1mHoa2pDCgkJweDBg/Hp0yeYmpqiRo0aKFy4MD5//gwPDw8kJycjOjoakyZNwqJFizBy5EgkJCTAzs4ONWrUgJmZGe7duyf2LR8fHyxfvhwzZ87U+JmfPn3C77//jpCQEJiYmKBatWooUaIEgoKCcPfuXSQmJiI6OhojR47EihUrJL9zpUqV0LNnT3z+/Fn0C+3s7NC0aVMASHObb4xj+uHDh1i9ejXi4uIkfZ7Pnz/jzp07SExMhEwmw7///otixYqhd+/eaaqz3OvXr/H777+Lh2hy5MgBJycn5M2bF1FRUXjx4oXIMv7o0SMMHjwYR48e1XoDzhDtx4EDBzBjxgwxnTVrVjg6OqJIkSKIjIyEp6cnwsPDkZycjF27duH169f4559/1AahffjwAb169ZIEKpYoUQIVK1ZEUlISfHx8RGDo8ePHERMTIwI39PH8+XP89ttv4jhu3LgxVq5cqXcWbSIiddgHYx8MYB9MG/bB/lW7jszqg1lbW6Np06ZiX3B3d9f48D2QGngkD5g1MzND27ZtJe8bow+myYYNG7BixQoxnSdPHlStWhW5c+dGQkIC3r59Cx8fHxH4c+DAAdjb2+P3338Xy9SqVQvm5uZ4+/atyBhdvHhx0XZragcNSd9joEOHDqIfef78ecyaNUvrdapin7Njx45prtft27cxceJE8f3lyZMH1apVg62tLcLCwvD8+XOxP1+9ehV//PGH5L6KOr179xbHRvny5VG6dGkkJSXBy8tLnIeuXLmCv//+G3///bfadaxYsQIbNmwQ0xYWFqhRowby58+PsLAw3L17F9HR0UhISMDq1avh5+eHRYsWqV3Xo0ePMGDAAMn+Wr58eZQpU0YcZ8HBwUhJScHWrVuRnJycpuCxW7duYfz48UhOTgYA9OjRQ9I3ou+MjIiEOnXqyBwcHGQODg6yDx8+qLx/4sQJ8f7KlSsl7w0dOlS8d/nyZZVlDx06JN6fNGmS2s+Xv+/g4KD2/b59+4r3b9++rbbM5MmTJeupUKGCbMuWLbL4+HhJuStXrsgqV66scXvSQrFeDg4Osnr16snOnz8vi4qKkvn5+clcXV1l0dHRovykSZNE2UaNGslu3bqlss5Xr17JunXrJsp16tRJlpCQIClz9epV8X7NmjVlT548UVnP+/fvZe3btxfl+vfvr1Jm9erVkvo7ODjIxo4dK/v69auknLu7u6xq1aqizLRp09R+H4baPplMJtu7d6+kXgsWLJDFxMRIyjx69EjWuHFjUWbQoEEq69G1b6WF4j52+PBhtWX8/Pxk1apVk2yfr6+vpExKSops7969skqVKolyI0aMyFDd9NnOJk2aSMrVqlVLduXKFUmZ5ORk2Zo1ayTl1P2OwcHBknZj9OjRsqCgIJXtPHr0qOT72Lx5c7q38cyZM5J6LVy4UOX4Pnv2rMzR0VFlv1Z2+PBhlTJLly6VBQUFycLDw2Vnz56VXb9+XZTftGmTpOy8efMkx7ZMJpOFhITIRo8eLSl3/vx5SZk+ffqI95S/e7kuXbqo1O3Tp08q5aKjo2UVK1aUOTg4yBo0aKDyvuLvra5dl8lU27CqVavKjhw5IktOTpaUO3DggKxs2bKi3MGDB9WuT5dXr16JdVSqVEl27do1lTKfP3+W9e/fX5Rr3ry5Shl1v9+kSZNkISEhknJv376VNW/eXJTp3bu32noNGTJElKlSpYrswIEDspSUFEmZZ8+eSdrUGjVqqP1eFdtnBwcH2fjx42VhYWGSMm/evJF16NBBlGnTpo3k8xTb5tWrV0uWXbhwoeQ7vHr1qtptIiIyJvYd0od9Byn2Hdh3UN5OQ/Ydnj9/Lq6VHRwcZL/++qssICBAUiYoKEg2YMAAUcbZ2VkWFRUl3v/69ausXr164v0mTZrIPD09VT7r7Nmzsho1aohyXbt2VdlPP3z4oHL8DBw4UObv7y8pFx4eLhs8eLAoU7lyZVlkZKSkjDGuqSdPnqzzO9XVtipvX8eOHWXv3r2TlLl3757kdylXrpzMwcFBtmbNGsl3lpSUJJs9e7aknxIbG6vzO23SpInM29tbUs7Pz0/WtWtXyb4cERGhUv/bt2+LMn379lX7HSh+ZpMmTVTeN+QxrVgfxb6Fcp8nMDBQ1rlzZ1GmQYMGKn0ZfY0dO1as57fffpMcD3InTpyQVahQQZQ7cuSIShlDth/379+XlS9fXpQZMGCAynETHx8vW7t2raTPOn/+fLXb2LNnT8kxr3wtkpSUJNuyZYukXidPnpSU0dSGvnv3TtJmDBo0SOW6gogovdgHSx/2waTYB2MfTHk7DdUHu3jxolhHq1attJbdt2+f5JpTkbH6YJqu3RV/49WrV8sSExNVyr169Urm4uIiytWtW1fl/olMpl//SlefQ9c+rOuej67lk5KSZHXr1tV6TpCLi4uTOTk5yRwcUvud6vpQunTv3l181vTp01V+o6SkJNnWrVsl+7O631u5HWzWrJnswYMHkjLx8fGy6dOnS8r5+fmprMvd3V1SZty4cSp9rKioKEl/1MHBQfbvv/+q/Y4Uf5OmTZvK7t+/r1JmwYIFknUpltG2nz548EByfE6ZMiXdfT3KHBnP40/0H6KYOUXdUzQ3b94Ur+vWrSt5TzFFp2I5uXv37qkta2wzZ87EoEGDVLL0NGrUCEOHDhXTytmG0svExAQbN25E8+bNkT17dhQpUgTDhw+HlZUVgNSoffkTKjlz5sTOnTvVfh+lSpXC9u3b4eDgAAB4+vQpTp06JSmjWOeBAweiQoUKKuspWrQoVq9eLaa9vLwQFRWldRvkwwIoP8nRpk0bLFu2TEwfPnxYJb2pIbcvJSUFa9euFdODBg3ClClTkC1bNkm5ypUrY+3atSItsHyc7m9p3bp1ItK9ePHi2Llzp9hWORMTE/zyyy+SJysuXLiAO3fuZFo9zczMsGPHDpUMTqamphg1apSkTVB3jGzYsEGk3m3RogVWrVqlklnLxMQEHTt2xPr168VTM+vXr9e5H2qycuVK8bpfv36YPHmyyvHdsmVLuLq6pvkpnX79+mHChAnIly8fcubMiZYtW6J+/foAgMjISGzatEmUHTp0KKZNmyaObbncuXNj5cqVaNmypZi3aNEi8WQCkDoMp5y69OuRkZF49uwZgNSnQeTUZUG7ffu2yPKW0eE35dauXYtOnTqppNru3r27ZBjQ9Labist16NABDRo0UCljZ2eHNWvWiOPdz89P53Hdvn17LFq0SOXJvuLFi2PevHli2tvbW2VIzLt37+LatWsAUvfZ1atXo3v37ir7ULly5bBr1y6RZvrr16+SdkpuzZo14nWrVq2wdOlS5MqVS1KmRIkSWL9+vXga9fXr12I4TW3Wr1+PrVu3Akg9hletWiXZp4iIMgv7DhnHvgP7DgD7DooM3XdYv369uFZ2dHTExo0bVYZXypcvH9asWSOelA8PD5dkPP7333/FE9S2trbYs2eP2qwULVu2xJYtW8ST448fP5asR52KFSti48aNKk/p58yZE8uXL0fOnDkBpA5DpfxbG+ua2pBsbW2xY8cOlWwZTk5Okn5FSkoKevXqhVGjRkmevM+SJQumTp0qru9jY2NFP0mTHDlyYPv27SqZhYsUKYJt27aJ4aPCwsKwcePGjGyeRsY8pps0aYKlS5eq9HkKFCiAVatWieEdg4KC1A5VpA/FfWv27NlqM3K0b98egwcPFtNXrlzRus6Mth/Lly8XfeoaNWpg06ZNKseNubk5Ro4cKRl+dNeuXfDz85OUu3r1qhh208zMDFu3blXpS2fJkgWDBg3CgAEDxLwdO3Zo3UYg9Xv/9ddfRZtRq1YtrFu3Lt2Zw4mIlLEPlnHsg7EPBrAPpsiQfbAGDRqITIVv377Veu2uuD916NBB8p4x+2DKDh8+jISEBACp7c7o0aPVZvYtVaoUlixZIqa/fPkisgL/aLJkySLJOKd8bCu6cuWK2BeaNGkCGxubNH2WPPsXkDpCzIwZM1SyrWXJkgW//vqrJFu3utGKFOXMmRN79+5FtWrVJPPNzc0xa9YsFC1aVMxTPjaSkpIkx3W7du2wbNkylT5W9uzZMWvWLEmfYPXq1YiMjJSUO3z4sMjgZmNjg127dsHR0VFSxsLCAlOmTEHz5s3FvJ07d2rdRgDw9fXFsGHDJKMczZ8/P0NZ4sn4GIBGpEBXB0YeKGFlZaXSqH+PHZjixYujR48eGt9v3bq1eK38B6n0qlGjBipWrKjx/V27donXAwYM0DpWtpWVFUaNGiWm9+3bJ3lfnjIXSP2DtCYlSpTAX3/9hYULF2L79u1a//Blbm6OOXPmaBzjvVmzZiLQISUlRZJaGTDs9t2/f19cZObMmRNjx47VuK6KFSuK/crGxibdf2g1hOjoaElK2mnTpmkdY7x58+Zo1aqVmN69e7dR66eoU6dOKh0rRdqOkdjYWBw+fBhAaiflr7/+0nrRU7t2bfFH3cjISLi7u6e5vs+ePcObN28ApP7OEyZM0Pp5yh0XXRQvJJWdOnUKX79+BQAULFhQMqymMlNTU8yZMwcWFhYAUr87eXATAEmHUV0A2t27d8Uf1/v27SuZr0xx+E1DBKDVrVtXBN2pY4h2U9+2y8bGBjNmzMC8efOwfft25M+fX+t61Q1LJFerVi3R+U1KShIdAjnF9qdNmzYah9UEUtujadOmiemTJ08iIiJCTH/69AmPHj0CkNp5mjZtmsZjo1ChQqKzZ2VlJRn+U53du3eLIMysWbNi+fLlYlggIqLMxr5DxrHvwL4D+w7qGaLvkJCQgKtXr4rpqVOnahxWJEeOHOL4t7CwEH0OQDpMzh9//IECBQpo/MwqVaqgX79+YlpxH1dnyJAhGo8xGxsbSTsrHw5QzljX1IY0YMAAjTcolIeOHzJkiNpy5ubmknZSPgySJqNGjdLYluTIkUPSh0zPfqWLsY/pESNGaDx2ihQpgrJly4pp5X1GX/ruW927d8eff/6JNWvWYPTo0VrXmZH2482bN5K+8Ny5c7WemwYMGCCGF0pOTsbevXsl7587d0687tq1q9bz8KBBg2BqagoTExMEBwerPMikKCwsDL/++qvoa1avXh0bNmyApaWlxmWIiNKKfbCMYx+MfTD2wdQzRB9MeShNTev4/PkzPD09Afzf0J2KjNkHU5Y1a1ZUq1YNuXPnltyLUads2bKS/k14eHiaPut7ojiU5sWLFzW2UYrBaYoPEelL+fpZHuynzqBBgzB16lS4urril19+0breX3/9FXZ2dmrfy5o1qyTQSz5Uq5yHh4eYZ2lpiZkzZ2o9NiZOnCj60VFRUTh27JjkfcX+xdChQ1UeelMkf4gnS5YsOs9rfn5+GDx4sLj31Lp1ayxevFhj+0/fD/5CRArkY1EDqh2Y169fIzAwEABQs2ZNlT/cli1bVmTqef36tRh7GQBCQ0PFeNMlS5bMtD941q1bV+tJQ/HiWjF4ICOqV6+u9X3FYBNtQR5yDRo0ENvg4+MjOVmXLl1avN66dSv27t2r8SJhwIAB6Ny5M2rUqKG1A9O0aVONJ205FxcX8VrxD/qAYbdPMcK9efPmIphHkwULFuDmzZvw9PRUGS8+M3l5eYmn7PPly6f2SXRl3bp1E6/v3LkjxkI3tnr16ml9X/50OAARfCXn7e0tou5LlCiBQoUK6fw8xe9CXTCVLsr7hPLTVMo6d+6s97rz5cuntcOtuG+7uLhovHkllzt3bjRr1kxMKz5lUbZsWXER6uvri9DQUMmy8rKmpqbo1auX2E51GdDkGbMsLCwM8schXfuEIdrNMmXKiNcnT57EunXrND5R1bVrV3Tv3h21a9fW+oeA0qVLa+2IAtK6K+/Pik+udenSRet6gNQgQnlbmZiYKPltLl26JF7XrFlT5zlv3Lhx4in8QYMGaSx3/Phx/O9//wOQ2kFZsmSJJNMeEVFmY98h49h3YN+BfQfNMtp38PDwEJ9ZpEgRlYxYyvr27YsLFy7A29sbf/31FwDg1atX4qaamZmZXg+4KP4+z54909pe1K5dW+u6FL8n+bbIGeOa2tCUM68oyps3r3hdoEAByf6jTDGTsOKNXGVmZmY6r+WbN28uMpwEBAQY/OanMY/p7Nmzo3LlylrXpW2f0Zfi+WL06NEiY4GyIkWKYMiQIWjZsiVKlSqldZ0ZaT8UzxXVqlXT+VmA9DtVznigmK1N8RylToECBXDq1Cl4e3vj0qVLGoPJoqKiMGTIEJHNpVq1ati0aZNKxnQiooxiHyzj2AdjH4x9MM0y2gcDpNnMNAWgnT59GikpKQBSs5gpXmMZuw+mbNSoUdi/fz88PDz0GmVEMfOgfD/6EVWqVElcV0dHR6vNaBwVFSXm29ra6nWsKMudO7fILBYXF4fhw4fj1atXastWrFgRAwcORLNmzbTeqwPSdh9LW/+iWbNmKiPXKDM3N5fsh4r9i6ioKMm9IV39CycnJ7i7u8Pb2xuHDh3SWE45s3Lz5s2xbNkykfGavm+qORSJfmKlSpWCnZ0dgoOD8fz5c8TFxYkT/61bt0Q5dX9ENDExQe3atUU0tJeXl7iI/Fbpm7X9AROA5KLGUBcK2v4QFhISIjqBQGr6fnVDGSgzNzdHfHw8EhMT8fbtW5QvXx5A6ols1apViIiIQEJCAmbPno1Fixahdu3aaNCgAerXr68y1IUuujpgACR/8FTM1mPo7VNMw6ztqSS5zHySWxvFtMJVq1bVKxWqYjrW8PBwBAYG6tUhyKi0HCPKTyb4+PiI15GRkZg5c6bOz1PcP3RlelLnyZMn4rWuP7wDqU+/mJiY6NUhVPyDgDrPnz8Xr5WfINTE0dFRdLKU0003bNgQ+/fvh0wmw+3btyWdbvkFbPny5WFra4uKFSvCy8sLr169QmhoqLhgf/funXhKonbt2joD8vSha59Q/ENCettNedv0/v17yGQyrF69GuvXr0eNGjVE26X45L4h6g1obvODgoLw5csXMa3P72tqaopq1arh/PnzAFJ/X3nAoWLGDH3aLuXUzurcunULGzZsEPuyubk5qlSponM5IiJjYt8h49h3YN+BfQfNMtp3SOs1mbW1tUpwluLvU6ZMGb320VKlSiFXrlwIDw9HSkoKXrx4gZo1a6qUy5Ejh87rQMXPk2dIljPGNbWhabtpoPiHc13Ho+IQONr6dmXKlNE5JIy5uTnKli0rhmB89eqVQb8nYx7TRYoU0bk+bfuMvvr06YMpU6YASH1gqkePHihUqBAaNGiAhg0bpiuQMSPtR3r74nK+vr5ISUmBqakpwsPDRd/PxMREnEO0KVmypM4yw4cPl7RzFSpUyNRgTyL6ebAPlnHsg7EPxj6YZhntgwGp12vFixfHu3fv4O/vj0ePHqn8HVvb8JvG7IOlVVJSEj58+ICXL1/i8ePHuHPnDgICAsT7mRWIaCwdOnQQQ1GeOnVKkukPAM6fPy+CZtu1a6czKYMmffr0wZo1awCkBja2a9cOJUqUQMOGDdGgQQPUrFkzzVmDM3L+yGj/QnEfff/+vVh/7ty5tWY/k9P1QE1sbCwGDx4syWjt6OiodmhY+j7xlyJSUqtWLZw8eRKJiYnw8fER42orpmXW9BRrnTp11HZg7t+/LymTWdI6FrUh5MyZU+N7igEOACRpfvWlmNLVxsYGq1evxqhRo8SY07Gxsbh8+bJ4+qR48eJo2rQp2rVrJ4Yg0EZXVDkAyRM2CQkJiIyMRI4cOQy+fYpZoZTHpf+ehYWFide6MjLJ5ciRA1ZWVuKJlLCwsEzpwGTkGAkJCRGvg4ODJWmR9ZGe9MSKn6nPPpE9e3bkyJFD5QkHdbQdu0D6flfFTrXi8sD/BaABkASghYaGis6d/KnGGjVqiKcovLy8RNYrQw+/CWROu5klSxasW7cOgwYNEk9bJiYmwsPDAx4eHli8eDEKFCiApk2bok2bNqhZs6bOPwQoPnmkD8XOoeJvI99n9KH4+yruz2ndT/WheB4FUtv62bNnY/PmzQZZPxFRerHvkDHsO/wf9h3Yd9Amo30HXVkiNFH8fdJywyxfvnyizsr9ADl9bqQoDq2hfHPDGNfUhqbvPqMrW4a+9GmTAOn+oNwWZZQxj+mM7jP66ty5M548eYKdO3eKeQEBAdi/fz/2798PMzMzVK9eHS1btkSbNm30eqAmI+1HRvviycnJ+Pr1K3LlyiVpF7Jnz67Xd6oP5Qwh+/btQ4cOHSQ3qoiIDIV9sIxhH+z/sA/GPpg2GRle0sXFRQQcnT59WhKA5u/vLzLs5s+fX5LZETBuH0wbeaKAa9eu4cWLF/Dz80NAQACSkpK0LvMjc3FxwcqVKyGTyXD16lVER0dLro8V2wjFITvT6vfff4evr69kqMq3b9/i7du32L59OywtLVGnTh20aNECrVq10utBjrQcG8q/kyHv9Rni7w7KQkNDVUZNWrt2LVq1aqV3n5e+LQ7BSaREXRrnpKQk8ccUOzs7jWOOK3Zs5ON3A//XgTE1NYWzs7Ohq6zRt0hFqS1KW9NwGGkRHR0tmZY/tdS3b1+1aULfvXuHrVu3omvXrhg4cCA+fPigdf36/PFNOcuSfLsMvX2KF7hpjX7/lhS3IS0ZqRSHZtA2rIghZeQYyejvnZ7hQBQv7PS9SaHvb6BrH0vP76pYTnms+7p164p06oopfxVTeMvbS8V2WfEP28YIQMusdrNMmTJwd3fH77//rrYj+enTJ+zZswf9+vVD165dJdnv1MnI0x+Kv21ahkhR/H0Vj1ljtl09e/YUNw6vX7+erj8UEREZEvsOGcO+Q8aw75CKfQf1FPeJ9GYKNvR1oiJDtDmGvqY2tMx+QlvfYCLFNsIQbZEiYx7TmXmemj59OrZu3Yr69eurfG5iYiJu376NuXPnolGjRli5cqXObGsZqXt6vlPl41XeHzdEu6BJiRIlxHVRSkoKZs6c+UMPy0RE3y/2wTKGfbCMYR8sFftg2ilmNTt9+rQkAEhxWM527dpJHqAAjNsH0+TJkyfo1KkTBg4ciK1bt+LGjRvw8/OTBJ/lzZsXXbp00Tlc44/E3t5eBDHHxcXh0qVL4r3Q0FBx36pkyZIZGo0la9asWLNmDVasWAEnJyeVB6Pi4uJw+fJl/PXXX2jUqBF27Nih1zrTy5D3+ozZv3BychLnc3lCAvoxMAMakRLFDsyjR48AAA8fPhQNcu3atTUua29vj6JFi8LPzw8vX75EREQELC0txR85K1SooDPL0H+Z4skne/bsKhlt0it//vyYMWMGpk6dinv37uH69eu4ffs2njx5IsZRB1KDXPr164fDhw8jT548atclT6eqjXInSv60q6G3T3F9+tTre5Hejkh6Oz7fimKnsl+/fpg+fbrRP1Mx6Ezf71Y58Cu9rKysRCY1fT9b8TdV7oRbWVmhZs2auHnzJvz8/ODv74/ChQuL4TezZMkiLv6dnJxgZmaGxMREkQktISFB/GGpbNmymfLElaHlyJED48aNw9ixY/H48WNcu3YNHh4eePjwoeQP9U+ePMHAgQOxb98+nemJ00PxDzdp6VhrOma1BR5mxKRJkzB48GAAEE+s/f3336hfv/5/quNLRD8W9h2Mh32HtGHf4fv2LfoOhrgmU/x9DHGdaAyZfU2d3mEdM4O+x77i76NP9q60+C8d0/Xq1UO9evUQFhaG69ev4+bNm7h9+zY+ffokyiQkJGD9+vUIDQ3F3LlzjVKP9HynyuceeRukuC5D9tWKFy+O7du3IyEhAe3bt0dcXBxevHiBf/75ByNGjDDY5xARAeyDGRP7YGnDPtj37Vv0weSKFi0KR0dHPHjwAIGBgbh//74YPlbxgWrl4TeBzO+D+fj4oF+/fpLPKl68OCpWrIiSJUuiVKlSqFChghgut3HjxhnKDve96dChgwhIPnXqFFxcXACkBg7K+34ZyX6mqG3btmjbti2CgoJw7do13Lx5E3fu3JFk+4qKisL8+fMRFxeHYcOGGeRzlWW0f6F4bBmrf+Ho6Ih//vkHL168QO/evSGTyXDjxg0cO3bMYL8HGQ8zoBEpKVasmEg5+fTpUwDSjDua0jfLyVM0y2QyPH36FI8fPxZ/9NS17H+dYoBAdHS0SgrNjMqaNStq1aqFiRMn4tChQ7h9+zaWL1+O+vXrizKBgYH4999/Na5DMV2oJop/bMyRI4cICjL09imuTz6kiDZJSUkq49x/C7a2tuJ1YGCgXsuEhYVJLnTy5s1r8HoZmuLv4+fnlymfqfi9BAUF6SwfGxsr0ptnVHp+V8Vy6tLvNmzYULyWP00ib2/LlSsnhoK0tLQUT5j4+vri69evuHv3rthnmjRpkpZN+e6YmJigSpUqGDVqFHbv3o27d+/C1dUVbdq0EWW+fv2KdevWGeXzFX/b6OhovYZsBaS/r+K+qXhsBAcH61yPTCbT2Tnp3r27CD6bMGGC+MNRSEgIFi1apFd9iYiMgX0H42HfIW3Yd/i+fYu+Q1qvyQDVGxyKv4/ivqyNTCaTlM2s3ye919SKT5/rE1xm6IxhhqTvcJqKv4+hhkmR+y8e07a2tujQoQMWLVqEq1evwt3dHRMmTJA8BHXgwAG8fv3aaJ8vp+93GhAQIF6bm5uLYArFdiEqKkqvm5r63JTasWMH8ufPjyJFiuC3334T89evX4+3b9/qVWciIn2xD2Y87IOlDftg37dv0QdTpBhcdubMGQDA69ev4evrCyA1m3P58uVVlsvsPti0adPENaGDgwOOHj2Ks2fPYvny5Rg1ahTatGkjgs8A6H3v4EfRunVrMVLPzZs3xXdx9uxZAKn9RXlQmqHkz58f3bt3x8qVK3Hr1i24ublh+PDhkt/e1dXVaIF+hrzXZ4i/OyjLlSsXNm/eDGtrazg5OaFr167ivYULF6ZriFnKXAxAI1JD/hTNhw8f8PXrV9y7d0+8p6sTovi+r68vHjx4IKblnZufVcGCBSUnozt37uhcJjk5GQcPHsStW7fg5+cn+YOwTCbDx48fcevWLbXL5syZE+3atcOWLVskEdGK6bWV6TMkx+PHj8XrSpUqideG3r6yZcuK18+ePdO5ritXrqBq1apo0qQJFixYoLO8sVSoUEG8fvjwoV7jwMvHvAcAa2tr5MuXzyh1MyTFzsH9+/f1Glri5cuXOHnyJLy9vfXqLCtT3N/02VefPn0qeYosIxS3V57eXhfFciVLllR5v1GjRuL17du3ERoaijdv3gCQPs0I/N9wnCkpKfD09MSNGzfEe4YafjMzBQUFwcPDQ+3TcVZWVmjWrBlWrlwpeVpc8Y9phpQ/f37JU4X6/L4pKSniKVNA+vumte3y9fVFtWrV0KBBA4wbN05jHeVy5syJSZMmiWk3NzeROY+I6Ftg38E42HdQxb7D/5WTY99Bs7TuE1+/foWTkxPq1q2Lvn37IiUlRfL7vHr1Sq/gK8VyJiYmKFGiRJrrri9DXFMrDuuj66EIeTvyvfL19dXZ/4uLi8OrV6/EdMWKFQ1ah//CMR0fH4/nz5/j+fPnat8vVaoUhg0bhgMHDogHY2QymcjWbWjp6YsrfqfFixcXgZYFChQQ5x6ZTKZxGxVNnDgR1apVQ/v27cWDY8oU+2tDhgwRx31CQgJmzpypV52JiNKCfTDjYB9MFftg/1dO7nu4XtPHt+iDKWrbti3MzMwAQAztKA9EA9RnPwOQqX2wZ8+eietBExMTrFmzRm1QnFx4eLgkE5Y++873zsbGRiQ4SEhIwK1btxAVFSUyJNasWRP29vYZ+ozo6Gj4+PiofTDDxMQEFStWxNixY7F7926xz8TGxsLHxydDn6tJRu/1Ke5fDg4Ooq8REhKiV+KM3r17w8nJCZ06dZL0TeWyZ88Oa2trMT1x4kTRdoeGhjIhwQ+AAWhEaigGPvj4+IiGtWTJkuLpGk1q164txux++fKluEFvbm4OJyenDNVLeVzoH42JiYnku923b5/OZc6fP4/p06fj119/Rdu2bcVFVFJSEmrVqoWmTZvi119/FU8NaNKyZUvxWtsF27lz53Q+9Xz8+HHxukWLFuK1IbcPSL2wkbt48aLOC+Rr164hJSUFAQEBkqEa5XUzFF3rcnR0FBdJwcHBuHbtms51Hj58WLx2dnZOd30z8xipXr262M7IyEicOnVK5zJLly7FhAkT0LNnT8yZMyfNn9mgQQPx+tKlSzpTe+tTJ33JA8AA4MSJEzr3x9DQUFy5ckVMKweUAakXqvKnZ+7cuSP544Li5ykvf/fuXVy/fh1A6tMaVatW1ViP77HddHFxQcOGDTFw4EDcvHlTa1nFtks5fbwhKbY3bm5uOstfuXJFdMIVh0tVXtfdu3d1Pk147do1yGQyfP78WZw/dencubPkM2fNmvVDpbonov8W9h2Mg30HVew7pGLfQT9OTk4iuOrdu3c6A02uX78OmUyGkJAQJCUlwdTUFKVKlRJPzycmJkr2Z00Ufx8HBwfJ09WGZKhrasXh6HVlGHj48OF3nQEtPDxc53dx5swZcd1cqVIlFCxYUPK+vtfjmnzLY9oQTp8+jWrVqqFjx47466+/tJa1s7ODo6OjmDbWvqF4rnj48KFemdYUv1PF5U1MTCTXF4o3QdVJSEjAnTt3EBsbi5cvX+q8rgFSr2FmzZolpu/evYuDBw/qXI6IKC3YBzMO9sFUsQ+Win2wtMuVK5e4n+Pv74+XL1/i/PnzAFK/h/bt26tdLjP7YIoBUba2tihevLjW8vL6y6k7FjPanzCEtO5nisGAly5dwq1bt8TxnNHhHrdu3SqyeC1fvlxr2VKlSqFUqVJiOjP6F5cuXdKZaS0hIQEnTpwQ04pDXdvY2MDBwUFM6+pfBAUFwdfXF9HR0Xj16pUkq7Qmtra2mDhxopg+cuSIxgdj6Pvw7VsBou+QYuN79OhRMYSdPimYc+XKJaKHX7x4IZ62cHR0lIyLnB7yiyUAekXrf4969eolXt++fVtroENUVBSWLVsmpps1ayaGDciaNavk6ZXt27dr/VzFJ1C0XUR9+vQJmzdv1vi+u7u7yLRjYWEh6RgBhts+IDWrkzyVaUhICDZu3KhxXR8/fpRciCpfvGbNmlW8zmiaZ137oY2NDdq2bSum//77b60XSpcuXcK5c+fEdPfu3dNdN0Nupy65cuWSDOeydOlSram2r169KgnIUkwbq6+aNWuKTFMRERFYs2aNxrLPnz/HgQMH0vwZmnTo0EHcnPn06RNWrVqlsaxMJsPs2bPFjQ07OztJtjNF8mE4g4ODsX//fgCqAU1A6g00eSrkM2fOiCcjGjVqpLVTo7hPfC/tZrVq1cTrnTt3as1SoG/blVG//PKLeH3mzBlcvXpVY9nIyEjJU3rNmjUTT/4DqU9pydvnxMRELFmyROu6duzYIaY1dbzVmT17tmiP3r17B1dXV72XJSIyJPYdjId9h//DvkMq9h30lzt3bjRv3lxML1q0SON1Z2JiIjZt2iSm5fuEiYkJevToIeavWrVKa5DWkydPsGvXLjGdkd9HF0NdUytO+/j4aByeJzk5GUuXLk1XXTPTkiVLND6YER4ejhUrVohpdUPJZLT/9C2PaUNQ3K+ePHmiNQNLUlISXr58KaaN1V8rXbq0pH88c+ZMrb/Nrl27RHYYExMTdOvWTfJ+z549xev9+/eLLOTqbN++XVzXVKxYUe9sGnXq1JGcW5YsWZLhLCJERIrYBzMe9sH+D/tgqdgHSz/F4KU9e/aI/bxmzZoaA28ysw8mv98CpCYU0DaEYkBAgEp/SN3+9T3cj0lrW9yoUSORYevq1au4fPkyAMDS0hKtW7fOUF0U+xfXrl3Teu0dFRUFf39/MW2s/kX9+vVRuHBhAKkZsufOnas1m92KFSvEvmFhYaHSj1TsX2zcuFFrQoL169eLvnvTpk1hZWWlV527desmCRKfOXOmzgzm9O0wAI1IjcKFC4uUmqdPnxbz9enAAP+XqvnZs2diXGR9l9UmR44c4vXTp08zvL5voU6dOiLgBACmT5+OzZs3q1wEvH79GkOGDBF//DU3N8fo0aMlZXr37i1eHz58GMuXL1c7dvTZs2fxzz//iGldF44rVqzApk2bVKL33dzcMHnyZDH966+/Ssa6NvT2mZmZ4Y8//hDTa9euhaurq8q6Xr16haFDhyI2NhYA0KpVK0nEOZDaqZDL6L6juB9qSnk9cuRIEaz07t079OvXDy9evJCUkclkOHjwIMaOHSvmtWzZEk2bNk133Qy5nfoYNWqU2M7g4GD06dNHpOaVk8lkOH78uGRowRo1amgMyNJFcR/8559/sGrVKpV94vbt2xg8eLBBL/Bz5MiB4cOHSz7777//VjnmQkNDMX78eJw9e1bMmzNnjqQzo0jxeJE/rV+uXDnJfgakXthWqVIFgDQzga7hNzN7n9BHr169xFM4t27dwrRp09RelHt6ekrSCRui06uJYtslk8kwZswYHDp0SKXj8eLFC/Tt21e0XTY2Npg6darK+saNGye20c3NDXPnzlXZVwIDAzFs2DDRealSpUqajosyZcpgwIABYnrLli06n6YkIjIG9h2Mh30H/bePfYe0+xn6DqNGjRLZFW7duoWxY8eqXHeGh4dj7NixIkOavb09unTpIt4fMGCAGF4vPDwcffr0kQxzJXfx4kUMGjRI7HNVqlSR3OAzNENdU5cqVQpFihQBkDrM/B9//KEybEhAQAB+++03rcFI3wtfX18MHTpUZRtev36N/v37i75UsWLF1P4+isfF+/fv0/XU/bc6pg2hYMGCYggeABg7dqzarCCxsbGYPn26aJfz5csnyVhuaBMmTBA387y8vDBs2DAEBARIyiQmJmLjxo2YP3++mDdw4ECUK1dOUq5Ro0YioC0uLg6//vqryvCh8t9n5cqVYp7yeUeXKVOmiHNARESEpF5ERBnFPpjxsA+m//axD5Z2P0MfTFHTpk3F7yF/+B5Q/yCIoszqg1WrVk3ycP+kSZNU+lRJSUlwd3dH165dVTJlqQsAUtz/Xrx4gaSkJL3rYyj6HAOKzMzMRLDily9fRLavZs2aSYaCTA8nJycR9BwXF4fhw4erHfYyLCwMY8eOFf2vSpUqqVzHG0qWLFkwYcIEMX3q1ClMnDhR5bePiYnBvHnzsHXrVjHvzz//RJ48eSTlunTpIoLlQkJCMGDAAJX2JDExEevWrcPevXsBpAYqKt5v1MXExASzZ88WfSI/Pz+sW7dO7+Upc2XVXYTo51SrVi24ubmJKPysWbOqHUJOnTp16qhctMo7NRmhGO28evVqPH36FNmyZUPz5s3RrFmzDK8/syxatAi9evXCu3fvkJycjCVLlmDLli2oUaMGrKys4Ofnh4cPH4oOhImJCWbOnInSpUtL1iPf7osXLwJIjazev38/ypcvj4IFCyIhIQE+Pj549+6dWKZNmzaSPyYqs7a2Fk+27Nq1CzVq1ECWLFng7e0teRK6bt26GDVqlFG3D0h9WsHLywtHjx6FTCbDqlWrRL2sra3h5+eHe/fuiYjxokWLSoY6kCtevLh42nT48OFo1KgREhMTMXbsWPHHdn0p7ocHDhxAcHAwbG1t4ejoKJ6uKFasGBYsWIAJEyYgMTERT58+RYcOHVC1alWUKFEC8fHxuH//viSQqEyZMvjf//6XproYczv1obydfn5+6NWrF8qXLw8HBwfExcXh2bNnkn0nf/78GXpyvnHjxvjll19EinBXV1fs378fNWvWRLZs2eDr6ys6b3ny5BHfh+KTJ+k1ZMgQPH78WASXbd++HYcOHYKzszNsbW3x+fNneHp6Sp64HzZsmNb2qVatWsiWLZvogMvnaSqr+IdxMzMznX/kL168uEilP2PGDFy+fBmmpqbo3bu35OmTzFShQgX069dPZP5yc3PDmTNnUKlSJRQqVAgpKSl48eKFZJik6tWrS558MgbFtisuLg7Tpk3DmjVr4OjoiGzZsuHt27fw9vYWQWkWFhZYsGCB2qe16tevjxEjRohOwO7du3H8+HHUrFkTtra2+PTpE+7evSvOk7a2tli0aFGaU3SPHDkS7u7uCAgIQGJiImbOnIm9e/d+F6m+iejnwr6D8bDvwL4D+w7p7zs4ODhgxowZmDFjBmQyGc6ePYurV6+iZs2ayJcvH0JDQ3Hnzh1xI9DS0hKLFy+WPIWcK1curFy5EoMHD0ZMTAz8/f3Ru3dvlCtXDmXLlkVycrLKsVOgQAEsW7bMIH0QTQx5TT1ixAjxUMXTp0/RokULODs7I2/evPj48SPu3buH5ORk2NjYoHXr1gbNNG1IFhYWSElJwZ07d9C8eXPUqlULdnZ28Pf3F9sApN6QWbVqlcrQT0BqAKKZmRkSExMRGhqKX375BVWrVkVycjIWLlyoVz2+1TFtKFOnToWnpye+fv2KL1++YOjQoShZsiRKliyJXLly4cuXL7h3757ItpMlSxbMnj1b40NXhuDk5ITJkyeLIK5bt26hRYsWcHJyQuHChREdHQ1PT0/JTSNnZ2eMHz9eZV0mJiZYunQpevbsiaCgIHz69Al9+vRBhQoVUKZMGaSkpMDb2xsfPnwQy/Tr10/r+VAdOzs7jB07Vvyup06dQseOHQ1yM5eICGAfzJjYB2MfjH0ww2Q+Njc3R+vWrXHw4EGxP8nnaZNZfbC8efOia9euYrj0W7duoXnz5nB0dES+fPkQEhKCp0+fSjKj2djY4OvXrwCg9gEgxYy5L168QK9eveDg4AAbGxtJgKgx6XMMKOvYsaMIjjLU8Jtyc+bMQZ8+fZCYmIh3796hZ8+eKFeuHIoVKwZra2sEBQXBy8tLBPRly5ZNbTthSG3btsWjR4+wbds2AMDJkydx/vx58beCsLAweHp6Sh5Iat++Pfr166eyrmzZsmHFihXo378/IiMj8eLFC3Ts2FG0J7GxsfDy8pLsRxMmTBCBefoqW7Ys+vfvLwLitm7dinbt2hktUI/SjwFoRBrIOzBylStX1jvSuUaNGjA3NxedH2tra0m64fTq0aMHdu7ciaioKCQmJoqneywsLH6oDkzu3Lmxf/9+TJkyRaQyDQ0NlaTxlbOxscGsWbM0Dsu2fPlyTJ48WYwrHR4ernbsZ3na2unTp2utW79+/RAQEIBjx44hKChI7bjw3bp1w4wZMyRpXI21fQCwcOFCFChQAJs3b0ZSUhJCQkIk2aXkHB0dsXLlSpXocyD1aZ/79+9DJpMhNDQUR44cAZAawZ/WC/s2bdrA1dUVAQEBkMlkuHTpEoDUJ0gUL95atWqFnDlzYsqUKQgMDIRMJoO3t7fa6P6OHTti9uzZeqdb1cSQ26mvVq1aiSxQ8ifmnj17JkkbLletWjUsW7YMBQsWzNBnzpo1C1mzZsXu3bshk8kQEhKiMrZ6uXLlMGPGDPTp0wcADPLHcBMTE6xcuRIrVqzAtm3bkJiYiOjoaLGfK7KyssLcuXN1Ps1jYWGBWrVqSdJbOzs7qy3r7OwseaqhevXqOtvlfv364fTp06Ku8qdXypQp880C0IDUmxoymQy7du2CTCZDTEwM7t69q7ZsixYt8Pfffxv1hgaQ2nYdOHAAkydPFr/pp0+fJE+SyhUtWhSrVq1ChQoVNK5vzJgxsLW1xbJlyxAbG4vIyEjRXigqWbIkVq1aJYaXTQsrKytMmzYNI0eOBAB4e3tjz5496Nu3b5rXRUSUEew7GA/7DvpvH8C+Q1r8LH2H7t27w9raGrNnz0Z4eDji4uJw/fp1lXL58uXD8uXLJUP9yTk5OWHv3r2YMGECXr16BQB4/vy5JLhLrn79+liyZIlkiHZjMdQ1dZcuXeDv7y+GA4mPj1f5jgoVKoQVK1ao3Se/F3nz5sWUKVMwefJkxMTEqP2dS5UqheXLl2v8I72lpSV69eolAvtevnwphplU97S7Jt/imDaUIkWKYOvWrfjjjz/w8eNHAMCbN2/UDpeTO3duzJo1K1POq/3790fevHkxZ84chIeHIykpCXfv3lXZ501NTTFw4EBJ1jRlBQsWxIEDBzB27Fg8ePAAQGrwpXImElNTU/z222+S7C5p0bt3b7i5uYnME3PmzMHJkye/m9+aiH5s7IMZD/tg+m8fwD5YWvwsfTBFHTp0EAFeQGqCAcVMcJpkVh9s+vTpCAwMxI0bNwAA0dHR4rWi7NmzY8qUKQgPDxdD0z58+FAlIKlo0aKSwNNHjx7h0aNHsLKywqRJk0QWa2PS9xhQ5OjoiKJFi4pgxLx586JevXoGqU/VqlXh6uqKyZMni6A9Tb9l4cKFsWDBAjEakDFNmTIFBQsWxMqVKxETE4P4+Hi1v72ZmRnGjx+PQYMGaVxXhQoVsGfPHowdOxavX79GSkoKHjx4IPoacubm5pgyZYq4b5lWo0aNgru7Oz59+oSkpCTMmDED+/fvZ0KC7wwD0Ig0qF27tmQ6LU/AWFpawtHREXfu3AGQGjSRJUuWDNepUKFC2L9/P1avXo179+4hIiICtra24umJH0muXLmwYcMG3Lt3DydOnICnpyc+f/6MmJgY5MiRA2XKlEGDBg3QrVs3rRdNlpaWWLVqFTw9PXH8+HF4e3sjICAAcXFxyJEjB/Lnz4+6devCxcVFa6CEXJYsWbB48WK0atUKe/fuxZMnTxAZGYl8+fKhVq1a6N27NypXrpxp2wekdr7GjRuHzp07Y//+/fDw8EBAQABiYmKQK1cuVKpUCR07dkSrVq00nmRbtGiB9evXiyHq4uPjYWdnh+joaJ3bosza2hr79u3DypUrcfPmTYSGhiJnzpxq9/HatWvj3LlzOHr0KC5duoRnz54hNDQUpqamsLe3h7OzM7p06WKwiylDbmda1KlTB+fOncOxY8ck2wmkXqhWrlwZ7du3R7NmzQxyIWRqaooZM2bAxcUFBw4cEPuXmZkZSpUqhQ4dOqBHjx54//69WCajqYIVP3vChAno0aMHDh06hBs3bsDf3x9RUVGwtrZG6dKl0ahRI3Tv3h22trZ6rbNRo0YiAC1Llixqb3oBqZ0AxT8O6fMEdpUqVbBjxw6sX78ejx49QnR0NOzs7MQ6vhVTU1NMnz4dXbp0gZubG+7fvw9/f39ER0cje/bssLOzg7OzM9q2bYuaNWtmWr1y5syJDRs2wMvLC8ePHxf7VlxcHGxtbVGpUiW0bt0abdu21Ssgrl+/fmjVqhX27duH69evw8/PD9HR0ciRIwfKly+PNm3aoGPHjhkKrmvevDmaNGki/mC0fPlyNG/eHAUKFEj3OomI0op9B+Ni34F9B/YdMqZNmzaoV68e9u/fj6tXr+LNmzf4+vUrsmfPjtKlS6NFixbo3r27GJ5GnXLlyuH48eM4ffo0zp8/j8ePHyMkJAQpKSkoWLAgnJyc0KFDB4MMX6UvQ15TjxkzBi1atMDevXtx+/ZtfPr0CdmyZUPRokXRunVr9OjRAzly5PiuA9CA1GGRypcvj61bt+LatWsICgqClZUVKlasCBcXF3To0EFnVoSpU6fC3t4ehw8fhr+/P0xMTJA/f358/vxZ7wA0IPOPaUOqXLkyTp06hZMnT+LixYt4/vw5wsLCkJycjDx58qBkyZJo0qQJOnbsiJw5c2Zavdq2bYuGDRvi0KFDuHr1Kl6+fInw8HCYmZmhWLFiqFOnDrp164ZSpUrpXFeBAgWwb98+XLhwAe7u7vD29kZISAhMTExQsGBB1K5dG3369FGb7UVfpqammD17Nnr27ImUlBR8/PgRq1atEhkHiYgygn0w42IfjH0w9sEMo2bNmrC3txcPNnTo0EHvZTOjD2ZpaYnNmzfj1KlTOH78OJ48eSKuL3PlyoXSpUvD2dlZHAvPnz8XAWiXLl1CZGSkZMhLAFi5ciXWr18Pd3d3BAYGwsLCAgUKFEBISAjy5s2b7rrqKy3HgCIXFxeRAKFdu3YGzejdsGFDnDlzBkeOHMH169fh6+uLiIgImJiYIG/evHBwcECzZs3g4uICS0tLg32uLgMGDEC7du1w4MAB3LhxA+/evUNERAQsLS1RsmRJ1K9fHz169NArKNPBwQEnTpzAiRMncO7cOTx9+hQhISHImjUrihQpgvr166Nv375qR9TRV/bs2TFt2jQxJPKjR4+wa9cu9O/fP93rJMMzkcnHUfrOvX37FuvWrcO9e/cQEhKCAgUKoE2bNvjtt9/SHHEdFBQEV1dX3Lp1C58+fULevHnRtGlTjBw5UuVComzZsnqts3Pnznqnoiei78uaNWuwdu1aAKnR0/ITF9GPzsvLSzxJUKlSJRw+fPgb14iIiDRhf4fox8C+AxF9T/z9/UVGFXt7e7UZh4mIjOFb9V/kHj9+DFdXV/j4+ODr168oUqQIOnXqhAEDBkiyHt25c0fvm5ILFixAly5d0lR3IjI+9sGIKDPMnz9fZII+cuSIXkGxRKTqh8iA9ujRIwwYMAAxMTGoUqUKKleujPv372PDhg24fPky9uzZo3dmlw8fPqBXr14IDg6Gg4MDmjRpgqdPn2LXrl24cOEC9u/fL8mYoW3osISEBJFGtWLFihnbSCIiIh1ev36NEydOoGjRoqhQoYLOsc0fPnwoXjs4OBi7ekRElE7s7xARERER0Y/iW/ZfAODy5csYNWoUUlJSUKNGDdjY2MDT0xNLlizBrVu3sHHjRhGEljdvXq19noCAANy7dw9mZmYoU6ZM+r8UIiIi+mElJyeLYZPLli3L4DOiDPjuA9CSkpIwfvx4xMTEYP78+ejWrRsAIC4uDuPGjcOlS5ewfPlyzJw5U6/1TZkyBcHBwRg5ciTGjBkDILVRmTt3Lvbt24dZs2Zh48aNovzSpUs1ruuvv/4CALRv315ljGMiIiJDS0xMxPr16wEA+fLlw5UrVzSmDY6MjBRPawDI1KFwiIhIf+zvEBERERHRj+Jb918iIiIwceJEAMA///yD+vXrAwDCw8MxbNgw3Lx5Ezt27MDgwYMBAKVKldLY54mNjUWPHj0AADNnzvx/7N13eFRl/v7xe2bSEwJJgIQQigKhiQiCiAQRFBTElWaHlUW/iIjYEAWxwSLsT5e1IixWsCNYsCFCUJqUEKQTEqq0hJJG2mRmfn9kMxATyGRSJid5v66LK+SU5zyTD4HczOc8x6XH9gEAgJrn119/VUpKiiTpjjvu8PBsAGOr2AcZV4Lvv/9ehw8fVvfu3Z1hRip4JvFLL72kgIAAffHFF0pLSyt1rE2bNmnTpk1q3ry5xo0b59xusVg0ZcoURUZGauXKlUpMTCx1rK+//lqLFi1SVFSUpk6d6t6LAwCgDKKjo9WgQQNJUnJysqZMmVLiv39JSUkaNWqUjh8/LkmKjIxUv379qnSuAADXkHcAAAAAGIWn88vHH3+szMxMDRo0yNl8Jkn16tXTjBkzJEnvv/++bDZbqdefOnWqEhISdOONNzob0QAAQO2SkpKif/3rX5Kk4OBg3XrrrR6eEWBs1b4BbcWKFZKkvn37FtsXEhKibt26yWq1atWqVS6Pdf3118tsLvrSvb291adPH0nS8uXLLzpOamqqM8xMmzZNgYGBpb8QAADKyWw26/HHH3d+vnjxYvXq1UsjR47UU089pfHjx2vo0KG6+eabtXXrVkmSr6+vXn75Zfn6+npq2gCAiyDvAAAAADAKT+eXwnNKutGyRYsWio6OVkpKivP/xS5kw4YNWrx4serWravnn3++1LkCAICaY/z48Zo0aZLGjx+v/v3768CBA5KkRx55xOXHiAMoWbVvQEtISJBU8LzdkrRs2VKStHv3bpfHio6OLtdYs2bNUmpqqm688UYeaQYAqFJDhgzRc889J39/f0kFjwtYt26dvv76ay1dulTbt2+Xw+GQJDVp0kQffPCBunTp4skpAwAugrwDAAAAwCg8nV/27t1b5nP+Kj8/X9OmTZNU8AZ0WFhYqXMFAAA1x+nTp7V48WItXbpUGRkZkqQbb7xR99xzj4dnBhifl6cnUJrk5GRJUnh4eIn7GzZsWOS4yh7r8OHD+vLLL2UymTR+/PhSrwkAQEW75557dMMNN2jx4sVas2aNkpKSnD8kN2jQQG3bttUNN9yggQMHysfHx8OzBQBcDHkHAAAAgFF4Mr+kpaUpJyen3NdfsmSJEhIS1KhRIx69CQBALdSzZ0/t379fGRkZioqK0tChQzVy5EiZTCZPTw0wvGrfgJaVlSVJ8vPzK3F/4fbC41wZq3DVGHfGeu+992Sz2dSvXz/n3TQAjO3hhx/Www8/7OlpAGUSHh6uBx98UA8++KCnpwIAKAfyDmAsZAcA1UlUVJT27Nnj6WkAqEU8mV8KP/r4+BR7ZKer13c4HHrvvfckSffddx83bgIGQAYDUNEeeOABPfDAA56eBlAjVftHcFosFkkqteO08HFjlTlWWlqaFi9eLEkaPXp0qddzhSvzBgAAAFAz1fS8c7HrAQAAADAWT+aXwqYzV1YnudD1V69erYSEBIWEhFTo6mdkHgAAAMAAK6AFBgYqNTVV2dnZJe4vXHL5QnfJ/HUsSW6PtWzZMuXk5KhVq1bq0KFDqddzhd3uUHp66XcDVQaLxazgYH+lp2fLZrN7ZA4oG2pmTNTNeKiZMVE346FmxuNqzYKD/WWxVPt7XaqFmp53JDIPyoaaGQ81MybqZjzUzHiomTGReS7Ok/ml8Pjc3FzZ7fYSV0Er7fpLliyRJA0YMEC+vr6lztFVnso8/D1jTNTNeKiZ8VAzY6JuxkPNjKey8061b0Br2LChUlNTlZKSoiZNmhTbn5yc7DzOlbF27NihlJSUEveXNtbSpUslSQMHDnRp7q7Kz/fsN6PNZvf4HFA21MyYqJvxUDNjom7GQ82Mh5pVnNqQdyQyD8qOmhkPNTMm6mY81Mx4qJkxUbeSeTK/BAUFKSgoSJmZmUpJSVF4eHiZrm+1WhUbGyup5mUe/rwaE3UzHmpmPNTMmKib8VAz46msmlX7W3Rat24tSUpMTCxxf+H2wuMqa6zc3FytW7dOknTTTTeVei0AAAAAKA15BwAAAIBReDq/REdHu339uLg4paenKzw8XJ06dSp1fgAAAADKpto3oPXq1UvSubvxz3fmzBmtX79e3t7e6tGjh8tjLVu2THZ70W4+q9Wq5cuXS5J69+5d7NydO3fKarWqQYMGat68eVlfBgAAAAAUQ94BAAAAYBSezi8Xu35SUpISEhIUGhqqjh07Ftv/xx9/SJK6dOkik8lU6vwAAAAAlE21b0Dr27evIiMjtXr1an388cfO7Tk5OXrmmWeUlZWlYcOGqX79+s59VqtVSUlJSkpKktVqdW7v3LmzOnTooKSkJM2aNUsOh0OSZLPZNH36dB07dkzXXnut2rZtW2we27ZtkyRdccUVlfRKAQAAANQ25B0AAAAARuHp/DJkyBAFBQVp0aJFzgY1SUpNTdXkyZMlSaNGjZK3t3exuZN5AAAAgMrl5ekJlMbPz08zZ87U6NGjNXXqVC1atEhRUVGKj49XcnKy2rVrpwkTJhQ558SJExowYIAkafny5YqKinLumzFjhoYPH6558+Zp+fLlatWqlXbt2qVDhw6pcePG+uc//1niPA4fPixJatKkSSW9UgAAAAC1DXkHAAAAgFF4Or80bNhQL7zwgiZOnKiHHnpInTp1UlhYmDZu3KjU1FT17NlTI0eOLHHuhZmnadOmFfgVAQAAAFCo2q+AJkndunXTwoULdeONN+ro0aNauXKl6tSpo7Fjx2rBggUKCgpyeaxWrVpp8eLFGjJkiDIyMhQbGytJGjFihL744guFh4eXeN7p06clSY0aNSr/CwIAAACA/yHvAAAAADAKT+eXW265RQsWLFDPnj2VmJioNWvWKDw8XJMmTdLs2bNLXP1MOpd5IiIi3HjVAAAAAEpjchSuawyPsNnsOn36rEeu7eVlVkhIoM6cOav8fLtH5oCyoWbGRN2Mh5oZE3UzHmpmPK7WLDQ0UBaLIe51QRUg86AsqJnxUDNjom7GQ82Mh5oZE5kH7vBU5uHvGWOibsZDzYyHmhkTdTMeamY8lZ13SEgAAAAAAAAAAAAAAAAAALd4eXoCAAAA1Y3D4ZDNZpPDwR0blcluNyknx6K8vFzZbCzKWx2ZTGZZLBaZTCZPTwUAAAAViMxT+cg7xmA2W2SxWDw9DQAAAFQwm80mu93m6WnUaGSe6q+q3+OhAQ0AAOB/7Ha7MjPTlJOTJbs939PTqRVOnjTLbudNr+rMbPaSn1+AgoLqigWUAQAAjI3MU7XIO8bg4+OnoKB68vHx9fRUAAAAUE55ebnKzExVXl6Op6dSK5B5qr+qfI+HBjQAAAAVvBFz5kyy8vOt8vMLlK+v//+eb87KT5XJYjFxZ0y15ZDNZldubrayszNlteaqQYMIT08KAAAAbiLzVD3yTnXnUH6+VWfPZujMmWSFhUXIy4smNAAAAKPKz7fqzJlkWSxeqls3TF5e3iLvVC4yT3VW9e/x0IAGAAAgKTMzTfn5VoWGNpS3N//hXFW8vMzKz+fumOrK21vy8/NXQECgTp9OVkZGqsLC6nh6WgAAAHADmafqkXeqP29vX/n6BujUqWPKzEyVn1+4p6cEAAAAN2VkpMpsNis0NFxmM0/zqApknuqtqt/j4bsOAADUeg6HQzk5WfLzC+SNGKAE3t6+8vMLVFbWWTkc3M0EAABgNGQe4MLMZrP8/AKVm5tD3gEAADAoh8OhvLwc+fsH0nwG/EVVvcfDdx4AAKj1bDab7PZ8+fr6e3oqQLXl6+svmy1fVqvV01MBAABAGZF5gIvz8fGVw2GXzZbv6akAAADADTZbvhwOOzfcABdQFe/x0IAGAABqPYejYHlgi4UfjYALKfz+sNtZThsAAMBoyDzAxRWukkHeAQAAMKbCVZ1Y/QwoWVW8x8N3HwAAgJPJ0xMAqjG+PwAAAIyPn+mAkvG9AQAAUDPwcx1Qssr/3qABDQAAAAAAAAAAAAAAAADgFhrQAAAAAAAAAAAAAAAAAABuoQENAAAAqMYcDoenpwAAAAAAlYK8AwAAAKAmq02ZhwY0AAAAuOXQoYOaOvVZDR06UH369NCddw7W3LlvKTs7u1zjpqWl6tZbb9TEiY9WzEQN6vjx43ruuUnasmVzke3jxo1WTEwXxcb+4tw2ffoLionpok8+WVDV0wQAAABqJPJO5SLvAAAAAJ5F5qlctTHz0IAGAACAMtu1a4fuu2+Efv75R4WGhumaa3ooOztbCxa8rzFjRuns2Uy3xs3OztYzz0zUqVOnKnjGxjN58hNasWJZrbo7BgAAAKgOyDuVj7wDAAAAeA6Zp/LVxszj5ekJAAAAwFjy8/P1/POTlZ2dpaefflYDB94qScrNzdHzz0/W6tW/ae7ct/T440+VadyjR4/o+ecnadeunZUxbcOx20sOJVOmTFVubo4aNGhQxTMCAAAAaj7yTtUg7wAAAACeQeapGrUx87ACGgAAAMpk+fKfdfToEV155VXOYCJJvr5+mjTpOfn7+2vJkq+Vnp7u0ni5uTlasOAD/eMfd2vXrp2KjGxcWVOvESIiItSsWXMFBAR6eioAAABAjUPe8SzyDgAAAFC5yDyeVZMzDw1oAAAAKJPVq3+TJPXq1bvYvrp166lTpy6yWq1av36tS+MtX75Mc+e+KYvFS08//axGjry/XPNbt261HnlkrPr376Mbb+yliRMf1b59SXrzzVcVE9NFsbG/OI999925ionpolmz/lXiWMOG3aKYmC7avbvoHTtZWWf10UcfaMyYUerfv4969eqm/v376OGHH9DSpT+UOE6vXt2Un5+vTz/9SCNG3K4+fXro5puv15QpE5WYuNd57ObNmxQT00WJiQmSpPHjxygmpos2b94kSRo3bnSx13Exf/yxRZMmTdAtt/RT797dNXToQL388ks6fvy4S+cDAAAAtQl5h7wDAAAA1GRkHjJPZaEBDQAAAGWyb1+iJKlFi5Yl7r/kkkslqcgP3BcTHFxXI0fer88//7rI3TbumD//PT355KOKj9+kFi1aqnPnrtq69Q+NGTNK+/YllWvsQunpaRo9eqTmzHlTx44dUYcOl+uaa2JUt25dxcfHadq05/Thh++WeO5zz03S7Nmvyc/PX927XyMvL2+tXLlCDz54nw4dOiBJCg0NU79+/VWnTrAkqUuXq9SvX3+FhoaVea6ffvqRxo37P61e/asaNgxXjx495efnp2++WaxRo+7Rzp3b3f46AAAAADUReYe8AwAAANRkZB4yT2Xx8vQEAAAAjMLhcCgrP8vT0yizAK8AmUymChvv5MkUSVL9+iU/n75we+FxpYmJuVYxMdeWe167d+/UO+/MkY+Pr15++VVdeWVXSVJaWqqeeupxbdiwrtzXkKQPP3xPBw7sV48ePTV9+svy8ir4kdrhcGj+/Pc0b97bWrjwU917731FzrPZbIqL26A33pirK67oLEnKycnRo4+O1fbtW/XFF59qwoRJat78Ej333DSNHHm3MjLS9fe/j1Lnzl3KPM/4+DjNnv2aAgODNGPGK+rU6UrnvkWLPtd//vOypkx5Sp9+uki+vn7l+IoAAACgJjBq3pEqNvOQd8g7AAAAqJnIPAXIPGSeykIDGgAAgAscDocGftVPG4+v9/RUyuyqiKu1ZPDSCgsn2dnZkiQ/v5J/oPX19S1yXFX56qsvZbfbdccddzuDiVSwZPSLL76kO+4YpPz8/HJfp06dOrr66ms0duwjzmAiSSaTSUOG3K55895WamqqsrKyFBAQUOTc22+/2xlMpIKv4a23DtH27VtdvpvIVZ98Ml8Oh0NjxowrEkwkaejQO/T772u1bt0a/fzzT7rllkEVem0AAAAYi5HzjlSxmYe8Q94BAABAzUPmOYfMQ+apLDyCEwAAwEUmVdwqYkZmNhf8CFla0HE4HFUxHaf4+DhJUo8exe+0CQ+PUMeOnSrkOiNH3q9XXnldzZo1d27Lzc3Rnj279fPPPzq3Wa15xc7t0KFjsW2FdxNVZJiz2WzOr0fXrt1KPKZ79xhJUlzcxgq7LgAAAIyLvFOAvEPeAQAAQM1E5ilA5iHzVBZWQAMAAHCByWTSksFLDbk8c0U/gjMgIFDp6WnKyckpcX9ubq4kyd/fv8Ku6YpTp05KkiIiIkrc36RJswr7QTw5+YS++upLbd26RX/+eVinT5+Sw+Eo8nUuKZvVqVOn2DaLxSJJstttFTI3SUXqc8cdgy567IkTxyvsugAAADAmI+cdqWIzD3mHvAMAAICah8xz3lhkHjJPJaEBDQAAwEUmk0mB3oGenobHNWjQQOnpaTp16qQiIxsX23/yZIokqX79+lU9tYs6fyllV9nt9mLbVq5crhdfnCKr1aqwsPpq06atmje/VC1bttIVV3TW4MEDLjheRTYCXkzhvE0mk/r2vemix4aHlxzmAAAAULuQdwqQd8g7AAAAqJnIPAXIPGSeykIDGgAAAMqkRYtWSkpK1P79+0pcbnj//n3O46pSREQjHTx4QEePHnEueXy+kyeTi20rXGq6pBAiSRkZ6UU+z87O1syZ02S1WvXYY09qyJDbiwSO9PS08ryEClO3bj15e3vLarXq4YcfU0hIqKenBAAAABgCeYe8AwAAANRkZB4yT2Uxe3oCAAAAMJarr+4hSVq5ckWxfWlpqYqP3yRvb+8LPpe+shReb+XK5cX2ZWdnKy5uU7HthUtInz59uti+vXsTlJ2dXWTbvn1JyszMVL169TR06B3F7nb5/fe1zt87HCUHHleV50YaLy8vXXbZ5ZKkNWtWlXjM22+/oVGjhuvLLz9z/0IAAABADUPeIe8AAAAANRmZh8xTWWhAAwAAQJn06nWdwsMjtGHDOi1evNC5PTc3RzNnTlN2drZuvvlWhYaGOffl5+fr4MEDOnjwgPLz8ytlXrfddpd8fX21ePFC/fbbSuf2vLw8zZw5tdidLpLUsmW0JGn9+rXaty/Juf3MmTN65ZUZxY6vV6+eJCk1NVV//LGlyL64uI167bVXnJ/n5uaV49VIPj6+kqSMjAy3zr/rrhGSpNmzX9fmzUWD2a+/xurzzz9WQsJutW7dtlzzBAAAAGoS8g55BwAAAKjJyDxknsrCIzgBAABQJr6+fnrmmRf05JOPaNasf+m7775RZGRjbd++VSdPpig6urUefHBckXNSUpJ1zz3DJEkLF36rRo0iK3xejRtHafLkFzRt2rOaPHmC2rfvoAYNGmrHjm1KS0tVWFiYTp06VeSczp27qH37DtqxY5vuv3+ErryyqyQpPj5OISFh6tTpSsXHxxW5Rq9evfXrr7EaP/4BdezYScHBwTp06KD27UtS3bp1ndc5ffqkIiIi3H49UVFNtGPHNs2aNVPLlv2oO+8c7rzjxRXXXBOjkSPv1wcfvKPx48coOrq1GjWK1NGjR7R3b4IkacyYcSUusQ0AAADUVuQd8g4AAABQk5F5yDyVhRXQAAAAUGadO3fRvHkf6rrrrldy8nGtXbtaQUFBGjnyfr3xxlwFBgZ5ZF7XX99Xc+d+oJ49e+ngwQP6/fc1atq0ud54479q0qRZsePNZrNmzXpD99xzr+rXb6BNmzYoMXGvBgy4Re+886FCQ0OLnfP889M1dux4NWvWXLt27VB8fJwsFovuuONuffjh5+rTp58kadWqX8v1WsaMGadu3a5RVlaW1q//XYmJCWUe4/77x+jVV2crJuZaJScna+3a1UpPT1ePHj31+utzNHz4yHLNEQAAAKiJyDvkHQAAAKAmI/OQeSqDyeFwODw9idrMZrPr9OmzHrm2l5dZISGBOnPmrPLzy/f8WlQNamZM1M14qJkxladuVmueTp06prCwRvL29qmkGaIkXl7mKvs+GzdutLZs2axp02aqd+8bquSaNUnh90mrVi2VnW27aN1CQwNlsXCvCwqQeVAW1Mx4qJkxUTfjKW/NyDyeQd4xjsLvkYYNIxUeHlrq9xqZB+fzVObh33Njom7GQ82Mh5oZE5nHmMg8xlEV7/GQkAAAAAAAAAAAAAAAAAAAbqEBDQAAAAAAAAAAAAAAAADgFhrQAAAAAAAAAAAAAAAAAABu8fL0BAAAAICq8Oab//X0FAAAAACgUpB3AAAAANRkZJ7qjxXQAAAAAAAAAAAAAAAAAABuoQENAAAAAAAAAAAAAAAAAOAWGtAAAAAAAAAAAAAAAAAAAG6hAQ0AAAAAAAAAAAAAAAAA4BYa0AAAAAAAAAAAAAAAAAAAbqEBDQAAAAAAAAAAAAAAAADgFhrQAAAAAAAAAAAAAAAAAABuoQENAAAAAAAAAAAAAAAAAOAWGtAAAAAAAAAAAAAAAAAAAG6hAQ0AAACoxhwOh6enAAAAAACVgrwDAAAAoCarTZnHy9MTAAAAgDEdOnRQH3zwjv74I15nzpxRw4YN1bv3Dfr730fJ39/f5XFyc3PUr18v2Wy2Cx7zzjvz1aZNu4qYtmEcP35cs2e/psGDh6lTpyud28eNG60tWzZr2rSZ6t37BknS9Okv6Mcfv9PYsY/o7rtHeGrKAAAAQI1B3qlc5B0AAADAs8g8las2Zh4a0AAAAFBmu3bt0PjxDyo7O0tt27ZX27bttG3bVi1Y8L7Wrl2t2bPnKTAwyKWx9u7dK5vNpvDwCHXs2KnEY4KD61bk9A1h8uQnlJCwR4MGDfX0VAAAAIBahbxT+cg7AAAAgOeQeSpfbcw8NKABAACgTPLz8/X885OVnZ2lp59+VgMH3iqp4C6X55+frNWrf9PcuW/p8cefcmm8PXt2SZL69euvBx54qNLmbTR2e8nLMk+ZMlW5uTlq0KBBFc8IAAAAqPnIO1WDvAMAAAB4BpmnatTGzGP29AQAAABgLMuX/6yjR4/oyiuvcgYTSfL19dOkSc/J399fS5Z8rfT0dJfGS0jYLUm1bvlld0VERKhZs+YKCAj09FQAAACAGoe841nkHQAAAKBykXk8qyZnHhrQAAAAUCarV/8mSerVq3exfXXr1lOnTl1ktVq1fv1al8bbs6cgnLRtWzHhZN261XrkkbHq37+PbryxlyZOfFT79iXpzTdfVUxMF8XG/uI89t135yompotmzfpXiWMNG3aLYmK6aPfunUW2Z2Wd1UcffaAxY0apf/8+6tWrm/r376OHH35AS5f+UOI4vXp1U35+vj799CONGHG7+vTpoZtvvl5TpkxUYuJe57GbN29STEwXJSYmSJLGjx+jmJgu2rx5kyRp3LjRxV7HxfzxxxZNmjRBt9zST717d9fQoQP18ssv6fjx4y6dDwAAANQm5B3yDgAAAFCTkXnIPJWFR3ACAACgTPbtS5QktWjRssT9l1xyqdauXaXExL3q2/emi46Vl5enAwf2qW7duoqL26hvv12s/fv3yeFwqG3b9rrnnr+ra9erXZ7b/Pnv6b//nS2z2azLL79CdeoEKz4+TmPGjNJll13u+ou8iPT0NI0de78OHNivsLAwdehwuSwWi/bv36f4+DjFx8fp+PFjuvfe+4qd+9xzk7Rq1Uq1adNO3btfo+3bt2nlyhVav/53vfvufDVt2lyhoWHq16+/1q1bo4yMdHXpcpVCQ8MUGhpW5rl++ulHmj37NUlSdHQbdex4hfbv36dvvlms2NjleuWV19Su3WXl/IoAAAAANQd5h7wDAAAA1GRkHjJPZaEBDQAAwFUOh5SV5elZlF1AgGQyVdhwJ0+mSJLq1y/5+fSF2wuPu5jExL3Kz89XWlqaXnrpRbVv30GdOnXRgQP7tGnTBm3atEFjxozT8OEjSx1r9+6deuedOfLx8dXLL7+qK6/sKklKS0vVU089rg0b1rn4Ci/uww/f04ED+9WjR09Nn/6yvLwKfqR2OByaP/89zZv3thYu/LRYOLHZbIqL26A33pirK67oLEnKycnRo4+O1fbtW/XFF59qwoRJat78Ej333DSNHHm3MjLS9fe/j1Lnzl3KPM/4+DjNnv2aAgODNGPGK+rU6UrnvkWLPtd//vOypkx5Sp9+uki+vn7l+IoAAACgRjBq3pEqNPOQd8g7AAAAqKHIPJLIPGSeykMDGgAAgCscDtUb2E/eG9d7eiZlZr3qaqUuWVph4SQ7O1uS5OdX8g+0vr6+RY67mD17dkkqCDQzZ/5bbdqcW6L5xx+/08yZ0zR37lu67LLLnT/QX8hXX30pu92uO+642xlMpIIlo1988SXdcccg5efnlzqn0tSpU0dXX32Nxo59xBlMJMlkMmnIkNs1b97bSk1NVVZWlgICAoqce/vtdxd5HX5+frr11iHavn1rkSWaK8Inn8yXw+HQmDHjigQTSRo69A79/vtarVu3Rj///JNuuWVQhV4bAAAABmPgvCNVbOYh75B3AAAAUAOReZzIPGSeykIDGgAAgKsqcBUxIzObzbLb7TKV8vVwOByljnXrrUPUtes18vKyFLvbpn//gdqzZ5e+/PJzLVz4aanhJD4+TpLUo8e1xfaFh0eoY8dOiovbWOqcSjNy5P3FtuXm5ujAgQPavn2rc5vVmiepaDjp0KFjsXMLX7crYc5VNpvN+fXo2rVbicd07x6jdevWKC5uY7UJJwAAAPAg8o4k8g55BwAAADUWmUcSmYfMU3loQAMAAHCFyVRwd4kRl2eu4EdwBgQEKj09TTk5OSXuz83NlST5+/uXOpbZbFZERMQF98fE9NKXX36uXbt2ljrWqVMnJemC4zVp0qxCwokkJSef0FdffamtW7fozz8P6/TpU3I4HEUCW0nZrE6dOsW2WSwWSZLdbquQuUkqUp877hh00WNPnDheYdcFAACAQRk570gVmnnIO+QdAAAA1EBknvOGIvOQeSoHDWgAAACuMpmkwEBPz8LjGjRooPT0NJ06dVKRkY2L7T95MkWSVL9+/XJfq2HDcEm6YBAqi/OXUnaV3W4vtm3lyuV68cUpslqtCgurrzZt2qp580vVsmUrXXFFZw0ePOCC45V2R1FFKZy3yWRS3743XfTY8PALh0MAAADUIuQdSeQd8g4AAABqLDKPJDIPmafy0IAGAACAMmnRopWSkhK1f/++Epcb3r9/n/O40rz33jtKSNijwYOH6coruxbbn5x8QtK5kHIxERGNdPDgAR09eqTYUs+SdPJkcrFtZrNZUskhRJIyMtKLfJ6dna2ZM6fJarXqscee1JAhtxcJHOnpaaXOsyrUrVtP3t7eslqtevjhxxQSEurpKQEAAACGQN4h7wAAAAA1GZmHzFNZzJ6eAAAAAIzl6qt7SJJWrlxRbF9aWqri4zfJ29v7gs+lP9+hQwe0cuVy/fDDkhL3//jjd5Kk7t17lDpW4fVWrlxebF92drbi4jYV2164hPTp06eL7du7N0HZ2dlFtu3bl6TMzEzVq1dPQ4feUexul99/X+v8vcNRcuBxVXlupPHy8tJll10uSVqzZlWJx7z99hsaNWq4vvzyM/cvBAAAANQw5B3yDgAAAFCTkXnIPJWFBjQAAACUSa9e1yk8PEIbNqzT4sULndtzc3M0c+Y0ZWdn6+abb1VoaJhzX35+vg4ePKCDBw8oPz/fuX3o0NtkMpn0888/6ueffyxynYULP9PSpT+obt26uv32u0qd12233SVfX18tXrxQv/220rk9Ly9PM2dOLXaniyS1bBktSVq/fq327Utybj9z5oxeeWVGsePr1asnSUpNTdUff2wpsi8ubqNee+2V874eeaXO+WJ8fHwlSRkZGW6df9ddIyRJs2e/rs2biwazX3+N1eeff6yEhN1q3bptueYJAAAA1CTkHfIOAAAAUJORecg8lYVHcAIAAKBMfH399MwzL+jJJx/RrFn/0nfffaPIyMbavn2rTp5MUXR0az344Lgi56SkJOuee4ZJkhYu/FaNGkVKkjp06KjRox/S3LlvaurUZ/XJJwsUFdVE+/cn6eDBA/L3D9BLL73i0vLCjRtHafLkFzRt2rOaPHmC2rfvoAYNGmrHjm1KS0tVWFiYTp06VeSczp27qH37DtqxY5vuv3+Ec4no+Pg4hYSEqVOnKxUfH1fkGr169davv8Zq/PgH1LFjJwUHB+vQoYPaty9JdevWdV7n9OmTioiIcPvrHBXVRDt2bNOsWTO1bNmPuvPO4c47XlxxzTUxGjnyfn3wwTsaP36MoqNbq1GjSB09ekR79yZIksaMGVfiEtsAAABAbUXeIe8AAAAANRmZh8xTWVgBDQAAAGXWuXMXzZv3oa677nolJx/X2rWrFRQUpJEj79cbb8xVYGCQy2ONGDFSr746W92791By8gmtXv2rcnJydMstg7Vgwefq2LGTy2Ndf31fzZ37gXr27KWDBw/o99/XqGnT5nrjjf+qSZNmxY43m82aNesN3XPPvapfv4E2bdqgxMS9GjDgFr3zzocKDS0eip5/frrGjh2vZs2aa9euHYqPj5PFYtEdd9ytDz/8XH369JMkrVr1q8vzLsmYMePUrds1ysrK0vr1vysxMaHMY9x//xi9+upsxcRcq+TkZK1du1rp6enq0aOnXn99joYPH1muOQIAAAA1EXmHvAMAAADUZGQeMk9lMDkcDoenJ1Gb2Wx2nT591iPX9vIyKyQkUGfOnFV+fvmeX4uqQc2MiboZDzUzpvLUzWrN06lTxxQW1kje3j6VNEOUxMvLXGXfZ+PGjdaWLZs1bdpM9e59Q5VcsyYp/D5p1aqlsrNtF61baGigLBbudUEBMg/KgpoZDzUzJupmPOWtGZnHM8g7xlH4PdKwYaTCw0NL/V4j8+B8nso8/HtuTNTNeKiZ8VAzYyLzGBOZxziq4j0eEhIAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALV6engAAAABQFd5887+engIAAAAAVAryDgAAAICajMxT/bECGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3OLl6Qm4av/+/XrrrbcUFxenU6dOKSIiQv3799cDDzyggICAMo114sQJzZ49W2vXrtXx48dVv3599enTRw899JBCQ0NLPOfIkSOaO3euVq1apZSUFAUFBalLly568MEH1b59+4p4iQAAAABqKfIOAAAAAKPwdH7Ztm2bZs+ere3btys9PV1NmjTRoEGDdO+998rb27vEczZt2qT33ntP8fHxysjIUIMGDdSrVy+NGzdO9evXL/PXAAAAAEBRhlgBbevWrRoyZIiWLFmi+vXr67rrrlNWVpbmzJmjO++8U5mZmS6PdfjwYQ0dOlSfffaZ/Pz81Lt3b1ksFn300UcaPHiwjh8/XuycuLg4/e1vf9Pnn38uf39/9e7dWyEhIVq2bJnuvPNObdmypQJfLQAAAIDahLwDAAAAwCg8nV9iY2N15513auXKlWrevLliYmKUnJysl19+WQ888ICsVmuxc+bPn6/hw4drxYoVat68uXr27Km8vDx9+umnuuOOO3TmzJlyfU0AAAAAGKABLT8/X48//riysrI0ffp0LVy4UK+//rp++eUX9enTR3v27NGsWbNcHu/pp59WSkqKHnroIS1ZskSvv/66li5dqjvvvFPHjx/X888/X+T4jIwMPfroo8rMzNRTTz2lH374QW+88YZ++OEHjR8/Xnl5eZo4cWJFv2wAAAAAtQB5BwAAAIBReDq/pKWlacKECZKkefPmacGCBXrrrbf0888/q2PHjlqzZo3mz59f5JytW7dqxowZCggI0AcffKBPP/1Ub7/9tpYtW6bevXvrzz//1L///e/yf3EAAACAWq7aN6B9//33Onz4sLp3765hw4Y5t/v5+emll15SQECAvvjiC6WlpZU61qZNm7Rp0yY1b95c48aNc263WCyaMmWKIiMjtXLlSiUmJjr3ff7550pOTtYtt9yiUaNGObebTCaNHTtWrVu3lslk0rFjxyroFQMAAACoLcg7AAAAAIzC0/nl448/VmZmpgYNGqSYmBjn9nr16mnGjBmSpPfff182m825780335TdbtekSZN09dVXO7cHBARo8uTJatCggQ4ePOjeFwQAAACAU7VvQFuxYoUkqW/fvsX2hYSEqFu3brJarVq1apXLY11//fUym4u+dG9vb/Xp00eStHz5cuf2H3/8UZJ0//33FxvPZDLp22+/1dKlS9WoUSMXXxEAAADgOofD4ekpoBKRdwAAAFCbkXeMxdP5pfCcfv36FRuvRYsWio6OVkpKirZu3SpJSk9P15o1axQSEqIhQ4YUO6dp06ZavXq1FixYUOp8AQAAAHfUpsxT7RvQEhISJEmtW7cucX/Lli0lSbt373Z5rOjoaJfGslqt2rNnjwICAtS6dWudOHFC77//vp599lm99NJL+vXXX8v2YgAAAGqQQ4cOaurUZzV06ED16dNDd945WHPnvqXs7Owyj7Vp0wZNmDBe/fv30Q03xOjvf79DCxZ8oKyss5Uwc2M4fvy4nntukrZs2Vxk+7hxoxUT00Wxsb84t02f/oJiYrrok0/4T3OjIe8AAABUT+SdykXeMSZP5hdJ2rt3b5nO2bVrl/Lz83X55ZfLYrFo165dev311/XMM8/o1Vdf1a5du0qdJwAAQE1F5qlctTHzeHl6AqVJTk6WJIWHh5e4v2HDhkWOq8ixjhw5IqvVqsjISH333Xd67rnnlJWV5Tz+ww8/VI8ePfT6668rKCjIxVcEAABgfLt27dD48Q8qOztLbdu2V9u27bRt21YtWPC+1q5drdmz5ykw0LWfjxYs+EBz574pSYqKaqpLLrlE+/fv19y5b+rnn3/Qyy+/roiIiMp8OdXS5MlPKCFhjwYNGurpqaASkXcAAACqH/JO5SPvGJMn80taWppycnLKdE7hozUbNGigGTNm6MMPPyyyAsWcOXM0atQoTZw4sdT5AgAA1CRknspXGzNPtW9AK3wDxM/Pr8T9hdvPf6OktLH8/f1dGisjI0OSlJKSoqefflo33HCDxo0bp0aNGumPP/7Q1KlTtWbNGj355JN6++23y/CqivLy8sxCdBaLuchHVH/UzJiom/FQM2MqT93sdlNFT6dGy8/P1/PPT1Z2dpaefvpZDRx4qyQpNzdHzz8/WatX/6a5c9/S448/ddFxTCZpy5bNzmAyfvzjuv32uyUVLEn8ySfz9fbbb2jatGf15pv/lclUu+pkt5e8LPOUKVOVm5ujBg0aVPGMJKmgBvz9WHFqQ96RyDxwHTUzHmpmTNTNeMpbMzKP68g7VaN65h3+fiyNJ/NL4UcfH59ij+y80DmFmefnn39WVlaWxo0bpyFDhsjPz0/Lly/XjBkz9O6776phw4YaOXJkqXO+GE9kHv68GhN1Mx5qZjzUzJjIPFWHzFM1qmfmqdz3eKp9A5rFYpHdbi/1D6Mrz021WCyS5PJYubm5kgrCSkxMjF577TXnMT169NC7776rm2++WStWrNDWrVt1+eWXlzqHvzKbTQoJCSzzeRUpOLjkgIfqi5oZE3UzHmpmTO7ULSfHopMnzbJYTB5rkjCSZcuW6ejRI+rS5SoNGjTYud3LK0DPPvuCBg26WUuWfK0xYx5ScHDwRcdavHiRJKl//5t1993Di+y7995/KC5uozZs+F3r169RTMy1Ff9iqrHCH1ktFnORP5dRUZElHFsYGirvz7DdbpLZXHAd/n6sODU970hkHriHmhkPNTMm6mY87taMzOM68k7VqJ55x6ygoIIGJv5+LJkn80th05krb1z+NfOkp6fr8ccf1wMPPOA85rbbblNgYKAee+wxvfXWW7r77rvl4+NT6tgl8XTm4c+rMVE346FmxkPNjInMU/nIPFWjemaeyn2Pp9o3oAUGBio1NfWCz5ktXHL5QnfJ/HUsSS6Pdf6Yf//734sdHxUVpV69emnp0qVat26dW2/I2O0OpaeXfjdQZbBYzAoO9ld6erZsNrtH5oCyoWbGRN2Mh5oZU3nqlpeXK7vdLpvNofx8al6a3377VZJ07bW9i329AgOD1alTF61du0pr1qxW3743XXAck0lKTEyQJMXE9Crxa9+5cxdt2PC7Vq9erauvjnFpfuvWrdZnn32ihITdsttt6tixk8aMeVg//LBEn332kaZNm6nevW+QJL377ly9//48DRlyW4l38wwbdouOHz+md96ZrzZt2jm3Z2Wd1eLFC7V69W86ePCAsrLOKiAgUC1bttLAgbfqxhsHFBsnJSVZy5ev0cKFn+mHH77VkSNH5O/vp06drtTIkf+nli1bSZI2b96k8ePHOM996KHRkqTXX5+jzp27aNy40dqyZXOR11H4n+sl/Rn+448t+uyzj7R9+1ZlZmYoNDRMV199jUaMGFWmZa9tNofzjp3Svs+Cg/25w9BFNT3vSGQelA01Mx5qZkzUzXjKWzMyj+vIO7U579iVmZkjPz8/Ms8FeDK/FB6fm1vw91lJq6BdKPOYTCaNGDGi2PEDBgzQ1KlTdebMGe3YsUOdOnUqdd4l8VTm4d9zY6JuxkPNjIeaGROZp+qQeWpz5qnc93iqfQNaw4YNlZqaqpSUFDVp0qTY/uTkZOdxroy1Y8cOpaSklLj/r2PVr1/fuS8qKqrEcwq3nzlzptTrX4in/wK02ewenwPKhpoZE3UzHmpmTO7UzWYr/c5cnLNvX6IkqUWLliXuv+SSS7V27SolJu69aDhxOCSbzSZJCggo+U5hi6Xgx9UDB/a5NLf589/Tf/87W2azWZdffoXq1AlWfHycxowZpcsuc6955q/S09M0duz9OnBgv8LCwtShw+WyWCzav3+f4uPjFB8fp+PHj+nee+8rdu5zz03SqlUr1aZNO3Xvfo22b9+mlStXaP363/Xuu/PVtGlzhYaGqV+//lq3bo0yMtLVpctVCg0NU2hoWJnn+umnH2n27IJVraKj26hjxyu0f/8+ffPNYsXGLtcrr7ymdu0uK8OIhSGIvx8rSm3IOxKZB2VHzYyHmhkTdTMed2tG5nEdeac25x0534Th78eSeTK/BAUFKSgoSJmZmUpJSVF4eHip54SFhTk/BgQElHidqKgonTlzxtCZhz+vxkTdjIeaGQ81MyYyT+Uj89TmzFO57/FU+wa01q1bKyEhQYmJiercuXOx/YmJic7jXBkrNjbWeU5pY4WHh6tevXpKTU1VcnKyWrRoUeyckydPSpJCQ0Nde0EAAMCwHA4pyzOL+JRLQMC5pX4rwsmTBf85XL9+yc+nL9xeeNzFNG9+iQ4ePKD4+Dh17dqt2P6tW7dIklJTS/+P4N27d+qdd+bIx8dXL7/8qq68sqskKS0tVU899bg2bFhX6hiu+PDD93TgwH716NFT06e/LC+vgh+pHQ6H5s9/T/Pmva2FCz8tFk5sNpvi4jbojTfm6oorCn6uzcnJ0aOPjtX27Vv1xRefasKESWre/BI999w0jRx5tzIy0vX3v49S585dyjzP+Pg4zZ79mgIDgzRjxivq1OlK575Fiz7Xf/7zsqZMeUqffrpIvr5+5fiKoDzIOwAAoLowat6RKjbzkHfIO7gwT+YXSYqOjtbmzZuVmJhYYgPaX88p/JiWlqacnILV7f6qMPMUNqsBAICai8xTgMxD5qks1b4BrVevXlqyZImWLl2q22+/vci+M2fOaP369fL29laPHj1cGmvOnDlatmyZHnnkkSJLNFutVi1fvlyS1Lt3b+f26667Tl9//bW+/fZbde/evch4OTk5Wr9+vSSpW7fi30wAAKDmcDikgQMDtHGjxdNTKbOrrsrXkiXZFRZOCh+PUdJ/3EqSr69vkeMu5uab/6Zff43VZ599pPbtO6hHj57Ofd9++5VWrVopScrLyyt1rK+++lJ2u1133HG3M5hIUt269fTiiy/pjjsGKT8/v9RxSlOnTh1dffU1Gjv2EWcwkQoe6TFkyO2aN+9tpaamKisrq9gd1rfffrczmEgFX8Nbbx2i7du3KjFxb7nndr5PPpkvh8OhMWPGFQkmkjR06B36/fe1WrdujX7++SfdcsugCr02XEfeAQAA1YGR845UsZmHvEPewYV5Or/06tVLmzdv1tKlS4tdIykpSQkJCQoNDVXHjh0lFTSsNW7cWEeOHNGPP/6owYMHFzln9+7dOn78uIKDg9W2bduyfTEAAIChkHnOIfOQeSpL2R/aWcX69u2ryMhIrV69Wh9//LFze05Ojp555hllZWVp2LBhRR4fY7ValZSUpKSkJFmtVuf2zp07q0OHDkpKStKsWbPOe46qTdOnT9exY8d07bXXFgka//jHP+Tt7a2vvvpKixYtcm7Py8vT1KlTdfz4cXXu3NkZaAAAQM1lMrGEsyTnfwqbSkk6hT9rXcy11/bS0KG3Ky8vT0899ZhGjrxbkyZN0PDht+nll1/S0KEF/6F9fgi4kPj4OElSjx7XFtsXHh6hjh07lTqGK0aOvF+vvPK6mjVr7tyWm5ujPXt26+eff3Rus1qLB6oOHYr/zFh4N5ErYc5VNpvN+fUo6a4jSerePUaSFBe3scKui7Ij7wAAgOqCvFOAvEPewYV5Or8MGTJEQUFBWrRokbNBTZJSU1M1efJkSdKoUaPk7e0tqeD7+P7775ck/etf/9K2bduc56SkpOiZZ56Rw+HQ3XffLR8fn4r8UgEAgGqIzFOAzEPmqSzVfgU0Pz8/zZw5U6NHj9bUqVO1aNEiRUVFKT4+XsnJyWrXrp0mTJhQ5JwTJ05owIABkqTly5crKirKuW/GjBkaPny45s2bp+XLl6tVq1batWuXDh06pMaNG+uf//xnkbHatGmjF198Uc8++6wmT56sDz74QE2aNNGOHTt0/PhxNWrUSP/v//2/yv9CAAAAjzKZpCVLsg25PHNFP4IzICBQ6ekFj68oSW5uriTJ39/fpfEee2yi2re/XIsWfa7ExAQdP35U7dp10OOPPyVfXz8tWvSF6tQJLnWcU6cKHpsRERFR4v4mTZpV2A/iyckn9NVXX2rr1i3688/DOn36lBwOR5HAVlI2q1OnTrFtFkvBHVd2u61C5iapSH3uuGPQRY89ceJ4hV0XZUfeAQAA1YGR845UsZmHvEPewYV5Or80bNhQL7zwgiZOnKiHHnpInTp1UlhYmDZu3KjU1FT17NlTI0eOLHLOXXfdpe3bt2vRokW6/fbb1aVLF/n6+mrLli3KyMhQt27d9NBDD1XOFwwAAFQbZJ7zxyLzkHkqR7VvQJMKHveycOFCvfnmm9qwYYMSExMVFRWlYcOG6b777lNQUJDLY7Vq1UqLFy/Wm2++qVWrVik2NlYREREaMWKExowZU+TOnEJDhw5VmzZtNG/ePG3cuFH79+9XRESERo4cqQceeEChoaEV+XIBAEA1ZTJJgYGenoXnNWjQQOnpaTp16qQiIxsX23/yZIoklfhz1YX063eT+vW7qdj277//VpIUEdHIzdme48odNn9lt9uLbVu5crlefHGKrFarwsLqq02btmre/FK1bNlKV1zRWYMHD7jgeKXdUVRRCudtMpnUt2/xr+v5wsNLDnOoOuQdAABQHZB3CpB3yDu4OE/nl1tuuUWNGjXS3LlztWXLFu3evVtNmjTRgw8+qLvvvtu5+lkhk8mkl156Sddee60++eQT7dy5U/n5+WrWrJkGDx6s4cOHu/X9AwAAjIfMU4DMQ+apLIb5qTo6Olqvv/66S8dGRUVpz549F9zfuHFjzZgxo0zXb9++vV599dUynQMAAFATtWjRSklJidq/f1+Jyw3v37/PeVxpkpNPKClpnyIjG6tx46hi+zdt2iBJateufaljRUQ00sGDB3T06BHnksfnO3kyudi2wqWmSwohkpSRkV7k8+zsbM2cOU1Wq1WPPfakhgy5vUjgSE9PK3WeVaFu3Xry9vaW1WrVww8/ppAQGoiqO/IOAABA9UDeIe+gdJ7OL126dFGXLl3KdM5NN92km266+Jt3AAAAtQGZh8xTWcyengAAAACM5eqre0iSVq5cUWxfWlqq4uM3ydvb+4LPpT/funVr9dhjD+mjjz4otu/kyZP67bdYeXl5qVev60sdq/B6K1cuL7YvOztbcXGbim0vXEL69OnTxfbt3Zug7OzsItv27UtSZmam6tWrp6FD7yh2t8vvv691/t7hKDnwuKo8N9J4eXnpsssulyStWbOqxGPefvsNjRo1XF9++Zn7FwIAAABqGPIOeQcAAACoycg8ZJ7KQgMaAAAAyqRXr+sUHh6hDRvWafHihc7tubk5mjlzmrKzs3XzzbcqNDTMuS8/P18HDx7QwYMHlJ+f79x+zTUx8vHx1dKlP2jnzu3O7enp6Xr++UnKzc3VrbcOUURE6UsI33bbXfL19dXixQv1228rndvz8vI0c+bUYne6SFLLltGSpPXr12rfviTn9jNnzuiVV4rfgV2vXj1JUmpqqv74Y0uRfXFxG/Xaa6+c9/XIK3XOF+Pj4ytJysjIcOv8u+4aIUmaPft1bd5cNJj9+musPv/8YyUk7Fbr1m3LNU8AAACgJiHvkHcAAACAmozMQ+apLIZ5BCcAAACqB19fPz3zzAt68slHNGvWv/Tdd98oMrKxtm/fqpMnUxQd3VoPPjiuyDkpKcm6555hkqSFC79Vo0aRkqQGDRpo/PjH9MorM/Xgg/epU6cr5evrqy1bNuvs2bO66qqrNXbseJfm1bhxlCZPfkHTpj2ryZMnqH37DmrQoKF27NimtLRUhYWF6dSpU0XO6dy5i9q376AdO7bp/vtH6Moru0qS4uPjFBISpk6drlR8fFyRa/Tq1Vu//hqr8eMfUMeOnRQcHKxDhw5q374k1a1b13md06dPuhSqLiQqqol27NimWbNmatmyH3XnncOdd7y44pprYjRy5P364IN3NH78GEVHt1ajRpE6evSI9u5NkCSNGTOuxCW2AQAAgNqKvEPeAQAAAGoyMg+Zp7KwAhoAAADKrHPnLpo370Ndd931Sk4+rrVrVysoKEgjR96vN96Yq8DAIJfHGjRomP75z3+pXbv22rbtD/3xR7yaNm2uJ5+crH/96z/y9fVzeazrr++ruXM/UM+evXTw4AH9/vsaNW3aXG+88V81adKs2PFms1mzZr2he+65V/XrN9CmTRuUmLhXAwbconfe+VChoaHFznn++ekaO3a8mjVrrl27dig+Pk4Wi0V33HG3Pvzwc/Xp00+StGrVry7PuyRjxoxTt27XKCsrS+vX/67ExIQyj3H//WP06quzFRNzrZKTk7V27Wqlp6erR4+eev31ORo+fGS55ggAAADUROQd8g4AAABQk5F5yDyVweRwOByenkRtZrPZdfr0WY9c28vLrJCQQJ05c1b5+eV7fi2qBjUzJupmPNTMmMpTN6s1T6dOHVNYWCN5e/tU0gxREi8vc5V9n40bN1pbtmzWtGkz1bv3DVVyzZqk8PukVauWys62XbRuoaGBsli41wUFyDwoC2pmPNTMmKib8ZS3ZmQezyDvGEfh90jDhpEKDw8t9XuNzIPzeSrz8O+5MVE346FmxkPNjInMY0xkHuOoivd4SEgAAAAAAAAAAAAAAAAAALfQgAYAAAAAAAAAAAAAAAAAcAsNaAAAAAAAAAAAAAAAAAAAt3h5egIAAABAVXjzzf96egoAAAAAUCnIOwAAAABqMjJP9ccKaAAAAAAAAAAAAAAAAAAAt9CABgAAAAAAAAAAAAAAAABwCw1oAAAAAAAAAAAAAAAAAAC30IAGAADg5PD0BIBqjO8PAAAA4+NnOqBkfG8AAADUDPxcB5Ss8r83aEADAAC1nslU8CORzWb38EyA6qvw+8NsJkIAAAAYDZkHuDi7nbwDAABgZCaTSdK5n+sAFFUV7/GQpgAAQK1nsVhkNnspNzfb01MBqq3c3GxZLF7y9vb29FQAAABQRmQe4OLy8nJlMpllsXh5eioAAABwg8XiJZPJLKs119NTAaqlqniPhwY0AABQ65lMJvn5BSgn5yzhBCiB1ZqrnJyzCggIdN5JBgAAAOMg8wAXZrfblZNzVr6+fuQdAAAAgzKZTPLx8VN29llWQQP+oqre4+F2HgAAAElBQXVltebq9Olk+fkFytfXXxaLWRL/+VyZ7HaTbLbKf+483OGQzWZXbm62cnLOysvLW3Xq1PP0pAAAAOAmMk/VI+9Ubw6HQzabVWfPZshutysoqJ6npwQAAIByqFOnnk6dOq7Tp08oMLCOLBZvbjCoZGSe6qzq3+OhAQ0AAEAFzzwPCWmozMw05eRkKTs7w9NTqhXMZjN3I1VzZrOX/P2DFBRUV2YzCygDAAAYFZmn6pF3jMHHx0/BwQ3l5VV5j6IBAABA5fPy8v5f5klVWtopT0+nViDzVH9V+R4PDWgAAAD/YzabFRwcojp16slms8nh4IfmymSxmFS3boDS0rK4Q6aaMpnMslgs3CUGAABQQ5B5qg55xxjMZossFounpwEAAIAK4uPjq9DQcNlsNtntNk9Pp0Yj81R/Vf0eDw1oAAAAf2EymeTlxY9Jlc3Lyyw/Pz9lZ9uUn88bXwAAAEBVIfNUPvIOAAAA4DkWCzcaVDYyD/6KZ+gAAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3EIDGgAAAAAAAAAAAAAAAADALTSgAQAAAAAAAAAAAAAAAADcQgMaAAAAAAAAAAAAAAAAAMAtNKABAAAAAAAAAAAAAAAAANxCAxoAAAAAAAAAAAAAAAAAwC00oAEAAAAAAAAAAAAAAAAA3OLl6Qm4av/+/XrrrbcUFxenU6dOKSIiQv3799cDDzyggICAMo114sQJzZ49W2vXrtXx48dVv3599enTRw899JBCQ0OLHb969Wrdd999FxwvICBA8fHxZX5NAAAAACCRdwAAAAAYhyfziyRt27ZNs2fP1vbt25Wenq4mTZpo0KBBuvfee+Xt7V3s+FmzZmnu3LkXnMN111130f0AAAAASmeIBrStW7fq3nvvVVZWli6//HJ16NBBmzdv1pw5cxQbG6tPPvlEQUFBLo11+PBh3XXXXUpJSVF0dLR69+6tnTt36qOPPtIvv/yizz//XBEREUXO2blzpySpQ4cOat68ebExfX19y/0aAQAAANRO5B0AAAAARuHp/BIbG6tx48bJbrerS5cuCg4O1saNG/Xyyy9r7dq1mjt3brEmtB07dkiSevfuXeLc2rVr5+ZXAwAAAEChat+Alp+fr8cff1xZWVmaPn26hg0bJknKycnRY489phUrVmjWrFl67rnnXBrv6aefVkpKih566CGNHz9ekmSz2TR16lR99tlnev7554vd6bJ9+3ZJ0qOPPqqYmJgKfHUAAAAAajPyDgAAAACj8HR+SUtL04QJEyRJ8+bNc+aX1NRUjR49WmvWrNH8+fOLrfC8c+dOWSwW/ec//5G/v3+5vw4AAAAAijN7egKl+f7773X48GF1797dGWYkyc/PTy+99JICAgL0xRdfKC0trdSxNm3apE2bNql58+YaN26cc7vFYtGUKVMUGRmplStXKjExsch5hSsCXHbZZRX0qgAAAACAvAMAAADAODydXz7++GNlZmZq0KBBRW6eqVevnmbMmCFJev/992Wz2Zz7jh07ptOnT6tly5Y0nwEAAACVqNo3oK1YsUKS1Ldv32L7QkJC1K1bN1mtVq1atcrlsa6//nqZzUVfure3t/r06SNJWr58uXN7enq6Dh8+rKZNm6pevXruvgwAAAAAKIa8AwAAAMAoPJ1fCs/p169fsfFatGih6OhopaSkaOvWrc7thY/f7NChQ6lzAgAAAOC+at+AlpCQIElq3bp1iftbtmwpSdq9e7fLY0VHR7s8VmE4adq0qd566y3dcsst6tixo3r06KEJEyZo3759Lr4SAAAAACiKvAMAAADAKDydX/bu3VvmcwozT3BwsJ599lndcMMN6tChg/r27auXX35Z6enppc4VAAAAQOmqfQNacnKyJCk8PLzE/Q0bNixyXEWPVRhOVq9erblz56phw4bq1q2bJGnJkiUaOnSo1q1b58pLAQAAAIAiyDsAAAAAjMKT+SUtLU05OTllvn5h5nnvvfe0fPlyRUdH64orrtDJkyf1zjvvaNiwYTpx4kSp8wUAAABwcV6enkBpsrKyJEl+fn4l7i/cXnicK2P5+/u7PNbOnTslSV27dtWrr76q+vXrS5Ly8vI0c+ZMffzxx3r00Ue1bNkyBQcHu/KSivHy8kwfoMViLvIR1R81MybqZjzUzJiom/FQM+OhZhWvNuQdicwD11Ez46FmxkTdjIeaGQ81MybqdnGezC+FH318fIo9svNi1y/MPCNGjNDEiRPl4+MjSTpx4oQef/xxbdq0SRMnTtSHH35Y6pwvxhOZhz+vxkTdjIeaGQ81MybqZjzUzHgqu2bVvgHNYrHIbrfLZDJd9DiHw+HSWJLKNNbMmTM1btw4NWzYUEFBQc7tPj4+euaZZ7R582bt2rVL33zzjUaMGFHqHP7KbDYpJCSwzOdVpODgkgMeqi9qZkzUzXiomTFRN+OhZsZDzSpOTc87EpkH7qFmxkPNjIm6GQ81Mx5qZkzUrWSezC+FTWelHf/X6//00086evSoWrVqVeTc8PBwvfLKK+rfv79+//137dmz54KPFi2NpzMPf16NiboZDzUzHmpmTNTNeKiZ8VRWzap9A1pgYKBSU1OVnZ1d4v7CJZcvdJfMX8eSVKaxfHx8dOmll5Z4vMVi0XXXXaddu3Zp27ZtpV6/JHa7Q+nppd8NVBksFrOCg/2Vnp4tm83ukTmgbKiZMVE346FmxkTdjIeaGY+rNQsO9ueuJxfV9LwjkXlQNtTMeKiZMVE346FmxkPNjInMc3GezC+Fx+fm5sput5e4ClpJ1w8KClJ0dHSJ12jUqJHatWunuLg4bdu2ze0GNE9lHv6eMSbqZjzUzHiomTFRN+OhZsZT2Xmn2jegNWzYUKmpqUpJSVGTJk2K7U9OTnYe58pYO3bsUEpKSon7yzJWoUaNGkm6cEhyRX6+Z78ZbTa7x+eAsqFmxkTdjIeaGRN1Mx5qZjzUrOLUhrwjkXlQdtTMeKiZMVE346FmxkPNjIm6lcyT+SUoKEhBQUHKzMxUSkqKwsPDy3X9QjUh8/Dn1Ziom/FQM+OhZsZE3YyHmhlPZdWs2t+iU3jHSWJiYon7C7e7cmdKWcfKzc3VM888owcffFBnzpwp8Zxjx45JkiIiIkq9PgAAAACcj7wDAAAAwCg8mV8kOVcyc/WcPXv26KmnntKzzz57wXkUZp7CRjQAAAAA7qn2DWi9evWSJC1durTYvjNnzmj9+vXy9vZWjx49XB5r2bJlstuLdvNZrVYtX75cktS7d29Jkq+vr9asWaMVK1Y4950vLy9P33//vSTpuuuuc/1FAQAAAIDIOwAAAACMw5P5pbTrJyUlKSEhQaGhoerYsaOkgkdxfv311/riiy906NChYufs379fW7Zskb+/v6666qpS5wwAAADgwqp9A1rfvn0VGRmp1atX6+OPP3Zuz8nJ0TPPPKOsrCwNGzZM9evXd+6zWq1KSkpSUlKSrFarc3vnzp3VoUMHJSUladasWXI4HJIkm82m6dOn69ixY7r22mvVtm1b5zl33323JOnll1/W7t27i1x/0qRJOnTokLp27epSoAIAAACA85F3AAAAABiFp/PLkCFDFBQUpEWLFhW5iSY1NVWTJ0+WJI0aNUre3t6SpKZNmyomJkaSNHHiRJ0+fdp5zvHjx/XII4/IZrPpH//4h4KDgyvySwUAAADUOiZH4U/11dj69es1evRo5eTkqH379oqKilJ8fLySk5PVrl07LViwQEFBQc7j//zzT11//fWSpOXLlysqKsq5b+/evRo+fLhSU1N16aWXqlWrVtq1a5cOHTqkxo0b69NPP1V4eLjzeKvVqocfflixsbHy8vJS586dVa9ePcXFxenUqVO69NJLNX/+fDVo0MCt12az2XX69Fk3vzLl4+VlVkhIoM6cOcszeQ2CmhkTdTMeamZM1M14qJnxuFqz0NBAWSzV/l6XaqMm5x2JzIOyoWbGQ82MiboZDzUzHmpmTGSe0nkyv0jSkiVLNHHiRDkcDnXq1ElhYWHauHGjUlNT1bNnT7399tvOBjRJOnHihIYPH65Dhw4pODhYnTp1ksPh0IYNG5STk6Mbb7xRs2bNkpeXl9tfE09lHv6eMSbqZjzUzHiomTFRN+OhZsZT2XnHEAmpW7duWrhwoW688UYdPXpUK1euVJ06dTR27NhiYaY0rVq10uLFizVkyBBlZGQoNjZWkjRixAh98cUXxcKMt7e3Zs+eralTp6p9+/bavn27fvvtN4WGhurhhx/WokWLyvVmDAAAAIDajbwDAAAAwCg8mV8k6ZZbbtGCBQvUs2dPJSYmas2aNQoPD9ekSZM0e/bsIs1nkhQeHq7FixdrzJgxql+/vtatW6fNmzerXbt2mjFjhl577bVyNZ8BAAAAKGCIFdBqMlYDQFlQM2OibsZDzYyJuhkPNTMeVgOAO8g8KAtqZjzUzJiom/FQM+OhZsZE5oE7WAENZUHdjIeaGQ81MybqZjzUzHhYAQ0AAAAAAAAAAAAAAAAAUC3RgAYAAAAAAAAAAAAAAAAAcAsNaAAAAAAAAAAAAAAAAAAAt9CABgAAAAAAAAAAAAAAAABwCw1oAAAAAAAAAAAAAAAAAAC30IAGAAAAAAAAAAAAAAAAAHALDWgAAAAAAAAAAAAAAAAAALfQgAYAAAAAAAAAAAAAAAAAcAsNaAAAAAAAAAAAAAAAAAAAt9CABgAAAAAAAAAAAAAAAABwCw1oAAAAAAAAAAAAAAAAAAC30IAGAAAAAAAAAAAAAAAAAHALDWgAAAAAAAAAAAAAAAAAALfQgAYAAAAAAAAAAAAAAAAAcAsNaAAAAAAAAAAAAAAAAAAAt9CABgAAAAAAAAAAAAAAAABwCw1oAAAAAAAAAAAAAAAAAAC30IAGAAAAAAAAAAAAAAAAAHALDWgAAAAAAAAAAAAAAAAAALe43YD2448/ymq1VuRcAAAAAKDaIPMAAAAAMAKyCwAAAABP83L3xMcee0z16tXTwIEDNXjwYLVv374i5wUAAAAAHkXmAQAAAGAEZBcAAAAAnub2CmhNmzZVamqqPvroIw0bNky33nqrPvzwQ50+fboi5wcAAAAAHkHmAQAAAGAEZBcAAAAAnuZ2A9rPP/+sTz/9VLfffrvq1KmjPXv2aObMmbr22mv18MMPKzY2Vna7vSLnCgAAAABVhswDAAAAwAjILgAAAAA8zeRwOBzlHSQvL0+//PKLvv76a61Zs0Y2m00mk0lhYWH629/+piFDhqhly5YVMd8ax2az6/Tpsx65tpeXWSEhgTpz5qzy8wmfRkDNjIm6GQ81MybqZjzUzHhcrVloaKAsFrfvdamWyDzuI/OgLKiZ8VAzY6JuxkPNjIeaGVNNyDxkl6rnqczD3zPGRN2Mh5oZDzUzJupmPNTMeCo771RIA9r5Tp48qe+++07Lli3Tli1bnHfVXHbZZRo6dKgGDhyooKCgirykofFmDMqCmhkTdTMeamZM1M14qJnx1IQ3YyoCmadsyDwoC2pmPNTMmKib8VAz46FmxlTTMg/ZpWrQgIayoG7GQ82Mh5oZE3UzHmpmPJWddyo8IdWvX18jR47U7NmzNWHCBPn7+8vhcGjbtm168cUX1bNnT02fPl1paWkVfWkAAAAAqHRkHgAAAABGQHYBAAAAUFW8KnKws2fP6ueff9aSJUu0YcMG2Ww2ORwOhYaGauDAgTp27JhWrlypjz76SEuXLtX8+fPVvHnzipwCAAAAAFQaMg8AAAAAIyC7AAAAAKhK5W5As9vtWrNmjb7++mutWLFCOTk5cjgcslgs6tWrl4YOHarevXvLy6vgUikpKXr44Ye1ZcsWTZs2Te+++265XwQAAAAAVBYyDwAAAAAjILsAAAAA8BS3G9B27dqlb775Rt99951OnTolh8MhSWrWrJmGDh2qQYMGqWHDhsXOa9CggV544QUNGjRImzdvdn/mAAAAAFCJyDwAAAAAjIDsAgAAAMDT3G5AGzx4sEwmkxwOh/z9/XXTTTdp6NCh6tKlS6nnBgQESJJCQ0PdvTwAAAAAVCoyDwAAAAAjILsAAAAA8LRyPYLziiuu0NChQzVgwABnSHGFn5+f/v3vf6tFixbluTwAAAAAVCoyDwAAAAAjILsAAAAA8CS3G9B+/PFHXXLJJW6d27BhQ918883uXhoAAAAAKh2ZBwAAAIARkF0AAAAAeJrZ3ROff/55TZ8+3aVjH374YfXr18/dSwEAAABAlSPzAAAAADACsgsAAAAAT3N7BbQNGzbIZrO5dGxiYqKOHz/u7qUAAAAAoMqReQAAAAAYAdkFAAAAgKe51ICWlJSkuXPnFtt+4MABTZw48YLnORwOHT16VPv371eDBg3cnyUAAAAAVCIyDwAAAAAjILsAAAAAqI5cakBr0aKFDhw4oK1btzq3mUwmnTp1St9++61LFxo0aJBbEwQAAACAykbmAQAAAGAEZBcAAAAA1ZHLj+B89tln9cknnzg//+qrr1S/fn317NnzgueYTCYFBASoXbt2BBoAAAAA1RqZBwAAAIARkF0AAAAAVDcuN6B16NBBM2bMcH7+1VdfqVmzZkW2AQAAAIBRkXkAAAAAGAHZBQAAAEB143ID2l/Nnz9fderUqci5AAAAAEC1QeYBAAAAYARkFwAAAACe5nYD2lVXXVWR8wAAAACAaoXMAwAAAMAIyC4AAAAAPM2lBrTXXntNknTvvfeqXr16RbaVxSOPPFLmcwAAAACgspF5AAAAABgB2QUAAABAdeRSA9rbb78tk8mkv/3tb85AU7jNFQ6HQyaTiUADAAAAoFoi8wAAAAAwArILAAAAgOrIpQa0rl27SpL8/f2LbQMAAAAAoyPzAAAAADACsgsAAACA6silBrQFCxa4tA0AAACA+3JzpcxMkzIzCz+adPZs8W2u/N7Pz6FPPsnWFVfYPf2yDIHMAwAAAMAIyC4AAAAAqiOXGtBKk5mZqaCgoCLbtm3bppCQEEVFRVXEJQAAAIBqy2qV0tNNysiQMjJMysgwKT1d//tY0BB2/ucFx8i5r7BxLC/PtUemuCIvT8rKqrjxajsyDwAAAAAjILsAAAAA8IRyNaBlZmbqhRde0C+//KLVq1cXCTVz5sxRbGysbrrpJr3wwgsKDg4u92QBAACAiuZwSGfPSqmpJqWlFTSIpaXJ+fvU1MJt55rIzjWSFXyek1OxjV7+/g4FBjoUFCQFBTlUp8653wcFORQYeO73528///f16zvEj+DlR+YBAAAAYARkFwAAAACe5HYDWmZmpu666y7t3btXknT48GG1bdvWud9ms8lut+vHH3/UwYMH9dlnn8nb27v8MwYAAAD+Ii+voIEsNdWkM2cKGsXS0kxFfpW8raDZzG6vmAaygICCZrE6dQqav8793qE6dVTk98HBDmdzWZ06RZvLvCpknWKUF5kHAAAAgBGQXQAAAAB4mttvbb377rvau3evmjVrppkzZxYJM1LBHTW7d+/WhAkTtHPnTi1YsECjRo0q94QBAABQc2Vny9lEVvRj0e1/Pebs2fI3kHl7O1S3rkN160p16xY0ihV87vjf5/pf81jRhrLzP6dxrGYh8wAAAAAwArILAAAAAE9z+y2yZcuWycvLS++8846aNGlS4jFt2rTR66+/rltuuUVLliwh0AAAANQSDoeUkSGdOmXS6dMFv87//enTJp05Y1ZGhpSS4u9sMCvPoyxNpnPNYyEhRRvIgoOlevX+uu3c8XXrOuTnJ5kq9kmaMDgyDwAAAAAjILsAAAAA8DS3G9AOHz6sSy+99IJhptCll16qpk2bav/+/e5eCgAAAB7kcEhnz6pI89jFGstOnSpYlSw/39VuLnORz7y8HKpXr6CJrG5dKSTk3OclfSz8fXCwZLFU/OtH7UXmAQAAAGAEZBcAAAAAnuZ2A5qPj48cDodLx/r6+srEchIAAADVhtVa0FCWnGzSyZNFf6WkmIttc3dlsoAAh8LCHAoNPfer8PP69aWmTX3l7Z2t4GC7s5EsMJCVyFA9kHkAAAAAGAHZBQAAAICnud2A1rRpU+3atUuHDx++6F01J06c0N69e9WiRQt3LwUAAIBSOBxSZqaUknKugSwl5a+NZYW/N+vMmbL/Z7Ovb9Fmsr82lv21ySwkxCF//wuP5+VlVkiIr86csSs/316OVw9UDjIPAAAAACMguwAAAADwNLcb0G666Sbt2LFDTzzxhObMmaPQ0NBix6SlpemJJ56Q3W5X3759yzVRAACA2shmk06dMunEiYLVypKTTTpxwuz8vOCjWcnJJmVlla2pzGwuaBSrX7/gV4MGBb8KP69f3+7cHhrKymSofcg8AAAAAIyA7AIAAADA09xuQLvrrrv0xRdfaNu2berXr59uuOEGtWnTRgEBATp79qwSEhK0YsUKpaWlKTIyUiNHjqzAaQMAABhbdraKNJBdqMHs5EmTbDbXu74CA89vIrOX0FR2rtksJMQhs7kSXyRgcGQeAAAAAEZAdgEAAADgaW43oAUFBWnOnDl67LHHlJCQoG+++UbffPNNkWMcDoeaNWum2bNnq06dOuWeLAAAQHXncEhnzkjHjpl17JjpvI+mIttSU11vKjOZCprGwsMdatiw8KNd4eEFv2/QwKHwcLsaNixYpQxAxSDzAAAAADACsgsAAAAAT3O7AU2SWrRooUWLFmnZsmWKjY3VoUOHlJqaKn9/fzVv3ly9evXSzTffLB8fn4qaLwAAgMfk50snThRvJju/wez4cZNyclxrLvPzK2goK2gqsxdpMCtsKAsPL3hMple5fmoD4C4yDwAAAAAjILsAAAAA8KRyv5Xp7e2tAQMGaMCAARUxHwAAAI+w26WUFJOOHDHpyBGzDh8u+Pjnn+eazFJSTLLbXWsuq1/frogIhxo1cqhRI7saNXIoMrLotuBgyeT6QmgAPITMAwAAAMAIyC4AAAAAPIW1NAAAQK2QkyMdPWrSn3+adeSISYcPm50NZn/+adbRoybl5pbeDebl5SjWWHbuY8HvIyIc8vWtghcFAAAAAAAAAAAAAB7mUgPal19+KUm66aabFBQUVGRbWQwbNqzM5wAAAJTG4ZBOn5YOHJB27LDo0CHL/xrMzq1mlpJiLnUcs7mguaxxY4eiouyKirIrMtKhxo0LGswiIhxq0MAhc+lDATAYMg8AAAAAIyC7AAAAAKiOXGpAmzJlikwmk6688kpnoCncVhYEGgAA4K7cXOnwYZMOHTLrwAGzDh406+BB0/8+mpWZWfhzid8FxwgIKGgsO9dgVtBc1qTJuSYzb++qeT0AqhcyDwAAAAAjILsAAAAAqI5cakCLjIwsONjLq9g2AACAiuBwSMnJpiJNZYcOnWsyO3bMJIfj4v+ZGh4uNW5sU+PGBU1mTZqc/9GukBCpjP8fC6CWIPMAAAAAMAKyCwAAAIDqyKUGtBUrVri0DQAA4GKys1Vs5bLCzw8dMis7++LdYQEBDjVrZv/fL4eaNz//91JkZKDOnMlRfr69al4QgBqDzAMAAADACMguAAAAAKojlxrQyistLU1HjhxRu3btquJyAADAg6zWgkdl7ttnVlKS2flx/36z/vzz4quYmc0ONW58rsmsadOiDWdhYY4LrmDm5WWupFcEAKUj8wAAAAAwArILAAAAgMrgdgNa27ZtdeWVV+qjjz4q9dhRo0bpxIkTWr16tbuXAwAA1YjdLh09WrTJrPD3hw6ZlJ9/4Saz4ODzVy4raCwraDazKyrKIR+fKnwhAHARZB4AAAAARkB2AQAAAOBpbjegORwOORyOUo/LyspScnKy0tPT3b0UAADwAIdDSkkx/a+5zFSk0Wz/frNyci7cZObv79All9h16aV2tWhR8OuSSxxq0cJ+0VXMAKA6IfMAAAAAMAKyCwAAAABPc6kBLTExUf/3f/9XLMBs27ZN11133QXPczgcSk9PV05Ojpo3b16eeQIAgEpit0t//mlSQoJZe/aYtXevWXv2WLR3r1np6RfuFPPyKljJrEWLgmazFi3ONZxFRDhk5omYAAyEzAMAAADACMguAAAAAKojlxrQWrZsqc6dO+v7778vsj0vL0/Hjx8v9Xyz2awHH3zQvRkCAIAKkZ8vHTxocjaX7dljVkKCWYmJZmVlldxoZjI51KSJQ5deeq65rPD3TZo45OX2WqoAUL2QeQAAAAAYAdkFAAAAQHXk8tvGTz/9tGJiYiQV3CkzefJkNW/eXA888MAFzzGZTAoMDFTr1q3VtGnT8s8WAACUKjdX2rfPXKTJLCHBrKQks/LySm408/Z2qGVLu6Kjz/1q1aqg0czPr4pfAAB4CJkHAAAAgBGQXQAAAABUNy43oDVo0ECDBw92fj558mSFhYUV2QYAAKqO1SolJpq1c2fRRrP9+82y2UpuNPP3d6hVq4LmstatCxrNWre2qVkzVjMDADIPAAAAACMguwAAAACobtx+q3n37t0VOQ8AAHARJ0+atGNHQbPZjh0W7dxZ0Gx2oRXN6tRxnLeamU2tWxc0nTVp4pDZXMWTBwCDIvMAAAAAMAKyCwAAAABPq5S1Tk6cOKGff/5ZNptNPXv2VIsWLSrjMgAA1Dh5edLevQWNZjt3WpxNZ8nJJXeNBQY61K6dXW3a2M5b0cyuiAiHTCX3pgEAKgCZBwAAAIARkF0AAAAAVIVyNaDt3r1b//73v9WyZUs99dRTkqS4uDjdf//9ysnJkST9v//3//TEE0/ovvvuK9dE9+/fr7feektxcXE6deqUIiIi1L9/fz3wwAMKCAgo01gnTpzQ7NmztXbtWh0/flz169dXnz599NBDDyk0NLTU8/Pz83XPPfdoy5Ytmj9/vrp16+buywIA1GLJyedWNStsNtu71yyrtXjnmMnkUPPmDrVrZ1P79na1a2dXu3Y2NW3KimYAUJmqKvOQdwAAAACUR216v2bbtm2aPXu2tm/frvT0dDVp0kSDBg3SvffeK29v71KveezYMd16661KS0vTnj17yjRfAAAAACVzuwHtyJEjGj58uM6ePSvTeUusvPjii8rOzlZQUJAaNWqkvXv36pVXXtGVV16pK664wq1rbd26Vffee6+ysrJ0+eWXq0OHDtq8ebPmzJmj2NhYffLJJwoKCnJprMOHD+uuu+5SSkqKoqOj1bt3b+3cuVMfffSRfvnlF33++eeKiIi46BhvvPGGtmzZ4tZrAQDUPjablJRk1h9/mLV9+7lVzU6eLLlzrE6d4o1mbdrY5eI/dQCAClJVmYe8AwAAAKA8atP7NbGxsRo3bpzsdru6dOmi4OBgbdy4US+//LLWrl2ruXPnXrQJzW63a+LEiUpLS3Pr9QMAAAAomdsNaB988IEyMzPVqVMnjR8/XlLBHTYJCQny9vbWokWL1KxZM3388ceaNm2aPvroI7cCTX5+vh5//HFlZWVp+vTpGjZsmCQpJydHjz32mFasWKFZs2bpueeec2m8p59+WikpKXrooYec87bZbJo6dao+++wzPf/885o7d+4Fz9+4caP++9//lvl1AABqB7td2rfPpC1bLPrjD4v++MOsbdssOnu25FXNLr3Uofbtbc5Gs/bt7YqK4vGZAFAdVEXmIe8AAAAAKK/a8n5NWlqaJkyYIEmaN2+eYmJiJEmpqakaPXq01qxZo/nz5190hbc5c+Zow4YNZX7tAAAAAC7O7Yd2rV27Vr6+vnrrrbd02WWXSZJ+++03SdLVV1+tZs2aSZLuvvtuhYSEKC4uzq3rfP/99zp8+LC6d+/uDDOS5Ofnp5deekkBAQH64osvXLpbZdOmTdq0aZOaN2+ucePGObdbLBZNmTJFkZGRWrlypRITE0s8Py0tTU8++aQiIiLUpEkTt14PAKDmsNulpCSTFi/20nPP+WrQIH+1bBmka64J0tix/po710e//+6ls2dNCghwqGtXm+67L0+zZuXop5/Oav/+TK1bd1bvvJOjxx/P00032dSkCc1nAFBdVEXmIe8AAAAAKK/a8n7Nxx9/rMzMTA0aNMjZfCZJ9erV04wZMyRJ77//vmw2W4nX/OOPP/TWW2/pqquuKvNrBwAAAHBxbjegHTt2TM2bN1doaKhz25o1a2QymdS9e3fnNpPJpMjISJ08edKt66xYsUKS1Ldv32L7QkJC1K1bN1mtVq1atcrlsa6//nqZzUVfure3t/r06SNJWr58eYnnP/vsszpx4oT+9a9/KTAwsEyvAwBgbIUrm331lZeef95Xgwf7q1WrIHXvHqQxY/w1Z46P1q71UmamSf7+DnXpYtP99+fp9dez9dtvZ5WUlKnvv8/SjBm5Gj7cqs6d7QoI8PSrAgBcTFVkHvIOAAAAgPKqLe/XFJ7Tr1+/YuO1aNFC0dHRSklJ0datW4vtz8zM1BNPPKGQkBBNmzat1PkBAAAAKBu3H8Fp+svyLLm5uYqPj5ekYnePZGRkyMvLvUslJCRIklq3bl3i/pYtWyo2Nla7d+/WwIEDXRorOjr6gmNJBUtT/9XChQu1dOlSjR49mrtjAKCGczikpCRp5UqL4uO99ccfZm3dalF6evGlyfz8HGrf3q6OHW264gqbLr/cruhou9z8Zw8AUI1UReYh7wAAAAAor9ryfs3evXtLPSchIUG7d+9Wp06diux78cUXdfjwYc2bN69Iox4AAACAiuH22+NRUVE6fPiwsrOz5e/vr9WrVysvL08hISHOJZ4lad++ffrzzz+dYaGskpOTJUnh4eEl7m/YsGGR4ypjrP379+ull15S+/btNX78eNcmDgAwjMxMacsWizZutGjTJovi4iw6fVqS/Ioc5+t7rtms4FdBs5m3t0emDQCoZFWRecg7AAAAAMqrNrxfk5aWppycHLeuv2TJEn377bcaMWKErr32WqWnp5c6PwAAAABl43YDWteuXbVnzx5NnjxZAwcO1CuvvCKTyVRk6eUdO3Zo0qRJcjgcuvbaa926TlZWliTJz8+vxP2F2wuPc2Usf39/l8eyWq164okn5HA49Morr8i7EroMvLzcfhJquVgs5iIfUf1RM2OibtWLwyEdOGDShg0Wbdxo1saNZu3YYZbdXvROUR8f6bLLClc2s+uKK+xq06akZjPqWl3wvWY81Mx4alvNqiLz1Ia8I5F54DpqZjzUzJiom/FQM+OhZsZk1LrVhvdrCj/6+PgUe2Tnxa5/+PBhvfDCC2rZsqWefPLJUuflLk9kHqP+ea3tqJvxUDPjoWbGRN2Mh5oZT2XXzO0GtP/7v//TDz/8oJ9++kk//fSTHA6HAgMDNXr0aEnS2rVrdd9998nhcCgyMlKjRo1y6zoWi0V2u73YEtJ/5XA4XBpLKr4c9cXGmjVrlnbs2KEXXnhBl156qQszLhuz2aSQkMAKH7csgoNLDniovqiZMVE3z8jKkjZtktauldatK/iVklL8uCZNpO7dz/3q1Eny8TGLBjPj4XvNeKiZ8dSWmlVF5qnpeUci88A91Mx4qJkxUTfjoWbGQ82MyWh1qw3v1xQ2nZV2/Pnn5Ofn68knn1Rubq7+/e9/y9fXt9Rz3eHpzGO0P68oQN2Mh5oZDzUzJupmPNTMeCqrZm43oIWHh+vzzz/XrFmztGfPHjVr1kyPPPKIoqKiJEnNmjWT2WxWr1699OKLLyo0NNSt6wQGBio1NVXZ2dkl7i9ccvlCd8n8dSxJLo+1bt06vf/+++rdu7fuuuuuMs/dFXa7Q+nppd8NVBksFrOCg/2Vnp4tm83ukTmgbKiZMVG3quNwSIcPm7Rxo9m5wtn27Wbl5/91dTOHLr/crq5d7brqKpu6drUrMvLcf4xZLGb5+FAzo+F7zXiomfG4WrPgYP8acddTVWSemp53JDIPyoaaGQ81MybqZjzUzHiomTEZNfPUhvdrCo/Pzc2V3W4vcRW0v57z1ltvKT4+Xk899ZTatGlT6pzc5anMw98zxkTdjIeaGQ81MybqZjzUzHgqO++43YAmSU2aNNF//vOfEvc1btxYa9asUb169cpzCTVs2FCpqalKSUlRkyZNOxs2xQAA16hJREFUiu1PTk52HufKWDt27FBKSUvflDDW9OnT5XA4ZLVaNWHChCLHHjt2TJI0Z84cLVy4UP369VO/fv1cf2Hnyc/37DejzWb3+BxQNtTMmKhbxcvNlbZssWjTJrM2brRo0yaLkpOL/2MYEWFXly42deliU9euNnXoYNdfnxSQn198fGpmTNTNeKiZ8dSmmlV25qkNeUci86DsqJnxUDNjom7GQ82Mh5oZkxHrVtPfrwkKClJQUJAyMzOVkpKi8PDwi55z8uRJzZ07V15eXtqxY0eRzJN/3n8EFm5/8MEH1aJFi1LnfSGe/PNixD+voG5GRM2Mh5oZE3UzHmpmPJVVs3I1oJWmvGFGklq3bq2EhAQlJiaqc+fOxfYnJiY6j3NlrNjYWOc5pY2VlVVwx8rq1asvOObatWslFdxBVJ43ZAAApcvJkeLiLFq7tuBXXJxFOTlFVzfz8nKoQwe7una1OZvOGjd2yIXV+QEAKLPyZh7yDgAAAICqYPT3ayQpOjpamzdvVmJiYokNaOefk5OTI5vNJkn67rvvLjiPJUuWSJJuu+22cjWgAQAAALVduRvQMjIytH//fmVnZ8tuL9ohZ7PZlJOTo+PHjys2Nlbvvvtumcfv1auXlixZoqVLl+r2228vsu/MmTNav369vL291aNHD5fGmjNnjpYtW6ZHHnmkyBLNVqtVy5cvlyT17t1bkrRixYoLjnXrrbdq9+7dmj9/vrp161bm1wUAKF12dkHD2Zo1Fq1bV9BwlptbtJOsfv2CZrOChjO7Ona0yYVV/gEAcFllZh7yDgAAAICKUpPfryk8Z/PmzVq6dGmxayQlJSkhIUGhoaHq2LGjvL29tWfPnhKvnZ6erq5du0rSBY8BAAAAUDblakB79dVX9e677xZZrrii9e3bV5GRkVq9erU+/vhj3XPPPZKknJwcPfPMM8rKytJdd92l+vXrO8+xWq06dOiQJKlp06by9vaWJHXu3FkdOnTQtm3bNGvWLD3xxBMymUyy2WyaPn26jh07pmuvvVZt27attNcDALiwrCxp06ZzK5xt3mxRXl7RhrPwcLuuucama66xqUePfLVowepmAIDKU9mZh7wDAAAAoCLUhvdrhgwZonnz5mnRokXq1auXrr/+eklSamqqJk+eLEkaNWqU8xoAAAAAqo7bDWhLly7VnDlzXDq2WbNmGjhwoFvX8fPz08yZMzV69GhNnTpVixYtUlRUlOLj45WcnKx27dppwoQJRc45ceKEBgwYIElavny5oqKinPtmzJih4cOHa968eVq+fLlatWqlXbt26dChQ2rcuLH++c9/ujVPAEDZnT1bvOHMai3aTRYRUbTh7NJLaTgDAFSNqsg85B0AAAAA5VVb3q9p2LChXnjhBU2cOFEPPfSQOnXqpLCwMG3cuFGpqanq2bOnRo4c6dZrAwAAAFA+5tIPKdmiRYskSQMGDNDKlSu1bt06mc1m3X777dq+fbt++eUXPfDAAzKbzXI4HLr//vvdnmS3bt20cOFC3XjjjTp69KhWrlypOnXqaOzYsVqwYIGCgoJcHqtVq1ZavHixhgwZooyMDMXGxkqSRowYoS+++ELh4eFuzxMAcHGZmVJsrEUvveSjm28OUHR0kG67LUD/+Y+v1q/3ktVqUqNGdg0datWsWTn6/fdM/fHHWc2Zk6O//93KamcAgCpVVZmHvAMAAACgPGrT+zW33HKLFixYoJ49eyoxMVFr1qxReHi4Jk2apNmzZ7P6GQAAAOAhJofD4XDnxB49eigzM1OrVq1ScHCwJGngwIHKzc3VsmXLnMe98cYbmj17tp544olyhZqaymaz6/Tpsx65tpeXWSEhgTpz5qzy8+0emQPKhpoZU22uW35+wQpnK1da9NtvXtqyxaz8/KIdZI0bn1vh7Jpr8tW8ueebzGpzzYyMuhkPNTMeV2sWGhooi8Xte12qDTJPxSDzoCyomfFQM2OibsZDzYyHmhmTUTMP2cWzPJV5+HvGmKib8VAz46FmxkTdjIeaGU9l5x23E1JaWpqioqKcYUaSoqOj9eeffyojI8O57R//+Id8fHz0888/u3spAICBHDxo0gcfeGvkSD+1bh2kv/0tQLNm+WrTJovy802KirLr9tuteu21bG3cmKnNm8/qrbdydM89Vl1yieebzwAAKETmAQAAAGAEZBcAAAAAnubl7om+vr7y9fUtsq1JkyaSpKSkJF1xxRWSpKCgIDVr1kwHDhxwe5IAgOorM1Nas8ai2FgvrVzppX37ivY2h4Q41KtXvq67Ll8xMTY1berWwpsAAFQ5Mg8AAAAAIyC7AAAAAPA0txvQwsPDdeTIEdlsNlksFklS06ZNJUl79+51BppCWVlZ7s8SAFBt2O3Stm1mrVzppdhYizZutMhqPbdsmZeXQ1262HTddTb17p2vyy+363//TAAAYChkHgAAAABGQHYBAAAA4GluP4LzyiuvVHp6ut59913ntlatWsnhcOiXX35xbjtx4oT279+vhg0blm+mAACPOXHCpM8+89KYMX667LJA9e0bqOnTfbV2rZesVpOaNbNr5Mg8ffBBtvbsydS332br8cfz1KkTzWcAAOMi8wAAAAAwArILAAAAAE9zewW0e+65R4sWLdJ//vMfLVu2TB9//LEuv/xyNWvWTL/99psmTZqk9u3b6/PPP1d+fr7at29fkfMGAFSinBxp/frCx2patHNn0S6ywECHevbMd65ydsklPFYTAFDzkHkAAAAAGAHZBQAAAICnub0CWps2bTRlyhRZLBYlJibKx8dHkjR27Fg5HA59/fXXmj59uvbu3Suz2ayxY8dW2KQBABXvyBGT3nvPW3fe6a/WrYN0220Bmj3bRzt3WmQyOXTFFTY9+miuvvkmSwkJmZo/P0ejRllpPgMA1FhkHgAAAABGQHYBAAAA4Glur4AmSXfffbd69Oih1atXO7fdeuutstvt+u9//6s///xTl156qR577DG1bdu23JMFAFQch0Pavt2sn37y0tKlXtq6tegqZ+HhdvXuXbDC2bXX2hQWRqMZAKD2IfMAAAAAMAKyCwAAAABPKlcDmiQ1a9ZMzZo1K7Jt8ODBGjx4cHmHBgBUsLw8ae1ai5YuLWg6+/PPcwthmkwOde1qU79+Nt1wQ77atrXLZPLgZAEAqCbIPAAAAACMgOwCAAAAwFPK3YAGAKje0tKk5cu99NNPXlq+3EsZGee6yvz9HerVK1/9++frhhtsatCAVc4AAAAAAAAAAAAAAIDrXGpA+/LLLyvkYsOGDauQcQAAF3fokElLlxY0na1bZ1F+/rmmswYN7LrxxnzdeGO+eva0KSDAgxMFAKCaIPMAAAAAMAKyCwAAAIDqyKUGtClTpshUAc9hI9AAQOVwOKQ//jDrp58Kms527rQU2d+6tU033pivm27KV+fOdpnNFxgIAIBaiswDAAAAwAjILgAAAACqI5ca0CIjIyt7HgCAMsrNldassejHH720dKmXjh8/11VmNjvUrZtNN91UsNLZpZfyaE0AAC6GzAMAAADACMguAAAAAKojlxrQVqxYUdnzAAC4IDdXWrnSoq+/9tbSpV7KzDx3t2NAgEO9exescta3b75CQz04UQAADIbMAwAAAMAIyC4AAAAAqiOXGtAAAJ5jtUqrVln0zTfe+v57L6Wnn2s6Cw+3Ox+tGRNjk5+fBycKAAAAAAAAAAAAAABqnQppQLPb7dqxY4f27dunjIwMDR8+XFarVcePH1eTJk0q4hIAUKvYbNK6dRZ99ZWXvv/eS6dPn3u8Zni4XX/7W75uvdWqLl3sMpsvMhAAAKgQZB4AAAAARkB2AQAAAOAJ5W5AW7Rokd544w2dOHHCuW348OE6evSoBgwYoP79++uf//yn/FiWBwAuym6XNm606OuvvbRkiZeSk891loWF2TVwYL4GD85Xt242WSwenCgAALUMmQcAAPx/9u47Poo6/+P4e2ZLstl0QgelSFEExd49UU859fQ8fnbPdrazn9jlTj3Acp7eeYjY26FYsOvZAM92Z0URlI7SQ0hPdjdbZn5/bLIh0sImYTLJ6/l47GNmZ2ZnvptPEvm473wHANyA3gUAAACAU1oUQPvb3/6mRx55RLZtyzRNmaapRCIhSVq7dq0SiYTefPNNrV27Vk888YS8Xu74CQAbsm1p9mxTr7zi02uvebV6dWPoLD/f1jHHxHT88cnba/IrFACA7Y+eBwAAAIAb0LsAAAAAcFLaN2773//+p4cffliZmZm65ZZb9Pnnn2vEiBGp/fvuu6/uuusuBQIBffXVV3ruuedaZcAA4Ha2LX33nanx4/3ae++gjj46qClT/Fq92lR2tq3/+7+Ypk4Nae7cGt17b51+8QvCZwAAOIGeBwAAAIAb0LsAAAAAcFrakYann35ahmFo4sSJGj169CaP+fWvf62srCxdeumlev3113X66aenPVAAcLv58w1Nn+7XK6/4tGRJY/43K8vWUUfFdfzxcY0aFRcz4AMA0D7Q8wAAAABwA3oXAAAAAE5LO4D2zTffqKioaLPNTIMjjjhC3bp10+LFi9O9FAC41qpVhqZP9+mVV6S5c7NS2zMybB1xRFwnnBDXEUfEFQw6N0YAALBp9DwAAAAA3IDeBQAAAIDT0g6gVVZWaujQoc06tnv37vrhhx/SvRQAuEo4LP373149+6xPH37okW0bkiSfz9ZhhyV0/PExHX10XDk5Dg8UAABsET0PAAAAADegdwEAAADgtLQDaPn5+VqxYsVWj7NtWytXrlRBQUG6lwKAds+2pa+/NvXssz698opPVVVGat9BByV0zjkeHXZYSNnZloOjBAAA24KeBwAAAIAb0LsAAAAAcJqZ7gv32GMPVVVV6c0339zicS+//LLKy8s1cuTIdC8FAO1WcbGhSZN8OuSQLI0eHdRTT/lVVWWob19LV19dp88/r9Frr0V07rlSfr7TowUAANuCngcAAACAG9C7AAAAAHBa2gG0M888U7Zt67bbbtOMGTM22m9Zll544QXddtttMgxDp5xySosGCgDtRTQqvfGGV2ecEdDuuwd1222ZWrDAo0DA1pgxMU2fHtIXX9Tquuui6tfPdnq4AAAgTfQ8AAAAANyA3gUAAACA09K+Befee++t3//+93rkkUd06aWXKhgMKhaLSZLGjBmjH3/8UbW1tbJtWyeddJIOOOCAVhs0ADhh7lxT06b5NH26V6WljfndvfZK6NRTYzr++Jhycx0cIAAAaFX0PAAAAADcgN4FAAAAgNPSDqBJ0tixY9WnTx/985//VGlpaWr73LlzJUk5OTm64IILdP7557dslADgkLIyafp0n5591qe5cz2p7d27WzrppJhOOSWuQYMsB0cIAADaEj0PAAAAADegdwEAAADgpBYF0CTplFNO0W9/+1vNnj1bixYtUnV1tQKBgPr376+9995bgUCgNcYJANtNPC7NmuXRs8/69M47XsVihiTJ77d19NFxnXpqTIcempC3xb9BAQCAG9DzAAAAAHADehcAAAAATmmV+ITP59M+++yjffbZpzVOBwCOWLzY0DPP+PTCCz4VFzfeYnPEiOQtNn/zm5gKCx0cIAAAcAw9DwAAAAA3oHcBAAAA4ATm7wHQqcXj0rvvevXYYz59+GHjr8QuXSyNGRPXKafENGwYt9gEAAAAAAAAAAAAAADYFAJoADql9euTs5098YRPK1cmZzszTVtHHJGc7ezII+Py+x0eJAAAAAAAAAAAAAAAQDtHAA1Ap/L116Yee8yvV17xKho1JEmFhZbOOCOms86KqW9f2+ERAgAAAAAAAAAAAAAAuAcBNAAdXiQivfqqV4895tfs2Z7U9pEjEzr33KiOPz6uzEwHBwgAAAAAAAAAAAAAAOBSBNAAdFgrVhh68kmfpk71qbQ0eZtNv9/WCSfEde65Ue2xh+XwCAEAAAAAAAAAAAAAANyNABqADsW2pQ8/9OjRR316912vLCt5m83evS2dfXZMp58eU1ERt9kEAAAAAAAAAAAAAABoDQTQAHQI1dXS88/79NhjPi1a1HibzYMPjuu882L65S/j8vIbDwAAAAAAAAAAAAAAoFW1ShyjsrJS//3vf7V06VJVV1fruuuuU11dnb799lvts88+rXEJANikBQtMPfaYT88/71NtbXK2s2DQ1imnxHTOOTENHsxtNgEAQMvR8wAAAABwA3oXAAAAAE5oUQDNtm3985//1OOPP65IJJLaft1112nlypU666yztPvuu+v+++9XYWFhiwcLAJIUj0tvv+3VY4/59PHHjb/GBg9O6JxzYjrppJhychwcIAAA6DDoeQAAAAC4Ab0LAAAAACeZLXnxtddeqwceeEDhcFj5+fkKBAKpfRUVFbJtW998843OPPNMhcPhFg8WQOcWCkmPPOLTvvsGde65AX38sVemaetXv4pp+vSQPvoopPPOI3wGAABaDz0PAAAAADegdwEAAADgpLQDaO+++65ef/11FRYW6uGHH9Z///tfDR06NLV/zz331NSpU9WlSxctXbpUTz31VKsMGEDnU14u3X23X3vuGdSNN2ZqxQpTXbpYuvLKOn35Za2eeCKigw9OyDCcHikAAOhI6HkAAAAAuAG9CwAAAACnpR1Ae+6552QYhv72t7/p4IMP3uQxe+65p/7+97/Ltm298847aQ8SQOe0apWhceMyNHJktu66K0OlpaZ23NHSnXdG9PXXtbrxxqj69LGdHiYAAOig6HkAAAAAuAG9CwAAAACnedN94dy5c9WzZ0/tt99+Wzxur732Uu/evfXjjz+meykAnczChaYmTfLrxRe9iseT05oNG5bQ5ZdHddxxcXnT/s0FAADQfPQ8AAAAANyA3gUAAACA09KOcYRCIfXu3btZxxYWFqqkpCTdSwHoJL780tR99/n19tu+1LYDD4zrssuiOuwwbrEJAAC2L3oeAAAAAG5A7wIAAADAaWkH0IqKivTTTz/Jtm0ZW0iFxGIx/fjjjyoqKkr3UgA6MNuWZs706J//9OvTT5O/kgzD1ujRyeDZnntaDo8QAAB0VvQ8AAAAANyA3gUAAACA08x0X7jPPvsoFArpmWee2eJxTz75pKqrq7XXXnuleykAHVA8Lr30klejRmXp1FOz9OmnXvl8tk47LaqPPw7piScihM8AAICj6HkAAAAAuAG9CwAAAACnpT0D2jnnnKM33nhDd955pxKJhI477rgm+0tLS/X000/roYcekmmaOuOMM1o8WADuFw5Lzz7r0+TJfi1fnszAZmXZ+t3vYrrooqh69bIdHiEAAEASPQ8AAAAAN6B3AQAAAOA0w7bttNMeU6dO1fjx4zfanp+fr4qKCkmSbdu64oordPHFF6c9yI4skbBUVlbryLW9XlMFBUGVl9cqHmemKTdwc80qKqTHH/fr4Yd9Wr8+GTzr0sXS+efHdM45URUUODu+tuTmunVW1MydqJv7UDP3aW7NCguD8njSnmy5XaHnaTl6HmwLauY+1MydqJv7UDP3oWbu5Oaeh97FOU71PPyecSfq5j7UzH2omTtRN/ehZu7T1v1O2jOgSdLpp5+uvn376p577tH8+fNT28vLyyVJO+64o6644gr96le/asllALjY2rWGpkzx68knfaqtNSRJO+xg6eKLozr11JiyshweIAAAwBbQ8wAAAABwA3oXAAAAAE5KO4BmWZZM09QhhxyiQw45RKtWrdKiRYtUXV2tQCCg/v37a+DAga05VgAusnq1oXvu8WvaNJ+i0WTwbOedE7r88qiOPz4ub4virwAAAG2PngcAAACAG9C7AAAAAHBa2hGQc889V127dtW4ceOUm5ur3r17q3fv3q05NgAuVFJi6L77/HriCZ/q6pLBs/32i+vyy6M6/PCEDMPhAQIAADQTPQ8AAAAAN6B3AQAAAOC0tANoc+fOVSAQUG5ubmuOB4BLVVRIkyf79dBDfoVCyZTZ/vvHdcMNUe23X8LZwQEAAKSBngcAAACAG9C7AAAAAHBa2gG0RCKhLl26tOZYALhQTY300EN+TZ7sV1VVMng2cmRC119fp1/8ghnPAACAe9HzAAAAAHADehcAAAAATjPTfeHhhx+uhQsX6quvvmrN8QBwiXBYeuABn/beO6g77shQVZWhnXdO6Mknw3r77ZAOO4zwGQAAcDd6HgAAAABuQO8CAAAAwGlpz4B2ww03aPXq1Tr33HM1evRo7bnnnuratasyMjI2+5r9998/3csBaCeiUemZZ3y6916/1qxJZlgHDLB07bV1OuGEuMy0Y60AAADtCz0PAAAAADegdwEAAADgtLQDaAcddFBq/dVXX9Wrr766xeMNw9D333+f7uUAOCyRkF580au//jVDy5cnU2a9e1saOzaqk0+OyZv2bxMAAID2iZ4HAAAAgBvQuwAAAABwWtqREdu22/R4AO2DZUlvvunVnXf6tXChR5LUtaulq66K6swzY9rCH9EBAAC4Gj0PAAAAADegdwEAAADgtLQDaPPnz2/NcQBoZ2xbmjHDo9tvz9B33yWDZ/n5ti69NKrzzosqGHR4gAAAAG2MngcAAACAG9C7AAAAAHAaN80DsJFPPvFo4sQMffFFMngWDNq66KKoLr44qtxchwcHAAAAAAAAAAAAAACAdoMAGoCUr74ydfvtGfrww+SvhsxMW+eeG9Nll0XVpQvTsgMAAAAAAAAAAAAAAKCptANoN9xwwzYdbxiGJk6cmO7lALSh+fNNTZzo19tv+yRJPp+tM8+M6coro+rRg+AZAADonOh5AAAAALgBvQsAAAAAp6UdQHv55ZdlGIZse+NwimEYTZ7btk1DA7RDZWXSXXdl6MknfUokDJmmrZNPjuvqq+u0ww4EzwAAQOdGzwMAAADADehdAAAAADgt7QDaCSecsFHj0iAUCmndunWaO3eu4vG4zjnnHA0YMCDtQQJoXbGY9OSTPt11V4YqKpI/x7/6VUw33RTVoEGWw6MDAABoH+h5AAAAALgBvQsAAAAAp6UdQLvjjju2eszatWv1hz/8Qa+88opee+21dC8FoBV98IFH48ZlaMECjyRp550TmjChTgcdlHB4ZAAAAO0LPQ8AAAAAN6B3AQAAAOA0sy1P3qNHD91zzz2qrKzUpEmT2vJSALZi6VJDv/tdpk46KUsLFnhUWGjprrsimjEjRPgMAAAgTfQ8AAAAANyA3gUAAABAW0p7BrTm6tevnwYMGKD//Oc/bX0pAJtQXS3dc0+GHnrIp1jMkNdr67zzYrr66jrl5zs9OgAAAPej5wEAAADgBvQuAAAAANpKmwfQGpSWlm6vSwGQZFnStGlejR+fofXrk5MdHnZYXH/5S50GD7YcHh0AAEDHQ88DAAAAwA3oXQAAAAC0tjYPoH399ddavHixevXq1daXAlDvf//z6OabMzRnjkeSNHCgpdtui+iIIxIyDIcHBwAA0MHQ8wAAAABwA3oXAAAAAG0l7QDaiy++uNl9tm0rGo1q2bJlevnll2UYhg499NB0LwWgmVauNPSXv2To5Zd9kqScHFtjx9bpvPNi8vsdHhwAAIDL0PMAAAAAcAN6FwAAAABOSzuAdvPNN8toxlRKtm2rqKhIF110UbqXArAVoZA0aZJf99/vVzhsyDBsnXFGTNdfH1XXrrbTwwMAAHAleh4AAAAAbkDvAgAAAMBpaQfQtjZFs9frVUFBgfbYYw+dffbZ6t69e7qXArAZti298opXt92WoVWrTEnS/vvHNX58nYYPtxweHQAAgLvR8wAAAABwA3oXAAAAAE5LO4A2c+bM1hwHgG307bembropQ59/nvwx7tvX0i231OnYY+Nqxh+7AQAAYCvoeQAAAAC4Ab0LAAAAAKelHUDb3pYtW6b7779fX331lUpLS9WjRw+NHj1aF154obKysrbpXMXFxZo8ebI+/fRTrV27VkVFRRo1apQuueQSFRYWbnS8ZVl64YUX9MILL2jRokUyTVMDBw7UCSecoFNOOUVer2u+jOgA1q6Vxo7165lnvLJtQ1lZti6/PKqLL44qEHB6dAAAAEgH/Q4AAAAAt3Cyf5Gk7777TpMnT9bcuXNVVVWlvn376oQTTtBZZ50ln8+30fE1NTV68MEH9e6772rVqlUKBoMaPny4zjjjDP3iF79I50sAAAAA4GcM27bt1j5pcXGx3n33XSUSCR188MEaOHBgi843Z84cnXXWWQqFQhoxYoR69uypr7/+WiUlJRoyZIieeeYZZWdnN+tcK1as0KmnnqqSkhINHjxY/fv31/fff68VK1aoR48eeu6559SjR48mr7nhhhv00ksvKTMzU3vuuae8Xq++/vprVVdXa99999Ujjzwiv9+f1ntLJCyVldWm9dqW8npNFRQEVV5eq3ic2zW2d4mE9Pjjft1+e4aqq5PbxoyJ6eab69SrV6v/GKMV8bPmPtTMnaib+1Az92luzQoLg/J4zO04su2vNXuejtzvSPQ82DbUzH2omTtRN/ehZu5DzdypI/Y8He3zmlmzZunSSy+VZVnaa6+9lJubqy+++EKVlZU68MAD9eCDDzYJodXU1Oi0007TggULVFRUpBEjRqimpkZfffWVEomELrroIl111VUt+po41fPwe8adqJv7UDP3oWbuRN3ch5q5T1v3Oy3qkObPn6/zzz9fd955Z2rbV199paOPPloTJ07UnXfeqeOOO06PPvpo2teIx+P64x//qFAopAkTJuiFF17Qfffdp/fff1+jRo3SggULdM899zT7fNdff71KSkp0ySWX6PXXX9d9992nd955R6eccorWrl2rP//5z02Of+WVV/TSSy+pd+/e+ve//63HHntMDz30kN59913tvPPO+uyzz/TUU0+l/f6A5vjhB1PHHpulG29Mhs/22COhN9+s1eTJEcJnAAAAbaitex76HQAAAACtoTN8XlNZWamxY8dKkh5++GE9/fTTuv/++/Xuu+9qt9120yeffLJR/zJx4kQtWLBAhx12mN5//3098MADevrpp/Xiiy8qOztbU6ZM0Zw5c9L+mgAAAABISjuAtmrVKp1xxhn6+OOPtWTJktT2W2+9VeFwWMFgUDvttJMsy9Ldd9+tb775Jq3rvPnmm1qxYoX2339/jRkzJrU9MzNTEydOVFZWlp5//nlVVlZu9VxffvmlvvzyS/Xr10+XXnpparvH49HNN9+sXr166YMPPtDixYtT+1555RVJ0tixY9WrV6/U9sLCQl1wwQWSpA8++CCt9wZsTSQi3XGHX4cfnqWvvvIoJ8fWAw9I774b0d57kyIGAABoS9uj56HfAQAAANBSneXzmqlTp6qmpkYnnHCCDjrooNT2/Px83X777ZKkxx9/XIlEQpIUiUT073//W6Zp6tZbb1UgEEi9ZpdddtFxxx0niZ4HAAAAaA1pB9CeeOIJ1dTUaPfdd9fll18uKfkXNgsXLpTP59P06dP1+uuva9y4cbJtW//617/Sus7MmTMlSUceeeRG+woKCrTvvvsqFovpo48+ava5Dj/8cJlm07fu8/k0atQoSdKMGTNS2x966CG99tprqX0bsqxkAMjj8TTz3QDN97//eXT44Vm6554MxeOGjj46pv/+N6yLLpJMd8zuDgAA4Grbo+eh3wEAAADQUp3l85qG1/zyl7/c6HwDBw7U4MGDVVJSkprRLDMzUx9++KFefvllde/efaPX0PMAAAAArSftGMunn36qjIwM3X///dp1110lSR9++KEkab/99tOOO+4oSTrttNNUUFCgr776Kq3rLFy4UJI0ZMiQTe7faaedJCWbqeaea/Dgwc0+l9/v15AhQ5SZmdnk2CVLluif//ynJOnEE0/c6rWB5qqulq69NkO//nWWFi3yqFs3S48+GtaTT3K7TQAAgO1pe/Q89DsAAAAAWqqzfF6zaNGibX5NTk6Ohg4dutGxs2bN0quvviq/369jjz12q+MFAAAAsGXedF+4Zs0a9evXT4WFhaltn3zyiQzD0P7775/aZhiGevXqlWomttW6deskaZN/nSJJ3bp1a3JcW5/rmmuu0dKlSzVv3jxlZmbquuuu0/HHH7/VawPN8fbbHl13XabWrElmQ08/Pao//7lO+fnOjgsAAKAz2h49D/0OAAAAgJbqDJ/XVFZWKhKJtOj6y5cv15133qlFixbpp59+Us+ePTVhwoRUQA8AAABA+tIOoBmG0eR5XV2dZs+eLUnaZ599muyrrq6W15vepUKhkCRt9Bf5DRq2NxzXnHMFAoG0zlVTU6PXXnst9dw0TS1fvlw1NTXKzs7e6vU3x+t15n6KHo/ZZAnnFBcbuv56v159Nflz0r+/pXvvrdMhh1jacKJCauZO1M19qJk7UTf3oWbu09lqtj16ns7Q70j0PGg+auY+1MydqJv7UDP3oWbu5Na6dYbPaxqWfr9/o1t2Nvf6Cxcu1Pvvv99k24IFC3TAAQds9DXcVk70PG79fu3sqJv7UDP3oWbuRN3ch5q5T1vXLO0AWp8+fbRixQqFw2EFAgF9/PHHikajKigoSE3xLElLly7VypUrU1MfbyuPxyPLsrb6j3/b3vqtCT0ej6SNm7Hmnsvv9+uTTz5RIBDQd999pzvuuEPPPvusvv/+e02bNm2zTc+WmKahgoLgNr+uNeXmbrrBQ9uzbenxx6Wrr5YqKiSPRxo7Vvrzn83NNt4SNXMr6uY+1MydqJv7UDP36Sw12x49T0fvdyR6HqSHmrkPNXMn6uY+1Mx9qJk7ua1uneHzmoZ+pDlBsc1df++999ZXX32laDSqjz76SHfccYfuvPNOrV+/Xtdee+1Wz7s5Tvc8bvt+RRJ1cx9q5j7UzJ2om/tQM/dpq5qlHUDbe++9tWDBAt1444069thjdffdd8swDB155JGpY+bNm6cbbrhBtm3rkEMOSes6wWBQFRUVCofDm9zfMOXylsI6G55LUtrn8vv9KioqkiTtt99+evzxx3Xcccfp22+/1cyZM3XEEUdsdQw/Z1m2qqq2/tdAbcHjMZWbG1BVVViJhOXIGDqzZcsMXXVVhj78MNlo77ZbQv/4R1QjRliKRKT6b8cmqJk7UTf3oWbuRN3ch5q5T3Nrlpsb6BB/9bQ9ep6O3u9I9DzYNtTMfaiZO1E396Fm7kPN3MmtPU9n+Lym4fi6ujpZlrXJP5DZ2vXz8vJS68cff7x69+6tM844Q0899ZTOO+88denSZavj3hSneh5+z7gTdXMfauY+1MydqJv7UDP3aet+J+0A2vnnn6+33npLb7/9tt5++23Ztq1gMKgLLrhAkvTpp5/qvPPOk23b6tWrl84999y0rtOtWzdVVFSopKREffv23Wj/unXrUsc151zz5s1TSUnJJvdvy7kkqaCgQIceeqhefPFFzZs3L+0PZOJxZ38YEwnL8TF0JvG4NGWKT3/9a4bCYUOBgK1rr63ThRfG5PUm928NNXMn6uY+1MydqJv7UDP36Sw12x49T2fodyR6Hmw7auY+1MydqJv7UDP3oWbu5La6dYbPa7Kzs5Wdna2amhqVlJSoe/fuLbq+JO21117q27evli9froULF2r//fdv1us2xcnvF7d9vyKJurkPNXMfauZO1M19qJn7tFXN0v4Tne7du+u5557T0Ucfrf79++uwww7T1KlT1adPH0nSjjvuKNM0NWrUKD333HMqLCxM6zpDhgyRJC1evHiT+xu2NxzXmueqq6vTnXfeqSuuuEJ1dXWbfI3f75ckxZuTGkKn9913po46Kku33ZapcNjQwQfH9cEHtbrkkmT4DAAAAO3H9uh56HcAAAAAtFRn+LxGkgYPHrxNr1myZIluu+023XXXXZsdBz0PAAAA0DpaNEd03759de+99+qtt97SAw88oKFDh6b29e7dW5988okmT56srl27pn2NQw89VJL0zjvvbLSvvLxcn332mXw+nw488MBmn+u9996TZTVN88ViMc2YMUOSdNhhh0mSMjIy9Prrr+vtt9/WrFmzNjpfNBrVp59+KkkaPnz4NrwrdDbhsHTbbX798pdZ+u47j/Lzbf3jH2G9+GJY/fvbTg8PAAAAm9HWPQ/9DgAAAIDW0NE/r9na9ZcsWaKFCxeqsLBQu+22myTJMAxNnTpVTz755CZnWlu+fLmWLVsmj8ejYcOGbXXMAAAAADavRQG0n6usrNTq1atVWVkpScrPz2/xOY888kj16tVLH3/8saZOnZraHolEdNNNNykUCmnMmDEqKipK7YvFYlqyZImWLFmiWCyW2r7HHnto+PDhWrJkie655x7ZdjL4k0gkNGHCBK1Zs0aHHHKIdt5559RrTj/9dEnSxIkT9dNPP6W2h0Ih3Xzzzfrxxx+10047adSoUS1+r+iYPv7Yo0MPDWrSpAwlEoaOPz6mjz6q1amnxmUYTo8OAAAA26K1ex76HQAAAABtoSN+XnPiiScqOztb06dPTwXUJKmiokI33nijJOncc8+Vz+eTJA0YMEAHHHCA4vG4rrvuOtXU1KRes3LlSl155ZVKJBIaM2ZM2rPCAQAAAEgy7IZ/1adp1apVmjJlimbOnKmysrLU9tzcXB166KG69NJLtcMOO7RokJ999pkuuOACRSIRDRs2TH369NHs2bO1bt067bLLLnr66aeVnZ2dOn7lypU6/PDDJUkzZsxITTMtSYsWLdIZZ5yhiooKDRgwQIMGDdIPP/yg5cuXq3fv3nr22WfVvXv31PGxWEyXXXaZZs2aJZ/Ppz333FN+v19z585VWVmZevfurccff1w77rhjWu8tkbBUVlab5lemZbxeUwUFQZWX13JP3jZQUSHdemuGpk5NTuHds6elO++M6OijE2mfk5q5E3VzH2rmTtTNfaiZ+zS3ZoWFQXk8rfq3Lo5q656nI/c7Ej0Ptg01cx9q5k7UzX2omftQM3dye8/T0T+vkaTXX39d1157rWzb1siRI9WlSxd98cUXqqio0MEHH6wHHnggFUCTpLVr1+rMM8/U8uXLlZ+fr5EjR6q2tlZz5sxRJBLRgQceqMmTJyszMzPtr4lTPQ+/Z9yJurkPNXMfauZO1M19qJn7tHW/06IA2ueff65LL71U1dXV2tRpDMNQMBjUfffdpwMOOCDdy0iSFi5cqEmTJunzzz9XKBRSnz59dNRRR+m8885r0sxIW25opGQTNmnSJH300UeqrKxUjx49dOihh+qiiy5q8pc5DSzL0vPPP6/p06dr0aJFsixLO+ywg4488kidc845ys3NTft98WFMx/Teex5ddVWm1q1L/lCefXZUN99cpxZ8q0iiZm5F3dyHmrkTdXMfauY+bv8wJh3bq+fpqP2ORM+DbUPN3IeauRN1cx9q5j7UzJ3c3PN0ls9rJOnLL7/Ugw8+qG+++UbxeFx9+/bViSeeqNNOO01+v3+j46urq/Xwww/r3Xff1cqVK+X3+zV48GD99re/1W9/+1uZZstqSQAN24K6uQ81cx9q5k7UzX2omfu02wBaSUmJjj32WFVWVmrw4ME688wzNWzYMGVnZ6uyslJz587VM888o0WLFik/P1+vv/66unbtms6lOjQ+jOlYwuHkrGePPZZscgcNSuhvf6vTfvulP+vZhqiZO1E396Fm7kTd3IeauY+bP4xJBz1P66DnwbagZu5DzdyJurkPNXMfauZObu156F2cRQAN24K6uQ81cx9q5k7UzX2omfu0db/jTXdgjz32mCorKzVq1Cj94x//aDKlsSQNHz5cY8aM0eWXX64PPvhAzz77rC6//PJ0Lwe0e3PnmrrookwtXOiRJF14YVQ33VSnFszcDQAAAAfR8wAAAABwA3oXAAAAAE5L+090/vOf/8jr9Wr8+PEbNTMNfD6fxo8fL4/Ho/fffz/tQQLtmWVJDzzg09FHZ2nhQo+6dbM0bVpIf/kL4TMAAAA3o+cBAAAA4Ab0LgAAAACclvYMaKtXr9bgwYNVWFi4xeO6dOmiwYMH66effkr3UkC7tXatocsuy9R//pP8UTr66JjuuadORUVp3dkWAAAA7Qg9DwAAAAA3oHcBAAAA4LS0A2iGYSgWizXr2FgsJsvinq/oWN56y6s//jFDZWWmAgFbt91Wp9/9LibDcHpkAAAAaA30PAAAAADcgN4FAAAAgNPSvgVnv379tHTpUq1atWqLx61cuVJLlizRjjvumO6lgHaltla6+uoMnX12QGVlpnbdNaH33gvprLMInwEAAHQk9DwAAAAA3IDeBQAAAIDT0g6gHX744UokErrmmmtUXV29yWOqq6s1duxY2batww8/PO1BAu3FnDmmjjwyS08/7Zck/eEPUf373yENHsxfjAEAAHQ09DwAAAAA3IDeBQAAAIDT0r4F5+9+9zs999xzmj17tkaPHq3f/OY3GjZsmHJyclRdXa158+bp5Zdf1vr169WtWzedddZZrTluYLuyLGnyZJ9uvz1DsZihHj0s/fOfER16aMLpoQEAAKCN0PMAAAAAcAN6FwAAAABOSzuAlpubq0ceeUS///3vVVJSokceeWSjY2zbVvfu3TVlyhTl5ua2aKCAU1avNnTZZZn66KPkj8uvfhXTPfdEVFjo8MAAAADQpuh5AAAAALgBvQsAAAAAp6UdQJOkIUOG6O2339bUqVM1a9YsLV26VLW1tQoGg+rfv79GjRqlU089VTk5Oa01XmC7ev11r66+OlMVFYaysmyNH1+n00+PyTCcHhkAAAC2B3oeAAAAAG5A7wIAAADASS0KoElSMBjUBRdcoAsuuKA1xgO0CzU10rhxGZo61S9J2m23hKZMCWvgQNvhkQEAAGB7o+cBAAAA4Ab0LgAAAACcYrbmyUKhkIqLixWNRlvztMB2NXu2qSOOCGrqVL8Mw9bll9fpzTdDhM8AAABAzwMAAADAFehdAAAAAGxPLZ4BbdWqVXr44Yc1Y8YMrV+/PrV9hx120NFHH61zzjlH+fn5Lb0M0OYSCWnSJL/uvNOveNxQr16W7r8/ogMPTDg9NAAAADiIngcAAACAG9C7AAAAAHBKi2ZAe+utt3TMMcfoueeeU0lJiWzbTj1++uknPfTQQzrmmGP05ZdfttZ4gTaxcqWhE08MaMKEDMXjho47LqZZs2oJnwEAAHRy9DwAAAAA3IDeBQAAAICT0p4B7YcfftC1116reDyukSNH6uSTT9bQoUOVlZWl6upq/fDDD5o2bZrmzp2ryy67TK+88oq6d+/emmMHWsWrr3o1dmymKisNZWXZuuOOiE4+OS7DcHpkAAAAcBI9DwAAAAA3oHcBAAAA4LS0Z0B7+OGHFY/Hdcopp+jZZ5/VCSecoKFDh2qHHXbQsGHDNGbMGL3wwgv6zW9+o/Lycj322GOtOW6gxaJR6frrM3T++QFVVhraY4+EZs6s1SmnED4DAAAAPQ8AAAAAd6B3AQAAAOC0tGdA+/rrr5Wbm6sbb7xxs8cYhqFx48bpnXfe0axZs3TDDTekezmgVRUXGzrvvEx9/nnyR+DKK+t0zTVR+XwODwwAAHR8iYSMUK0UCssI1coIhWREwjLCYRnhkBSJJLeFw6ntCjfsTx5jRCJS/dIIh2SEwlJkg2MiYdlZWaqc9pLiI/d0+h27Fj0PAAAAADegdwEAAADgtLQDaOXl5Ro8eLD8fv8Wj8vKytLAgQO1cOHCdC8FtKrPPzd13nkBFRebysmxNXlyWEcdlXB6WAAAoD2JRpPhsNqGR01y2RAYC4WkUK2MDUNkoVB9GCyU2qbwhvtrk+Gwurrt9ja257U6InoeAAAAAG5A7wIAAADAaWkH0Hr37q0VK1YoHo/L693yadauXasePXqkeymgVdi29PjjPo0bl6FYzNCQIQk9+WRYAwbYTg8NAAC0RDQqo6ZaRk2NjOr6ZUNgrLYmGf76eYgstX8z67FYmw/bNgzZWUEpEJCdlSU7EEg+MgPJbZn1z7OyZGdmSoGs1P6G7crMlL3BdmUFks8zM2Xn58vOzmnz99GR0fMAAAAAcAN6FwAAAABOSzuAdtJJJ+mOO+7Q3//+d40dO3azx02bNk0lJSW68sor070U0GLhsHTddZmaNi15j81f/zqmv/89ouxshwcGAEBnZNvJ20yGa6T1CXlWFsuorEoGx5oEyaqTgbD652bDvtSj/jXRaNsN1e+XHQzKDmYng2DBYDLglZWVDI81BMeygqltqdBYsGF/4/H2Bs+VmSkZRpuNHS1HzwMAAADADehdAAAAADgt7QDa2Wefrfnz5+vRRx/VypUrddZZZ2n48OGpv65ZsmSJXnzxRT399NMaPHiwjjzySK1YsWKj8/Tt2zf90QPNsGKFoXPPDejbbz0yTVs331ynSy6J8XkvAADpsKxkMKy6WkZVlYyqKpnVlU2eGzVVMhvWq6tS+8yqyuRrq6qazDCW20pDswOBZFAsO1tWdo4UDDaGx36+npW16e0bbssKSj5fK40ObkTPAwAAAMAN6F0AAAAAOC3tANo+++yTWn/nnXf0zjvvyDAMBQIB1dXVKZFIpPYvWrRIxx577EbnMAxD33//fbpDALbqww89uuCCTJWVmSostPTggxEdemhi6y8EAKCjagiQVVbKqKyUWVmRXK+qlFlRvsF6RZOlUVnZOCuZ3Yq3r87JkVUfGLOzs2Vn5yRDYDkbPM/OlpWTs9l9dk5yu7ZymxFgW9HzAAAAAHADehcAAAAATkv7U7qqqqqNttm2rdra2mafw27NDy+BDdi2dP/9Po0fnyHLMjRiREKPPx5W3758zwEAOgDbTs4sVl6eDI2Vl8ssL0suKytkNITHKitl1AfMkkGziuTsY5bV8iH4fLJzc2Vn58jKzUuu5+Qmw2C5ubJyc2Vn5ya31z+sDZ/n5MiTn6eCLjmqLK9VPN7yMQGtjZ4HAAAAgBvQuwAAAABwWtoBtBkzZrTmOIBWU1MjXXllpl57LXnLrJNPjumuuyIKBBweGAAAP2dZjUGyhgBZQ6CsolxGRbnMsrLksrz+ef1+I9GyGT1tv192Xr6s/HzZuXmy8/I2WM9Phsry82Xl5aX2bxgiU2amWnw/a9Ns2euBNkbPAwAAAMAN6F0AAAAAOC3tAFrv3r1bcxxAq1i61NDZZwc0f75HXq+t8ePrdM45sRZ/Pg4AwFY1zEpWWiqzLPlIrpfVr6+XWb/PaNhfUdGi2cjsQEBWQaHs/AJZBQXJZX6+7Lz8ZKCsftm43rhdmZmt996BDoqeBwAAAIAb0LsAAAAAcFraAbQ333xTxxxzTLOOLS0t1U033aQpU6akezlgq95916M//CGgqipD3bpZevTRiPbdt2WzwwAAOrFoVGbpepnrS1KhMqOsVOb69fXryWCZWbpBoCwWS+tSdlZQVkFBMkyWCpIVyC7YYFm/L/U8L19M7wm0LXoeAAAAAG5A7wIAAADAaWkH0K6++mp9+umnGjdunDK3MIPGzJkzNW7cOJWVlaV7KWCLLEu6+26/7r47Q5K0994JPfZYWN272w6PDADQrti2jJpqGSUlMktKZK4vkVmyLrlcn9xmbLitoiK9y2QFZXXpIquwi+zCQlldimR16SK7MLnN6lIku0sXWQWF9bOX5UsZGa36VgG0DnoeAAAAAG5A7wIAAADAaWkH0AzD0EsvvaTZs2frnnvu0dChQ5vsD4fDmjhxol588UXZtq0ePXq0eLDAz1VWSpdcEtC77ya/lc89N6rbbquT3+/wwAAA24dty6gol1lcLO/6dVK4ShnLVihj3ToZPwuXmetLZEQi23Z6jycZHCsqSgbJGkJl9dsaQmV2feDMKuzCrGRAB0LPAwAAAMAN6F0AAAAAOC3tANrjjz+u6667TkuXLtXJJ5+sa665RmeccYYk6dtvv9W1116r5cuXy7ZtnXjiibrhhhtabdCAJP3wg6mzzw5o2TJTGRm2/vrXiE45Je70sAAArSGRSAbHitfWP4qbrq9rWBbLiEabvDRrK6e2s4KyunaVVdQ1uezaLRkw69pNdlHD8+R+u6BAMs22e58A2jV6HgAAAABuQO8CAAAAwGlpB9D2228/vfbaaxo3bpzeffddTZgwQZ9++qkGDx6sRx55RPF4XD179tRf/vIXHXTQQa05ZkCvvurVFVdkKhQy1KePpccfD2u33SynhwUA2JpoVObaNU1DZes2DJglQ2Xm+hIZVvN/r1sFBbK7dZenV09FC7oo3qVIdkOQrCFgVh8qUzDYhm8QQEdCzwMAAADADehdAAAAADgt7QCaJOXl5em+++7T9OnTNXHiRM2aNUuzZs2SYRg65ZRTNHbsWGVnZ7fWWAHF49L48RmaPDl5j82DD47roYci6tLFdnhkAADV1sqzZrXMNatlrl7VuL5mtczVq5PPS9Y1+3S2aSZDY917yOrevXHZrUfTbd26SxkZ8npNFRQEVVteq3icUDKA1kHPAwAAAMAN6F0AAAAAOKlFAbQGeXl5ys7OVm1trSTJMAx5PB55PJ7WOD0gSVq/3tCFF2bqo4+S37aXXlqnG2+Mytsq38UAgM2ybRkV5TLXrJFnzSqZqxuDZZ7Vq5Izmq1eLbOyonmn8/tTwbGm4bKGgFn986KuEv+WANBO0PMAAAAAcAN6FwAAAABOaFF0p6ysTLfeeqveffdd2batQYMG6aCDDtJTTz2lZ555Rh9++KEmTJigffbZp7XGi07qhx9MnX56QCtXmsrKsnXffRH9+tdxp4cFAB1DXZ3MVSvlWblCnpUrZK5YLs+qlTJXrkjNZGaEw806lRXMltWrl6yevWX17KlEar2XrF69lOjZW3aXLpJhtPGbAoDWQc8DAAAAwA3oXQAAAAA4Ke0A2htvvKEJEyaooqJCknTWWWfp6quvlt/v11FHHaVrrrlGK1as0Nlnn61TTjlF11xzjQKBQGuNG53Ixx97dPbZAVVVGerf39ITT4S1887cWg0AmsuoqpS5oj5ctnLD5fLk9nXFzTqPVVgoq2fvZKisR32grFdvWT16yurVW1avXrJzctv43QDA9kPPAwAAAMAN6F0AAAAAOM2wbdtO54VDhw6VJHXv3l133HGH9t9//yb7w+Gwxo8fr+nTp8swDPXu3Vvvv/9+y0fcwSQSlsrKah25ttdrqqAgqPLyWsXj7TPQ9eKLXl1xRaZiMUP77hvXU0+FVVDg9Kic44aaYWPUzX1cVTPbllFSIs+Kn+pnL6sPlq1cIc/K+lnMqiq3fppAQIk+fWX16atEnx1k9emTfN67jxI9e8nq0VNq5/9j0lV1gyRq5kbNrVlhYVAej7kdR9Y26HlaBz0PtgU1cx9q5k7UzX2omftQM3dya89D7+Isp3oefs+4E3VzH2rmPtTMnaib+1Az92nrfqdFt+AcPXq0brnlFuXl5W20LxAIaMKECTrssMM0btw4rVq1qiWXQidj29J99/k1YUKGJOnXv45p0qSIMjMdHhgAOCESkWfFcnl+Wibzpx/l+XGZPD/9mHoYodBWT2EVFtYHy/oq0adPY9Csb18levfltpgAsBn0PAAAAADcgN4FAAAAgJPSDqDdcccdOuGEE7Z63BFHHKHdd99dN910U7qXQicTj0s33JChJ5/0S5IuuiiqW26pk9l+/qAMAFpXwyxmPzUNlpkNQbM1q7f8csOQ1bNXfaisr6y+OyjRp68SffvK6t1Xid59pOzs7fRmAKDjoOcBAAAA4Ab0LgAAAACclnYArTnNTIOioiI9+OCD6V4KnUhtrXThhQG9+65XhmFr/Pg6nX9+zOlhAUDLxWLyLP9RnmVL62cx+/Fns5hteZp+K5gtq19/JXbsp0TDcsd+svr1U6LPDpLfv53eCAB0HvQ8AAAAANyA3gUAAACA01p0C87m+uijj1RaWrpNTRA6n3XrDJ15ZkCzZ3uUmWlr8uSIjj027vSwAKD5LEvm2jXyLFnc+Fhav/zpRxmJxGZfahuGrN59GoNlTYJm/WUXFnKLTABox+h5AAAAALgBvQsAAACAttCsANo+++yjkSNHbvavYr744gvl5ORo6NChm9z/wAMPaPbs2TQ02KwlSwydfHKWli83VVho6amnwtpnH8vpYQHAJhnlZT8LmC2Rd8lieZYtkREKbfZ1dlaWEv0GNJnBLNGvPmzWZwcpI2M7vgsAwIboeQAAAAC4Ab0LAAAAgPaoWQG0qqoq1dTUbHb/mWeeqb322kv/+te/Wm1g6Dw+/9zU734XUFmZqR13tDRtWkgDB9pODwtAZ1dbK8/c72QuXJgMlzU8li2RWVa22ZfZXm8yWDZwJyUG7JRc1j+sHj2ZxQwA2il6HgAAAABuQO8CAAAAoD1qtVtw2jaBIWy7N97w6g9/yFQkYmjkyIT+9a+wunblewnA9mNUV8mzYL68CxfIs2C+PAvny7tgvrRyhXK38LpEr94bhMwGNgbN+u4o+XzbbfwAgO2HngcAAACAG9C7AAAAANjeWi2ABmyrhx7yady4DNm2oaOOimvKlLCCQadHBaCjMirK5Vm4UN4FP6RCZp6FC+RZvWqzr7HyC5rMYBZvCJz1HyB+YQEAAAAAAAAAAAAAQAANDrAs6c9/ztCDD/olSWefHdXtt9fJ43F4YAA6BKOstHE2swU/yLtggTwL58tTvHazr0n06KnE4KGKDxmixOChsoftoty9R6rSE1A8bm3H0QMAAAAAAAAAAAAA4C4E0LBdRSLSJZdk6vXXk7enu/nmOl12WVSG4fDAALiOUVUp7/fz5Pl+nrwL5ydvo7lgvsz1JZt9TaJXbyWGDFV88NANlkNk5+U3Oc7rNaWCoFRe28bvAgAAAAAAAAAAAAAAdyOAhu2mrEz63e8C+vxzr3w+W/fdF9Fvfxt3elgA2jvLkvnjMnnnzZV33nfyfj9X3nlz5VmxfLMvSfTdQfHBydnM4kN3VmLwECUGD5Gdk7sdBw4AAAAAAAAAAAAAQMdHAA3bxU8/GTr11IAWL/YoN9fWk0+GdeCBCaeHBaC9qamR94d59WGzZODM88P3MmtrNnl4oncfxXfeRYmhuyQDZ0OGKj5oiJSdvZ0HDgAAAAAAAAAAAABA50QADW3um29MnXZaQOvXm+rd29Kzz4Y1dKjl9LAAOMm2Za5YvsGsZvPkmfedPD8uk2HbGx+ekaH4kJ0VH7arEsN2VXzYcMV3GSa7oNCBwQMAAAAAAAAAAAAAgAYE0NCm3nvPo/PPDygUMjRsWELPPhtWjx4bh0sAdGCxmLzzv5f322+SM5rNmyvv9/NkVlVu8vBE9x6NIbP6ZWLgTpKX/2QBAAAAAAAAAAAAANDeNPvT/NLSUr3yyitp7S8tLd3WcaEDeOopn669NkOWZejQQ+N67LGwcnKcHhWANhWPy7Nwgbzfzpbvm6/l/Xa2vPPmyqir2+hQ2+dTYvDQVMgsPmxXxXfZVXZRkQMDBwCAngcAAACAO9C7AAAAAGhvmh1A++mnn3TDDTdscp9hGFvcj87FtqXbb/fr73/PkCSdckpMf/tbRD6fwwMD0LosS54li+WtD5r5Zn8t79w5MsLhjQ/Ny1d8xO6KDx+h+C7DkrOaDRos+f0ODBwAgE2j5wEAAADgBvQuAAAAANqbZgfQbLtlt000DKNFr4c7xOPSlVdm6vnnk2mzsWPrdM01UVF+wOVsW+aypfJ9O1veb2YnZzb79huZtTUbHWpl5yi+2+6K7zZS8d1HKrbbSFn9+otfBACA9o6eBwAAAIAb0LsAAAAAaG+aFUCbP39+W48DHUAsJl14YabeeMMnj8fW3/4W0WmnxZ0eFoBtZdsyVyyvv41mfeBszjcyKys2PjQQUHz4bortPjIZOBu5pxIDBkqmuf3HDQBAC9DzAAAAAHADehcAAAAA7VGzZ0ADtqSuTjr//Ey9/bZPfr+tRx8N66ijEk4PC0BzhELyffO1vF98Jt+Xn8v35ecyS0s3OszOyFB81+GK7zZSsd33UHy3kcnbaHr5TwkAAAAAAAAAAAAAAJ0VqQG0WCQinXtuQO+/71VGhq0nnwxr1CjCZ0B7Za5aKd8XnyUDZ198Ju/c72TEm85WaHu9iu+ya+o2mvHdRyo+ZGfJ73do1AAAAAAAAAAAAAAAoD0igIYWCYWks84K6D//8SoQsPXUU2EdeijhM6DdiMXknTunPnD2uXxffCbP6lUbHZbo0VPxvfdVbO99FNtrH8V3HSFlZjowYAAAAAAAAAAAAAAA4CYE0JC22lrpzDMD+vhjr7KybD3zTFgHHED4DHCSsX598jaaDTOcffO1jEikyTG2x6P4riMU23ufZOhsr31k9ekrGYZDowYAAAAAAAAAAAAAAG5FAA1pqamRTjstoP/9z6vsbFvPPhvWvvsSPgO2K8uSZ8F8+RpupfnFZ/IuXbLxYQUFyVnN9t5Xsb33VWz3PaRg0IEBAwAAAAAAAAAAAACAjoYAGrZZVZV0yilZ+vJLj3JzbU2bFtJee1lODwvo+BIJeed9J98nH8v36Ufy/fdTmVWVGx0WHzI0GTTbe1/F99pHiYE7SabpwIABAAAAAAAAAAAAAEBHRwAN26SiQjr55CzNnu1Rfr6t558PaffdCZ8BbcKy5Jk3V/5PPpTv04+TgbPKiiaH2FlBxfbcq/F2mnvuLTu/wJnxAgAAAAAAAAAAAACATocAGpqtrEz6v//L0nffeVRYaOmFF8IaPpzwGdBqLEue7+fJ/+lH8n38kXz/+0RmRUXTQ7JzFNv/AMUOOFixAw9SfNcRkpdf5QAAAAAAAAAAAAAAwBmkFtAsJSWGxowJ6IcfPCoqsvTii2HtsgvhM6BFLEueH75PBs4++Vi+/34ss7y86SHZOYrtt39j4Gz4bgTOAAAAAAAAAAAAAABAu0GKAVtVXJwMny1Y4FG3bpamTw9ryBDCZ8A2qw+c+T75UP6GwFlZWdNDgtmK77ufogcekgycjdidwBkAAAAAAAAAAAAAAGi3SDVgi9asMXTiiVlassRUz56WXnoppIEDbaeHBbiGuXSJMj6aJf3vE+V98IHM0tIm++2soGI/D5z5fM4MFgAAAAAAAAAAAAAAYBsRQMNmrVyZDJ/9+KOpPn0sTZ8eUv/+hM+ALaqpkf+Tj+Sf+Z78s2bI8+Oy1C5Tkp2Vpdg++yl64MGKHXiw4ruNJHAGAAAAAAAAAAAAAABciwAaNmn58mT4bPlyUzvskJz5bIcdCJ8BG7FteebNlX/m+/J/MEO+z/4rIxZr3O3zKb7vfvIdfZSq9txPdcN3l/x+58YLAAAAAAAAAAAAAADQigigYSPLliXDZ6tWmerXz9LLL4fUuzfhM6CBUVoq/39myj9rhnyzZsizrrjJ/sSO/RQddYSio45U7MCD5MnPU0FBUInyWiluOTRqAAAAAAAAAAAAAACA1kcADU0sXpwMn61da2qnnRKaPj2snj0Jn6GTi8fl/epL+Wclb6vp/Wa2DLvx58LOCip60MGKHna4oocdIWvAQAcHCwAAAAAAAAAAAAAAsP0QQEPKggWmfvvbgNatMzVkSEIvvhhW9+6Ez9A5mStXyD9rRnKWsw8/kFlV2WR/fJddk4GzUUcots9+UkaGQyMFAAAAAAAAAAAAAABwDgE0SJK+/97UmDEBrV9vapddkuGzoiLCZ+hEolH5Pv1Y/hnvyT/rfXkXLmiy2yooUPTQw5K31fzFKFk9ejo0UAAAAAAAAAAAAAAAgPaDABo0Z46pE0/MUFmZqeHDE3rhhZAKC50eFdD2jKrKZODs7Tflf/89mdVVqX22aSq+x16KjjpC0cMOV3z3PSSPx8HRAgAAAAAAAAAAAAAAtD8E0Dq5L76Qjj8+U5WVhkaOTOi550LKz3d6VEDbMdeslv/tt5Tx7zfk++QjGbFYap/VtZvqjjwqeVvNQ34hO7/AwZECAAAAAAAAAAAAAAC0f64JoC1btkz333+/vvrqK5WWlqpHjx4aPXq0LrzwQmVlZW3TuYqLizV58mR9+umnWrt2rYqKijRq1ChdcsklKtzE1F/xeFzTpk3Ta6+9psWLFysajap79+465JBDdOGFF6pHjx6t9Ta3qy++MPV//ydVVRnaa6+Epk0LKTfX6VEBrcy25Zn/gzLeflP+f78h3zezm+yO7zRI0dHHqu7oXym+596SaTo0UAAA0JnR7wAAAABwCyf7F0n67rvvNHnyZM2dO1dVVVXq27evTjjhBJ111lny+XwbHV9WVqZHHnlEH3zwgVauXCnTNLXjjjtq9OjROvvss5WZmZnW1wEAAABAI8O2bdvpQWzNnDlzdNZZZykUCmnEiBHq2bOnvv76a5WUlGjIkCF65plnlJ2d3axzrVixQqeeeqpKSko0ePBg9e/fX99//71WrFihHj166LnnnmvyAUs0GtXvf/97ffbZZ8rMzNSIESMUDAY1d+5clZSUKD8/X08++aSGDh2a1ntLJCyVldWm9dqWOuSQoObPN7X//glNnRpSM7+EcJDXa6qgIKjy8lrF45bTw2m/Egn5Pv+f/P9+UxlvvynPj8tSu2zDUHzPvVV39DGKjj5GiUGD23w41M19qJk7UTf3oWbu09yaFRYG5fEQ6m6ujtzvSM72PPyecR9q5j7UzJ2om/tQM/ehZu5Ez7N1TvYvkjRr1ixdeumlsixLe+21l3Jzc/XFF1+osrJSBx54oB588MEmIbQVK1bo9NNPV3FxsQoLCzV8+HBFo1F9++23CoVCGjZsmJ566qlmj3lTnOp5+D3jTtTNfaiZ+1Azd6Ju7kPN3Ket+512PwNaPB7XH//4R4VCIU2YMEFjxoyRJEUiEV111VWaOXOm7rnnHv3pT39q1vmuv/56lZSU6JJLLtHll18uSUokErrttts0bdo0/fnPf9aDDz6YOv6RRx7RZ599pkGDBmnKlCnq06ePJKmurk633HKLXnrpJY0dO1avv/66DMNo5Xffts4+O6blyzN0ww0RZWQ4PRqghUIh+T+YmZzp7L23ZZaWpnbZGRmKHvILRY8+RnW/HC27e3cHBwoAANCIfgcAAACAWzjdv1RWVmrs2LGSpIcfflgHHXSQJKmiokIXXHCBPvnkEz311FM677zzUq8ZN26ciouLNXr0aE2cODE1Q1txcbEuvvhizZs3T3fffbduueWWFn99AAAAgM6s3f+JzptvvqkVK1Zo//33TzUzkpSZmZlqFp5//nlVVlZu9VxffvmlvvzyS/Xr10+XXnpparvH49HNN9+sXr166YMPPtDixYtT+1588UVJ0p/+9KfUhzGSlJGRoVtvvVV5eXlatGiRvv/++9Z4u9vVBRfEdf/9UjDo9EiA9Bjr1yvj2X8p93enqGjn/so7+zRlTpsqs7RUVn6+Iv93iioffVrrf1imqqkvKHLm2YTPAABAu0K/AwAAAMAtnO5fpk6dqpqaGp1wwgmp8Jkk5efn6/bbb5ckPf7440okEpKklStX6r///a9ycnI0fvz4JrcH7d69eyp09sYbb8gFNwsCAAAA2rV2H0CbOXOmJOnII4/caF9BQYH23XdfxWIxffTRR80+1+GHHy7TbPrWfT6fRo0aJUmaMWOGpORf7fTu3VsDBw7U7rvvvtH5/H5/6kOa4uLi5r8pAGkz16xW4MH7lffro9Vl152Ue8UflPH2WzLCYSX67qDQBRer4qU3VDpviarvf0jR444X95cFAADtFf0OAAAAALdwsn/Z8DW//OUvNzrfwIEDNXjwYJWUlGjOnDmSpNLSUo0cOVIHHnjgJm+xOWDAAElSdXW1amu3/y00AQAAgI6k3d+Cc+HChZKkIUOGbHL/TjvtpFmzZmn+/Pk69thjm3WuwYMHb/ZckjR//nxJyb/aefrppzd7vpqaGi1ZskSS1LNnzy1eG0D6jPXrlfHGq8p4Zbp8//1ExgZ/jRYbvpuio49R3dHHKDFsV4lbQwEAABeh3wEAAADgFk72L5K0aNGirb5m4cKFmj9/vkaOHKnddttN06ZN2+wYGoJqubm5mwyoAQAAAGi+dh9AW7dunaTkdMib0q1btybHba9zSdKkSZMUiUTUv39/DR06tFmvAdA8RlWl/G+9ocyXX5Tvww9k1E+bLkmxffZT3fG/Ud3Rx8jqu4ODowQAAGgZ+h0AAAAAbuFk/1JZWalIJNJq108kErr33nslSaNHj97q8QAAAAC2rN0H0EKhkKTkX+dvSsP2huOac65AINDic7366qt64oknZJqmbr75ZhktmHXJ63XmTqgej9lkifavw9csFJLv7bfkf/lF+d57V0Y0mtoV332kor8Zo+hvTpTdp6+k5D2E3fCV6PB164ComTtRN/ehZu5DzVpfZ+h3JHoeNB81cx9q5k7UzX2omftQM3eiblvmZP/SsPT7/RvdsnNbr2/btm699VbNmTNHhYWFuvTSS7c63q1xoufh+9WdqJv7UDP3oWbuRN3ch5q5T1vXrN0H0DwejyzL2uoHHvYGt+Tb0rkktfhczz//vG655RbZtq2xY8fqoIMO2uq1N8c0DRUUBNN+fWvIzd10g4f2q0PVrK5Oeucdado06bXXpNraxn077yydeqp08snyDh4sr6Qsxwbach2qbp0ENXMn6uY+1Mx9qFnr6ej9jkTPg/RQM/ehZu5E3dyHmrkPNXMn6rZpTvYvDaGz5vxxzJauH4/HNW7cOL300kvKyMjQfffdl5o5LV1O9zx8v7oTdXMfauY+1MydqJv7UDP3aauatfsAWjAYVEVFhcLh8Cb3N0y5vLm/kvn5uSSlfS7LsnTvvffqoYcekiRdffXV+v3vf7/V626JZdmqqtr6XwO1BY/HVG5uQFVVYSUSliNjwLbpMDWLx+X96EP5X3pRvjdek1lZkdqV2LGfoieOUfS3Y2TtPExq+B8K5bWbPpcLdJi6dSLUzJ2om/tQM/dpbs1ycwP81VMzdfR+J3leeh40HzVzH2rmTtTNfaiZ+1Azd6Ln2TIn+5eG4+vq6mRZ1iZnQdva9auqqnTVVVfp448/VlZWliZPnqy99957q2PdGqd6Hn7PuBN1cx9q5j7UzJ2om/tQM/dp636n3QfQunXrpoqKCpWUlKhv374b7V+3bl3quOaca968eSopKdnk/i2dKxQK6eqrr9bMmTPl8/k0fvx4nXDCCdvwTjYvHnf2hzGRsBwfA7aNK2tmWfJ+/pkyX35BGa+/InP9+tSuRI+eqjv+RNX95reKj9yzMXSWsCVt/a/l3MKVdevkqJk7UTf3oWbuQ81aT2fodyR6Hmw7auY+1MydqJv7UDP3oWbuRN02zcn+JTs7W9nZ2aqpqVFJSYm6d+++Tdf/6aefdOGFF2rZsmXq1q2bpkyZomHDhm11nM3l5PcL36/uRN3ch5q5DzVzJ+rmPtTMfdqqZu3+T3SGDBkiSVq8ePEm9zdsbziuLc5VVlam008/XTNnzlR+fr4ef/zxVv0wBuiwbFveb75W8M83qXCPYSr49VEKPP6IzPXrZRUWKnzWeap45S2VffODav9yu+J77NUYPgMAAOgE6HcAAAAAuIXT/cvgwYPTuv6cOXN00kknadmyZdpll130wgsvtGr4DAAAAIALAmiHHnqoJOmdd97ZaF95ebk+++wz+Xw+HXjggc0+13vvvSfLaprmi8VimjFjhiTpsMMOS22vra3VOeeco++//1477rijnn/++VaZkhnoyMzitQr88+8qOHAvFfzyF8p64J/yrF4lKydXkZNPU8W0l1T63SLV/PVexQ44SNrEdOkAAACdAf0OAAAAALdwun/Z0vWXLFmihQsXqrCwULvttltq+4IFC3TeeeepoqJCv/jFLzR16lT16NFjq+MDAAAAsG3aferjyCOPVK9evfTxxx9r6tSpqe2RSEQ33XSTQqGQxowZo6KiotS+WCymJUuWaMmSJYrFYqnte+yxh4YPH64lS5bonnvukW0nb+2XSCQ0YcIErVmzRocccoh23nnn1GvGjx+v+fPnq3v37vrXv/6lHXfccTu8a8CFYjH533pDuWeerMLdd1b2X/4k7+JFsgMBRY4/UZVPPKPSeYtV/c8pio06QvL5nB4xAACA4+h3AAAAALiF0/3LiSeeqOzsbE2fPj0VUJOkiooK3XjjjZKkc889V776//ccjUZ15ZVXqqqqSgcddJDuv/9+ZWVltc0XBwAAAOjkDLvhX/Xt2GeffaYLLrhAkUhEw4YNU58+fTR79mytW7dOu+yyi55++mllZ2enjl+5cqUOP/xwSdKMGTPUp0+f1L5FixbpjDPOUEVFhQYMGKBBgwbphx9+0PLly9W7d289++yz6t69uyRp6dKlOuaYY2RZloYNG6YBAwZsdoy/+93vNGLEiG1+b4mEpbKy2m1+XWvwek0VFARVXl7LPXldoj3WzLNgvjKfeVqZL0yTub4ktT22976KnHam6o7/jezsHAdH6Lz2WDdsGTVzJ+rmPtTMfZpbs8LCoDyedv+3Lu1GR+53JHoebBtq5j7UzJ2om/tQM/ehZu5Ez7N1TvUvDV5//XVde+21sm1bI0eOVJcuXfTFF1+ooqJCBx98sB544IFUAO3555/XuHHjJEmHHHKI8vLyNvu+br31VgWDwbS+Jk71PPyecSfq5j7UzH2omTtRN/ehZu7T1v2OtyWD21723XdfvfDCC5o0aZI+//xzLV68WH369NGYMWN03nnnNWlmtmbQoEF66aWXNGnSJH300UeaNWuWevTooTPPPFMXXXRRk7/M+fDDD1NTP8+bN0/z5s3b7HmPOOKItD+QAdzGqKpUxisvKfPZp+X76svUdqtrN0VOPk2RU89QYtBgB0cIAADgHvQ7AAAAANzCqf6lwXHHHaeePXvqwQcf1DfffKP58+erb9++uvjii3XaaaelwmeSNGvWrNT6hx9+uMWx3HjjjWkH0AAAAAC4ZAa0jozZALAtHK2Zbcv330+UOfUpZbzxqoxwOLnZ61X0yKMVOe1MRbm15ibxs+Y+1MydqJv7UDP3YTYApIOeB9uCmrkPNXMn6uY+1Mx9qJk70fMgHcyAhm1B3dyHmrkPNXMn6uY+1Mx9mAENgKPM1auU+dwzynz2X/L8uCy1PT54iCKn/U6RMSfL7tbNwRECAAAAAAAAAAAAAADAKQTQAGysrk7+d95S4Jmn5ftgpoz6WzNZ2Tmq+80YRU47Q/E99pIMw+GBAgAAAAAAAAAAAAAAwEkE0ACkeOZ+p8xnn1bmi8/JLC9PbY8ecJAip52pumN+LQWDDo4QAAAAAAAAAAAAAAAA7QkBNKCzq61V5vTnlfnU4/LN+Sa1OdGrtyInn6rIyafLGjDQufEBAAAAAAAAAAAAAACg3SKABnRS5o/LFHjsYWU++y+ZlRWSJNvnU93oYxU57QzFDh0leTzODhIAAAAAAAAAAAAAAADtGgE0oDOxbfk+mKnAow/K/947MmxbkpTo11/hc85X5KRTZXfp4vAgAQAAAAAAAAAAAAAA4BYE0IBOwKipVsZzzyjw6EPyLl6U2h497HCFf3+hoof/UjJNB0cIAAAAAAAAAAAAAAAANyKABnRgnsWLlPnYQ8qc9ozMmmpJkpWdo8ippytyzvlK7DTI4RECAAAAAAAAAAAAAADAzQigAR2NZcn//jsKPPKg/B/MTG2ODxqs8LkXqO7kU2Vn5zg4QAAAAAAAAAAAAAAAAHQUBNCADsKorFDmM/9S4LGH5PnpR0mSbRiK/vJohc+7ULFDD5MMw9lBAgAAAAAAAAAAAAAAoEMhgAa4nOeH7xV49CFlvjhNRigkSbLy8hU57UyFz/m9rH79HR4hAAAAAAAAAAAAAAAAOioCaIAbxePyv/mmAo8+KP/HHzZu3nkXhc+7UJHfniQFgw4OEAAAAAAAAAAAAAAAAJ0BATTARYyKcumhScqddL88K1dIkmzTVHT0sQr//kLFDjiI22wCAAAAAAAAAAAAAABguyGABriAWbxWgQcmKfDUY1JNjTySrMJCRc44W+Gzz5PVp6/TQwQAAAAAAAAAAAAAAEAnRAANaMfMZUuVNekfynxuqoxoNLlx+HDVXvAHhX59ohQIODtAAAAAAAAAAAAAAAAAdGoE0IB2yDP3O2X98x5lvPqyDMuSJMX22U+RP45VzkknKloRkuKWw6MEAAAAAAAAAAAAAABAZ0cADWhHvP/7r7Lu+5sy3n83ta3u8CMVvuJqxfY7QF6vKRmGgyMEAAAAAAAAAAAAAAAAGhFAA5xm2/LPfE+Bf9wj//8+TW4yTdX9+gSFLvujEsNHODxAAAAAAAAAAAAAAAAAYNMIoAFOSSSU8forCtx3r3xz50iSbL9fkZNPU/iSy5UYsJPDAwQAAAAAAAAAAAAAAAC2jAAasL3V1Snz+WcVmPR3eZctlSTZWUGFzzpX4YsukdWzl8MDBAAAAAAAAAAAAAAAAJqHABqwvdTUKPDU4wpMmSTP2jWSJKugQOHfX6TweRfILuzi8AABAAAAAAAAAAAAAACAbUMADWhjRlmpAg9PUeDRB2VWVEiSEj17KXzxpQqfcbaUne3o+AAAAAAAAAAAAAAAAIB0EUAD2oi5epUCD/xTgaefkBEKSZLiAwYqfNlViow5WcrIcHiEAAAAAAAAAAAAAAAAQMsQQANamVFcrOC9dynz6SdkxGKSpNjw3RS64o+KHvNryeNxeIQAAAAAAAAAAAAAAABA6yCABrQSo6JcWZP+ocDDD8gIhyVJ0QMOUujyPyp22OGSYTg8QgAAAAAAAAAAAAAAAKB1EUADWqqmRlmPTFFg0j9kVlVKkmJ77q3am29R7MCDHR4cAAAAAAAAAAAAAAAA0HYIoAHpqqtT5tOPK3jPX2WuL5EkxXceptob/6ToL49mxjMAAAAAAAAAAAAAAAB0eATQgG0VjyvjxecU/Ovt8qxYLklK9Ouv2utuUt1vxkim6fAAAQAAAAAAAAAAAAAAgO2DABrQXLYt/xuvKXjHX+RdtFCSlOjRU6Grr1PktDMln8/hAQIAAAAAAAAAAAAAAADbFwE0YGtsW74PZio48Tb5vp0tSbIKChS6/GqFzz1fCgQcHiAAAAAAAAAAAAAAAADgDAJowBZ4P/9MwYm3yv/px5IkK5it8EWXKHzxpbJz8xweHQAAAAAAAAAAAAAAAOAsAmjAJnjmzVXw9tuU8e7bkiQ7I0Phs3+v0BVXyy4qcnh0AAAAAAAAAAAAAAAAQPtAAA3YgLl0iYJ3TVDGy9Nl2LZsj0eRU89Q6OrrZPXu4/TwAAAAAAAAAAAAAAAAgHaFABogyVyzWll336nMZ56SkUhIkiInnKjQdTcpMXCQw6MDAAAAAAAAAAAAAAAA2icCaOjUjMoKZd17twKPPiijrk6SVHfEL1V7w5+UGD7C4dEBAAAAAAAAAAAAAAAA7RsBNHROiYQypz6l4O23ySwtlSRF9ztAtTf+WfH99nd4cAAAAAAAAAAAAAAAAIA7EEBDp+P97H/KvvEa+b77VpIUHzxEtbdOUHTUkZJhODw6AAAAAAAAAAAAAAAAwD0IoKHTMFevUvC2PynzpRckSVZunkLX3qDwOedLPp/DowMAAAAAAAAAAAAAAADchwAaOr5IRFkP/FNZ//ibjFBItmEocsbZqr1hnOyiIqdHBwAAAAAAAAAAAAAAALgWATR0XLYt/7/fVPafbpRn+Y+SpNg++6lm4l2Kj9jd0aEBAAAAAAAAAAAAAAAAHQEBNHRIngXzlX3zdfL/Z5YkKdGzl2r/dJvqTvw/yTAcHh0AAAAAAAAAAAAAAADQMRBAQ4diVFYo66+3K/DoQzISCdl+v0J/uFyhy/8oZWc7PTwAAAAAAAAAAAAAAAB0UpYl1dZKtbWGamqkmhpDNTWGamsb121b+vWvYyosdHq0zUcADR1DIqHMZ55WcOKtMktLJUl1o49Vza0TZPXr7/DgAAAAAAAAAAAAAAAA4EbRqFRdbai6OrmsqWlcTz5vCJQ1Bsk2FzALhZp31761aw1df320jd9Z6yGABtfzfvY/Zd90rXxzvpEkxQcPUc34OxX7xShnBwYAAAAAAAAAAAAAAABH1NVJVVWGqqoaw2INQbJkiOznQbKNg2XV1Ybq6poXGtsWpmkrO1vKzraVnW0rGFT90laXLrZOOinW6tdsSwTQ4FrmmtUK3jpOmS+9IEmycvMUuuZ6hc+9QPL5HB4dAAAAAAAAAAAAAAAA0pFISNXVDQEyIxUkq6xMhsOqqoz69eS2qqrk9uR68nWtHRwLBm3l5DQ8Gp83hMc2DJIlH8ljNgyXNYTOMjMlo/VzbY4hgAb3iUSUNWWSsv7+NxmhWtmGocgZZ6n2+nGyu3Z1enQAAAAAAAAAAAAAAACdXl2dVFGRDIVVVKh+aWxi2bivIVhWU9N66aycHFu5ucmwWHa2NgiR/fx5030bPg8GJY+n1YbU4RBAg3vYtvxvv6XsP90gz08/SpJie++rmol3Kb7bSGfHBgAAAAAAAAAAAAAA0MFYllRZKZWXG6lHVZWpujpp9Wqfyss3HzILh1seIsvMTIbHcnNt5eU1hsny8pIBsby8xnBZcl2p43NzkwEzgmNtjwAaXMH8cZlyrr1K/g9mSpISPXqq9k+3qe63J3WsOQkBAAAAAAAAAAAAAABamW1LtbWNQbKysmRQrKws+XzD9YZHRUUyXGZZm8tl+Ld6XcNIBsfy8mzl5ydDYfn5yUdyW+O+vLzGR05OMkiWkdGaXwW0FQJoaN8SCQUefkDBO8bLCIVk+/0KX3yZaq+4WsrOdnp0AAAAAAAAAAAAAAAA2104LJWVGSotbXxs+LxhfcNQWSyW/gQ/waCtwsJkUKywUOre3aOsrJhycy3l5elnobLGZU6OZJqt+MbRLhFAQ7vl+eF75fzxUvm++lKSFD3wYNX87R9KDNjJ4ZEBAAAAAAAAAAAAAAC0DstSalay5gTKSksNhULphcn8flsFBckwWUFBQ6CsYV2p9Q0f+flNZyLzek0VFARVXh5VPG61zhcBrkYADe1PNKqsf/xNWX+/W0YsJisnV7W3jFfkjLO43SYAAAAAAAAAAAAAAGj3IhFp/XpD69cbKilpWJobrDcuy8oMJRLbnofw+ZLhsS5dko+G9Z9v2zBMlpVF9AKtjwAa2hXv118q56pL5f3he0lS3VGjVXPXvbJ69nJ4ZAAAAAAAAAAAAAAAoLOybam6WiouNlPBsnXrmobJGkJm69cbqq7e9pRXbm5jaKyoqCFIZm0yZNalS/L2loTJ0B4QQEP7EAopeMd4BR6aLMOyZBUVqWbiX1V3/In8tgQAAAAAAAAAAAAAAG0iHk/OVFZcnAyUFReb9cumz9etMxSJbFt+wedLBsm6dm26LCqymmzr2jUZLPP72+hNAm2MABoc5/v4Q+Vcdak8P/0oSYqMOVk1f7lDdpcuzg4MAAAAAAAAAAAAAAC4Uk2N6oNj5gZhssbnDdtKSw3ZdvODZTk5DaExqz5MZm8UJmsImOXmMucOOgcCaHCMUVmh4G1/UuDpJyRJiV69VXP33xU94ihnBwYAAAAAAAAAAAAAANqleFwqKTG0Zo2hNWtMrV1raO3a5PqaNY3rNTXNT355PMngWLdutrp3t9Wtm6Xu3ZPbfv48K6sN3xzgUgTQ4Aj/228p+9qr5Fm7RpIUPuf3qr35Ftk5uQ6PDAAAAAAAAAAAAAAAbG+2LVVWSmvXNg2SJZdGantJiSHLal64LBhsGiDbMGDWrVvj88JCWx5PG79BoAMjgIbtyigpUfZN1yjzlZckSfEBA1Vz7yTF9j/Q4ZEBAAAA6GhsW6qtTT7icadHg+bweiW/n5q5CTVzJ+rmPtTMfahZ28vK4lZGAAAAblNVJa1caWr1akOrViWXK1eaWrPGVHGxtGpVlkKh5v0jz+tNBsd69LDVo4elnj2T6z17Wk2W2dlt/KYASCKAhu3FtpXx4nPKvvk6meXlsj0ehS+5QrVXXycFAk6PDgAAAEAHY9vS6NGZ+vxzSQo6PRxsM2rmPtTMnaib+1Az96FmbWWffeJ6/fUwITQAAIB2IhxWk2DZqlWmVq1q+nzrt8RM7s/PT4bKkkGyxjDZhkGzrl1tmWbbvy8AzUMADW3OXLlC2ddcqYwZ70mSYruOUM3fJyk+YndnBwYAAACgQ+PDSAAAAAAAAKDlLEsqLja0fPnPQ2WN66WlzUuDFRTY6t3bUu/etnr1Si779rU1ZEimsrNDKipKKCurjd8QgFZHAA1tx7KU+cSjCv7lzzJra2RnZKh27PUK/+FyyedzenQAAAAAOjDDkN56K6KMjKDKy2sVj1tODwnN4PWaKiigZm5CzdyJurkPNXMfatb2uAUnAABA60kkGgNmK1YYWrHC1MqVDc+TobNodOv/+MrKstWnj6VevZIhs4Zl797JZc+etoKbmCQ4+e9nqbzc5hb2gEsRQEOb8CxepOw/Xib//z6VJMX22U/V905SYtBgh0cGAAAAoLMwDCkYlKJR8T+uXMLrpWZuQ83cibq5DzVzH2oGAACA9iSRkNauTQbLli9PLhuCZg0Bs1hsywEzj8dW794bB8w2fJ6Xxx8JAJ0VATS0rkRCgcn/VPCuCTLq6mRnBVUz7hZFzjlf3IAZAAAAAAAAAAAAAIDWZdtSaamhH3809OOPpn76yWwym9mqVYbi8S0nw7xeu/52mJb69m1YWtphh+R6jx62vCRMAGwGvx7QaszVq5RzyQXyf/KRJCl62OGqvvsfsvru4PDIAAAAAAAAAAAAAABwr1hMWrmyMWCWXDY+r6lpXsBshx2sJiGzDQNmHs92ejMAOhwCaGgV/jdfV85Vl8isqJCdFVT17X9V3SmnM78mAAAAAAAAAAAAAADNUF0t/fijmXo0BMx+/DE5i1kiseXP33v1stSvn6Udd0wGzZJhs+R69+4EzAC0HQJoaJlQSNl/ulGBpx6TJMV2H6nqKY8qMWAnhwcGAAAAAAAAAAAAAED7UlEhLVliaulSU0uWmBvMaGaotNTc4mszM23tuGMyYNavX0PYzFK/fslZzDIzt897AICfI4CGtHnmfqfci86Vd+EC2Yah8KVXqva6myS/3+mhAQAAAAAAAAAAAADgiNpaaelSU8uWmU3CZkuXGior23LIrKgoGTBLBssaHsnn3bvbMrf8cgBwBAE0bDvbVuDhBxS87U8yolEluvdQ9f0PKXbIL5weGQAAAAAAAAAAAAAAba6uTvrpp2SorCFk1hA0W7t2yymxHj0sDRxoacAAS/37NwbM+vWzlJOznd4AALQiAmjYJkZJiXIuv0gZM96TJNUdNVrVf58su0sXh0cGAAAAAAAAAAAAAEDrsW1p9WpDCxcmg2Ubzma2cqUhyzI2+9ouXSz172+ngmYDBybDZv37W8rO3o5vAgC2AwJoaDbfzPeVe9lFMkvWyc7MVM0tExQ55/eSsfn/qAIAAAAAAAAAAAAA0J7FYtKyZaYWLjS1eHFyuWhR8hEKbf7z8GAwGTBrCJc1hM0GDLBUULAd3wAAd4hGZYRqZYRC9Y/kukK1MmpDMmprks8NQ3XH/0Z2oXsmgyKAhq2rq1Nwwq3KmjJJkhTfeRdVTXlMiZ13cXhgAAAAAAAAAAAAAAA0T02NUsGyRYsaA2fLlpmKxzcdNPN6bfXvb2mnnaz6sJmdCpl162YzXwvQ0dh2MihWWyOjtjb5qKluXG/YXlOTCoylwmS1tRuEykIbh83i8WYPwyxeq9D1N7fhG21drgmgLVu2TPfff7+++uorlZaWqkePHho9erQuvPBCZWVlbdO5iouLNXnyZH366adau3atioqKNGrUKF1yySUqLCzc6uu//PJLnXnmmRo7dqzOO++8dN+SK3gWL1LOhefK9923kqTwueer5s/jpUDA4ZEBAAAAHQf9DgAAAAC3cLp/+e677zR58mTNnTtXVVVV6tu3r0444QSdddZZ8vl8W73m5MmT9Y9//EMvvviihg8fvk3jBQC4g21LxcWG5s/3NJnJbNEiU6tXm5t9XTBoa9Agq8lj8GBL/fpZasZ/YgA4xbalSCQZCKuukllbI6O6Ohkaq2lYrw+L1dQ0hshCG4TINgyX1dRsU1AsrSH7fLKzgrKzsuofQSkrS3YwKDsrKKugQJGTTm3TMbQ2VwTQ5syZo7POOkuhUEgjRozQ8OHD9fXXX2vKlCmaNWuWnnnmGWU38ybJK1as0KmnnqqSkhINHjxYhx12mL7//nv961//0vvvv6/nnntOPXr02Ozrly1bpiuvvFKWZbXW22ufbFuZU59S9s3XyQiFZBUWqvofDyh61GinRwYAAAB0KPQ7AAAAANzC6f5l1qxZuvTSS2VZlvbaay/l5ubqiy++0F//+ld9+umnevDBB7cYQnv33Xd1//33t+hrAABoX0pLDc2fb2r+fFM//GBq4UKPFiyQyss3H4ru2jUZLNtpp+SyIWjWsyezmQHbVTwuo7pKRlXyYdZUJ9erqxqDY7WNITKzPmCWCo01hMyqq2UkEm0yRDszMxkKC2bXP4IbPA+mAmOp5QaBMjuYJaW2NRxTHzbrgKnWdh9Ai8fj+uMf/6hQKKQJEyZozJgxkqRIJKKrrrpKM2fO1D333KM//elPzTrf9ddfr5KSEl1yySW6/PLLJUmJREK33Xabpk2bpj//+c968MEHN/na//73vxo7dqzWr1/fOm+unTIqypVz9RXKeP0VSVL0kMNUPWmKrB49nR0YAAAA0MHQ7wAAAABwC6f7l8rKSo0dO1aS9PDDD+uggw6SJFVUVOiCCy7QJ598oqeeemqzMzk/8cQTuvvuuxVv49ksAABto6ZG9UEzTypsNn++qZKSTc9oZpq2dtjB3mAms0RqPT9/+44d6JAiEWlttczla+StqGwMkVVXNQmVGTXVMquqZFRVJrdXVzceFwq1+rCsYLbsnBzZ2Q3Lhkd28rFhcCw7ZxOBsobjkoEyedt9rKrdaPdfqTfffFMrVqzQ/vvvn2pmJCkzM1MTJ07UqFGj9Pzzz+uKK65QXl7eFs/15Zdf6ssvv1S/fv106aWXprZ7PB7dfPPN+vDDD/XBBx9o8eLF2mmnnVL7i4uLNWnSJL344osyTVO9evXS6tWrW//NtgO+/32qnIt/L8+qlbK9XtXe+GeF/3CZZG5+KlIAAAC0L7Zty5Yt0+DfcO0d/Q4AAAAAt3C6f5k6dapqamo0ZsyYVPhMkvLz83X77bfrV7/6lR5//HGdffbZ8ng8qf3fffed/vrXv+qzzz5TYWGh6urqVFtb21pfFgBAK4tEpEWLzNSsZg2BsxUrNv//Onfc0dLOOyc0dKilXXaxtc8+merWLSSvl1n+gc2KRmVUVsqsqpBRWVm/nlwaFRWN61UVMisrZVQmjzMrK5Nhsro6SdKW/9XXPHZmpuycXFm5ubJzcxtDY6kgWa6shgDZJvalwmZZQbItDmr3AbSZM2dKko488siN9hUUFGjffffVrFmz9NFHH+nYY49t1rkOP/xwmT/7pvP5fBo1apT+9a9/acaMGU0+kLn33nv18ssva+DAgRo/fryef/55vfzyyy19a+1LPK6su+9Q1t/vlmFZivcfoOoHH1N89z2cHhkAAEC7ZNu2olZU0USd6hINyzpF69eT+6L12xqPabKt/vWxRFRRK1a/jNafI6qYFVU0Eas/X6z+eVQxK5Y6V3I9eWxdIpo6R64/T88f97L26L6X018qbAH9DgAAAAC3cLp/aXjNL3/5y43ON3DgQA0ePFgLFy7UnDlzNHLkyNS+K664QqtWrdIvfvEL3XrrrTrttNMIoAFAOxCPS8uWmU1mM5s/39TSpaYsa9P3wezRw9LQoclHQ+Bs0CBLG9792es1VVAglZcnrwF0aLFYMixWUS6jojy5LC+XWVkho7xhW4WMyorksmqDoFlrzD5mGLKzc5oExxrX65e59cGy7BzZuXmN2xqe5+RIfn/LxwLHtfsA2sKFCyVJQ4YM2eT+nXbaSbNmzdL8+fO32tA0nGvw4MGbPZckzZ8/v8n2/v37a/z48frNb34jr9er559/fpveQ3tnLv9J+b8/R74vP5ckhU89QzUT7lKT/1IDAAC0I7Ztqy5Rp7pERJF4RJH6ZfJ5cnvDetSqU128TpFEJBUSSx6bDIFF6s8TTdSlXhtNRBVJbHDMBsfXbRAwa88aQmto3+h3AAAAALiF0/3LokWLtvqahQsXav78+U0CaPvtt5+OO+447b///lscEwCg7VRVSd9/79G8eabmzTM1d25yVrNIZNNBs/x8OxUwS4bNLA0ZklBBwXYeOLC9hEIyy8tklJXVh8kqmobJKspllpcnZyErL288pqa6xZe2cnJl5+XJzs2TlZcnOy9fdl79em5e/Xp+cj0/X1b9NrNLgQr69lBFZVjxOLMNwgUBtHXr1kmSunfvvsn93bp1a3JcW5zrwgsvbN5g3WjaNOVecKGM6ipZObmqufvvqvvNmK2/DgAAYANxK65wPKRwPKJwPKRIk2VY4XhYkURY4VhyGYqHFbUikjeh8poqhWMRReLh+nBYWJH6ZePzDQNmycBZe+M1vfKbGcrw+OX3ZCjDkyG/xy+f6d9oW3I9ufSb/uRxHr8yzAz5PD75zfrn9a9PnseXeq3f9Mnn8Td5bfI1vvptGcr2ZSvLl+X0lwVbQb8DAAAAwC2c7F8qKysViUTSuv7EiRO3Oh4AQOuwbWnFCkNz5zYNmy1fvulb4mVl2fUhs6Zhs27dbBmbzqYB7Ztty6itkVFa2hgoK6tfb9hWXiaztH7ZsC8cbtFlrbx82Xn5sgoKkiGxggLZeQX1zwsaQ2R5eU3Xc3KlDW5dvi1Mr8ntLtFEuw+gheqn/cvMzNzk/obtoWZMD9hwTCAQaPG5WpPX68wPZdZfbpHuvVuGpPg++6n2oUdl7bBj+/+m6MQ8HrPJEu5A3dyHmrkTddu8aCKqcDyk2lhI4XhIoVhIofpluH69Nlab2vfzY5PLcCpQFtogYNYQOItbzs1lbshQwBtQpjdTGZ5MZXoz69cz6p9npMJfmd5M+T0Zyqzfl+HJUIY3Q5me+u3ehu1+ZTScz5Mhvzej/nwbhsj89evJbabR8b/3+DlrfZ2h35Gc63n4nnUfauY+1MydqJv7UDP3oWbuRN22zMn+pWHp9/s3umVnOtdvbU70PHy/uhN1cx9qtnmRiPTDD6bmzk0Gzb77Lrmsqtp0cqx3b0u77tr00b+/vYn8ilH/SA81c6d2W7e6Ohnr18ssXd9kaZSWyCwtlVHWECgrlVEfMjNi6d2ZxPb5ZBcUyC4olJ1fHx4rKEjOSFa/3hAsa3hu5yeDZ9saImuNr3K7rRk2q61r1u6zRh6PR5ZlydhKxNm27WadS1KrnKu1mKahgoLgdrteE++/k0yk3nyzvOPGKc/b7r8dUC83d9NNOdo36uY+1Myd3Fo327YVjodVE61RTbRGtdHaxvVY7Sa3b7Svfj0UC6k2Wptcxmq3ezgs4A0oy5elgK9+ubnn3oACvmRwrCFAls5zn+nb6r/v0Lrc+nPWHnX0fkdyuOepx/es+1Az96Fm7kTd3IeauQ81cyfqtmlO9i8NobPm9P+drefh+9WdqJv7dPaaFRdL334rffNN43LBAimR2PhYn08aNkzabTdp992Ty912kwoLTbVO7KV5OnvN3KrN6xYOSyUlGz/Wrdv09qqq9K6TmSkVFUldujQuN1zfxDYjJ8eVn3Xws+Y+bVWzdp84CgaDqqioUHgzUw42TLm8ub+S+fm5JLXKuVqLZdmqqtr+f40jSd5X31SOaamqoJsS1XWS6hwZB5rP4zGVmxtQVVVYiQT3UXYL6uY+1MydtnfdLNtKBr9iNaqJVjcuG4JgsWpVR2tUE6tuDIw1rNcvkwGx5PG1sVrZatv/QeoxPMryBZXlDSjLF6wPggUV9GUp4M2qD4VlNXme5Q0qyxdQwFsfGKt/ZNaHyDK9mcr0BJTlS27L9GQ2u0FKu2a2pJhkxaTacCz5BNtFc2uWmxvgr56aqaP3O5KzPQ//TXcfauY+1MydqJv7UDP3oWbuRM+zZU72Lw3H19XVybKsTc6C1tl6Hn7PuBN1c5/OWLO1aw19+62pb74x9e23yceaNZv+715hoa3hwy0NG2Zp+HBLu+6a0KBBtvz+jY8tL2/jgdfrjDXrCNL/vMCWUVEuY906mSXrkst1xTJKSmSuWydjfYnMkhIZpfWzl9XUbPPYbK9Xdpcusoq6yi4qkt2lSFZRkezCLrILC2UVdvnZeqGUlbVtF0lIqnDm/6Gmi58192nrfqfdB9C6deumiooKlZSUqG/fvhvtX7duXeq45pxr3rx5Kikp2eT+bTlXa4rHHfphzC+UCoJKlNc6NwakJZGwqJkLUTf3oWbutLW6xRIxVUWrVJ16VDc+j1Wruq5hW6Wqo9X1QbLqnwXNahSK17bZe0iGvrIU9AUV9GUry7vBui9LQV+2gr5g/fb69frtWd6sDUJm9UGy+m3bY6awRMKWtjFIx8+a+1Cz1tMZ+h3JwZ6nHt+z7kPN3IeauRN1cx9q5j7UzJ2o26Y52b9kZ2crOztbNTU1KikpUffu3Vt0/dbm5PcL36/uRN3cpyPWzLYbw2Zz5ng0Z45H335rqrh449CBYdgaMMDWrrsmNGyYlVr26GFrU//LOb59b8qxSR2xZp1BImEpHo3LKC+XWbLuZ48SGSXJgJlZUpLctr5km295aft8sroUJQNlXbrUr9cHy+q3W12KZBcl99l5+drkN/qWdKLvPX7W3KetatbuA2hDhgzRwoULtXjxYu2xxx4b7V+8eHHquOaca9asWanXtORcAABg+2sIj1XWlauyrlKV0UpV1S+rY1WKmxGtq1qvykiVqqJVqtkwXBatVnW0SpFEpFXH5DE8yvbnKNuXnXz4sxX05aTWk9tzGtf9OanQWLYvp2nQzJcMi5lG5/sraqCzot8BAAAA4BZO9y+DBw/W119/rcWLF28ygEbPAwCbZ9vSmjWGvv3WkwqcffutqZKSjf9ftGnaGjTI0ogRlnbbLaERI5KBs+xsBwaOjqWuTmbx2vpH8Qbra+VdVyyVrVfe2rUySkpkbGOK0crLl9W1q6yu3WR16y6ra1fZXbsln9cHzJKhsiLZObnbHigDsFXtPoB26KGH6vXXX9c777yjk046qcm+8vJyffbZZ/L5fDrwwAObda4pU6bovffe0xVXXNFkiuZYLKYZM2ZIkg477LDWfRMAAECSFLfi9cGximRwrK5SVdHkMrlescH6xvtbc9axLG+Wcvy5yvHn1D/ylOPPUW5qW25qf2O4LLke9Gcrx5erbH/2Nt1yEgB+jn4HAAAAgFs43b8ceuih+vrrr/XOO+9sdI0lS5Zo4cKFKiws1G677daStwkArmfb0qpVybDZd9+ZqdDZ+vWbDpsNGZIMm40Y0Rg2q7/zMdA8tbUyi9fKs64+VLZ2zQYBs2KZ6+q3VVRs9VQbfpdaBQXJAFnXbqlwWSpU1q1b476irlJGRpu9PQDN0+4DaEceeaR69eqljz/+WFOnTtXpp58uSYpEIrrpppsUCoV06qmnqqioKPWaWCym5cuXS5J22GEH+Xw+SdIee+yh4cOH67vvvtM999yjq6++WoZhKJFIaMKECVqzZo0OOeQQ7bzzztv/jQIA4CKReESVdRUqrytXRaR8k8vKunKVR8pVscFxVdHKVrl+0JetPH+e8jLylZeRl3p0ze2iDDugLG9OkzBZrj9P2T8Ll3nNdv/PIACdAP0OAAAAALdwun858cQT9fDDD2v69Ok69NBDdfjhh0uSKioqdOONN0qSzj333NQ1AKCzKC01NHu2qa++8mj2bI/mzNl02MzjsTV4sKXddmuY2Sx5G82sLAcGDXeIRpMhsjVr5FmzSuaa1TLXrJFZvEHAbO1amTXVzT6l7ffL6t5jg0d3Wd17SD17KjhwR1UFchUrTN4GU35/G745AK2t3X/ympmZqTvuuEMXXHCBbrvtNk2fPl19+vTR7NmztW7dOu2yyy4aO3Zsk9cUFxfrV7/6lSRpxowZ6tOnT2rf7bffrjPOOEMPP/ywZsyYoUGDBumHH37Q8uXL1bt3b40fP367vj8AAJyUsBKqjFaoLFym0kipyiKlKguXqqyuTGXhUlWkQmSNy4q6coXj4RZdtzFAlqfcjDzl+euXqfX8TWyrP96ft8nwmNdrqqAgqPLyWu41D8A16HcAAAAAuIXT/Uu3bt10yy236Nprr9Ull1yikSNHqkuXLvriiy9UUVGhgw8+WGeffXabfx0AwEnhsDR3rqmvv/akHj/9tOmw2ZAhybDZiBEJ7bZbMmwWCDgwaLRLRk11Mky2Ohks86xZnQyYrV0jc3XyubG+RIZtN+t8dlZQifowWWOwrGcqYNawzc4v2OTtL71eU8GCoBLltbL4jAdwpXYfQJOkfffdVy+88IImTZqkzz//XIsXL1afPn00ZswYnXfeecrehhtODxo0SC+99JImTZqkjz76SLNmzVKPHj105pln6qKLLmrylzkAALiJZVuqrKtQWaRUpeEylUVKVR7ZdLCsrH5beaRctprXPPycaZgqyChQfmaB8jPylZ9RoPyMAhVkFtSv5ys/s2CDYxq3+zz8JSoANKDfAQAAAOAWTvcvxx13nHr27KkHH3xQ33zzjebPn6++ffvq4osv1mmnncbsZwA6FMuSliwx9dVXycDZ7NkezZtnKh7fOLyz004J7bGHpZEjE9p994R22YWwWadl2zLKy+RZtVLm6tXJgNna1fKsrp+9bO3q5PZmzlpm+/2yevSS1bOnEr16Jdd7/CxY1qOH7OycNn5jANo7w7abGVlFm0gkLJWV1TpybWaKcR9q5k7UzX3aS81s21ZVtFLrwyUqCa/X+lCJ1oc3fKxPrZeG16u8rlyWnd548zLyVZhZWP/oosLMLiqof75hqKwgs0B5GfkqyChQtj9HprHxX1Y5pb3UDc1HzdynuTUrLAzK42k/vx/gLHoebAtq5j7UzJ2om/tQM/ehZu5Ez4N0ONXz8HvGnaib+2zPmq1bZ+jrrxtnN/vmG4+qqjYOmxUVWdpzT0t77JHQyJHJR15emw7NVTr8z1k4LM/qlTJXrZK5aqU8K1ckl6tWppZGuHl3sbFy82T17CmrZy8levaqX++dDJv17C2rZy/ZXbpscsay1tbh69YBUTP3aet+xxUzoAEA0FFE4hGVbhAcK9kgSFYSWrdRsCxmxbb5Gjn+XBVkFqrLBmGywkAXddkgWNalflthZhcVZBQwIxkAAAAAAAAAANtJKCTNmePRV1+Zmj07GThbuXLjD/sDAVsjRiRnN9tjj4T22COhPn3s7ZEHghMSCZnrihsDZStXyly9Up6V9eGy1Stlrl/frFNZXbsp0SsZIkvOXtY7OXNZ/bZEj57SNsxcCgBbQwANAIAWsmxL5ZFyFYfWal2oWMW1a7UuvE7rapPP14XW1e9bp6po5TafP9uXo6JAkYoCXVWU1VVdA10bn9c/CjO7qChQpILMQvk9/jZ4lwAAAAAAAAAAIB2rVhn64guPvvjCo88/92juXFOJRNMUmWHYGjo0eRvNhttp7ryzJS+f6HccsVgySLZiuTwrlstc/lNyuXJF/S0zV8mIx7d6GjsrqETfvrJ69VaiT19ZvfskA2Z9+irRu4+snr2kzMzt8IYAoBH/uQIAYDMi8YhWV61JhspCxfXLtSoJrUuGzOrDZevCxYpbW28IGvhM3wbhsQ2CZJsIl3UJFCngDbThuwQAAAAAAAD+v707j46jvPP9/+lV+y5LsixZsrXLG17wbgyYPSQhhBC45BdCuAFOkpvlTs6duTc5kORmmczMzcnMQDIEZhIgbEkIkLDEgLEx3ne8yLIsyfKixdr3rbu6fn90q2VF8oqt7pLer3P6VLvqqdLTfii6v+6PngcAcLl4PFJZmV07djiCobPa2tGzm2VkDM1q5t9edZXBhFRW5/HIXlfrD5WdPCHHUMBsaFtfJ5vv3EsVmg6Hf9ayaVn+MNnQNitLRqZ/ayYkjsuymABwMQigAQAmHZ/pU3Nfsxp66lTfU6/67jrV99QGnzf01ut0b4Pa+9sv6ropkSlKi04f8UiPCWyjM5QWna4pUVOUEJEoG4UBAAAAAAAAAACW19Ym7d7tCAbO9u51qLd35HcADoep2bN9WrzY0NVX+x/Tppkh6jEumdd77oBZXe35A2aRkTKyp8uXPV1Gdk7gebaMadnyZWXJl54hORzj9IIA4PIhgAYAmFD6vf1q6KlXQ0+96npqVd9dPxw066lTfXedTvc2yOPzXND13Ha30mMylBadprRAiCw9GC7LUFpUmtJjMpQaNYWlLwEAAAAAAAAAmMBMU6qqGrmcZkXF6LBQQoIZDJotXuyf3SwmJgQdxkWzdXXKUXNM9poaOWqODT+O18hee1I2wzjn+WZExMiA2fSh5/4/m2lpzF4GYEIigAYAsIxBY1B13bWq7T6lU10ndar7pOq6a1XfXae6njo19NSptb/1gq5lk01TotM0NSZTU2OmKiNmqv95bKay4rNUlDlTUd54xTjima0MAAAAAAAAAIBJqK9POnhQeu89l7Zvt2vnTrtaW0cvp5mXN3J2s4ICn+yjmyEc+HyyN54OhMyOyVFTLUdNjRzH/UEze0vLOU833W4ZWdnyTc8ZFTDzTc+Rb0qaGHwAkxEBNABAWDBNU+0DbToVCJfVdp3Uqe5Tqu06pVPdJ3Sq65Qae0/L1PmnpI50RPoDZbH+cNnUmGn+bWxmMGiWHp0hl8M15vlOp11JSTFqa+uR13vuqZIBAAAAAAAAAMDE0NUl7dzp0Nat/sfevQ55PJI0vAJKZKSpq64ant1s0SKfUlJYTjOsDAzIfrRC7qoq2Y//zUxmJ47L1td3ztN9qakycnJl5MyQket/+HJnyMjJ9S+RScAMAEYhgAYAGBcew6O6ntpAoOxkYHtKp7pOBGY0O6Veb895rxPpiNS0uCxNi81WVmyWMmOnKTN2KGDm3yZGJDFrGQAA8K+L0dPjfxAqtwan3f9v+oyZdTBm1sS4WQ9jZj2M2ZUXHc3yVQCAj621Vdq+3amtWx3ats2h/fvt8vlGvr9MnSpdfbVXixZ5dfXVhubM8cntPssFMX48HjlOHpejusr/qKr0b49VSydPKME8eyjQdDjkm5YdDJcZgXCZP2iWKzMufhxfCABMDATQAACXhWmaauxr1PGOGh3vPKYTXcd1vLNGJzr92/qeOvnM8/+Da2rUFGXFZikrbrqmxWUpKzYQNovz70uJTCFcBgAAzs80FXfrTdKObUoKdV9w0Rgz62HMrIlxsx7GzHoYsyvHs3ip2v+ylhAaAOCinD5tC85utm2bQ4cPO0a1ycnxadkyQ8uWebVypan586PV3j7Aiimh4PPJXntqOGB27Iyw2Ynjsnm9Zz3VjIkZnsEsEC4LzmaWlS25xl4lBwCuBI/hUZ+3V31Gv/o8veo/c+vtU5+3T/1nbG02uz5T8FklR6aEuusXjAAaAOCCdQ926Xjn8UC47FgwXHYisK/Pe+4piyMcEZoWm6VpcdmBYFmWss8Imk2NnaYoZ9Q4vRoAADDh8WUkAAAAAACTlmlKJ0/agmGzrVudqq4evXRiUZGhpUsNLVvm32ZmDs+c5XTa+eeFK800ZW88PTyD2Zlhs2PVsg0MnP3UqCgZuTNl5OXLmJknb16+VJCv+AVz1e6KkddgaVQA5+Yzferz9qnX06s+b696vb3q8/T693l7gsd6vYF9np5AYKw3eM5QgKzP26d+oz8YJDszWGaYxkX3ramvUf+w+HtX4FVfGQTQAABBhs/Qqe6TI2YuOzNo1tLfcs7z7Ta7psVmaXpcjnLiczU9fng7PT5XaVFpzF4GAADGh82mrrfeUVKETW1tPfyWskU4nXYlJcUwZhbCmFkT42Y9jJn1MGbjgCU4AQB/wzSlykr7iBnOamtHBs5sNlOzZ/uCYbOlSw2lphJSGhd9fXJUV8lZWSHH0Qo5KivkOHpUjuoq2Xu6z3qa6XL5ZzDLy5cxIy8YNjNm5sk3NVOyjxxjp9MuJcVIbT2SGFtgIvCZPvV6etTj7fVvPT2BUNjQ88D2zONef5uh5z2enjEDZP1G/7i+FptsinJGKcoZpcgztpGOSEW5ohXliFSUM1oJEYm6u+jece3bx0UADQAmGZ/pU313nao7qlTdUaWq9kod66hSdXuVjnfWaNA3eM7zkyKSAqGy3FEhs6zYbLkd7nF6JQAAAOdhs0kxMdKgJL74tQannTGzGsbMmhg362HMrIcxAwDgijNNqbrapg8/dGrTJoe2bHGouflvw0im5s3zaflyr5YtM3T11YYSEkLU4UnC1tw8HDILBM2cFRWynzwumzl2IMy02+XLmi4jLy84k5k/ZJbvXy7TSawBsArTNNUTCHz1DHapx9Ojbk+3ejzd6h7sHn7u6fYfG9GmRz2erlEBs/OtwnW5DAXDop0x/ueuaEU7o/37XIF9zmhFu6IVHXgedcY20hml6KFAmdMfJIt0RiraGR0MmLnt7gk7YQv/pwaACcg0TTX2NepY+3DIrDoQMqvprD7nm7Tb7h4RKsuJn+Gf0SwhVzlxOYqPoDIDAAAAAAAAAADj79QpmzZtcgRDZ/X1IwNnkZGmFi4cXlJz4UJDMTEh6uxEZhiynzjuD5pVBEJmgbCZvbX1rKf5EhJlFBTKW1AoI79QRn6B/zE9R4qIGMcXAOBMhs9Qt6dL3YPd6vJ0qXuwS12DXcP7BjsD+7sD+zv9wTCzRx29neo6I0TW6+mReYVmH7TJpmhXjKIDIbAYV2zgeYxiAvtjXLH+gNgZx2POOD4UIIsaFSyLkt02eplmXDgCaABgYa39LaoOhMyqh0JmHdWqbq9St6frrOc5bA7lxOdqZkKeZibmaWZivv95Qp6mxWbJYXeM46sAAAAAAAAAAAAYrbHRps2bHcHQWU3NyHCA223q6qsNrVxpaMUKQ/PnG+SYLqf+fjmOVshZUe7fDi2dWV0l28DAWU8zsqePDJoVFMqbXyhzyhSW0AYuI5/pU4+nW50Dneoc9D+6Bjv8zweG/jz06FKXp0s9YwTKer09l71vNtkU645TjCtGsa5YxbhiA9sYxbr9f44Z+rMrLhgSi3XHnREaC4TJnP5jUc6oCTt72ERAAA0AwpxpmqrtPqWKtnJVtB3R0bYKHWkt19G2I2obaDvreTbZlB03XTMSZmpmYp7yEvL9YbOEPGXH5cjlcI3jqwAAAAAAAAAAADi39nZpyxb/7GabNjlUXj7yF+YdDlNXXeXTqlVerVzpX1IzKio0fZ1QBgbkqDwq55HDchw5LGd5uRxHDstRc0w239jLiZuRkTJm5stbODJkZuTlS9HR4/wCAOsxTVN93j51DnaofaBdHQMd6hxoPyNINhQi6xj+c2Bf1xltLudsYy67S/HueMW44xTnilOcO06xrlj/1h0/4s8JkQlKT0qRBl2KcsSMCpoRFpt8CKABQJjw+rw63nlMFW0VqmgdCpsdUUVbxTlT51NjModnMjsjZJYTn6tIZ+Q4vgIAAAAAAAAAAIAL19Mjbd8+vKTm/v12mebIwMLs2f4Zzlat8mrpUkNxcSHq7EQwOChHVaU/aFZ+WM4jgaDZsWrZDGPMU3yJiTKKSuQtLJZRUBAMmvmysiUHK+pgcvMYHnUOdqpjoE0dA/4gWedgx/DzgQ51DHYEj48Mm3Vo0Dd4WfoxFByLc8crPiJh+HngcWaAbDhEFq/YQNAsNrA/wnHhU0g6nXYlJcWora1HXu/YQVVMLgTQAGCcDRgDqmqv1NG2I4GZzCpU0VauqvbKs37IcNqdmpmQp4KkIhUlFakgqUiFSUWamZivGFfMOL8CAAAAAAAAAACAizcwIO3e7dCHH/pnONu92yGvd2TgrKDAHzhbudLQ8uWGUlIu3+w+k4bHI0d1VWA2szOCZtVVsnm9Y57ii0+QUVQsb3GJf1tUIqO4RL60dJbNxIRmmqa6PV1qH2hXe3+b2gbaRmzbB9rVPtCmtv624LZjoF3tA+2XZelKh82hhIgEJUQkKt59RngsIv6MIJl/f3zEmcGyBMUF2kQ6IpltDCFHAA0ArpABY8C/XGZbmY73VumjugM60lqums5j8pljp8CjnFHKTyxUQVKhCpOKVJhUrMKkIs1ImMmSmQAAAAAAAAAAwFJMU6qosGvDBoc2bHBq61aHentHhiSys4eX1Fy50lBGBoGzC2aasteekrPsoJxlh+QoOyhn+WE5qipl83jGPMUXGzd20CxjKkEzWNpQkKy1v1WtfS1qG2hVa3/rqFBZx0B7MEzmf7TL6xs7mHmhYl1xSoxIVHxEQjBMluBOGN7nDuyLSBxxPCEyUTHOGMJjmBAIoAHAx2Saphp66lXWclCHWg6prOWgDrcc0tH2irN+WIl3J6ggqVBFScWB2cwKVZhcrOy46bLb7OP8CgAAAAAAAAAAAC6PlhabNm70B842bHCovn7k9x5Tpvi0apWhVasMrVzpVU4OgbMLYevukuNwmZxlh4YDZ4fLZO/sGLO9LyZWRlGRP2BWVCJvcbGMohL5MqcRNEPY85k+dQ50qHUgECbr94fJWvtb1dbfqpb+oX0tI/7s8Y0dvLwQEY4IJUUmKzEiUYkRSUqMTFJSRJISI5KUFJmkhIhE/58jk5QYCJMlRiQqzh0vp53oDcBdAAAXodfTq4q2cpUFgmaHmg+qrOWg2gbaxmyfEJGo0pRSXZU5TzkxM5Wf4F86Mz06gyQ7AAAAAAAAAACwvMFBaedOR3CWs/377TLN4e9AIiNNLV1q6Nprvbr2WkMlJT7yT+diGHLUVMtRdkjOQwflPFwmZ9lBOY7XjNncdDplFBTJWzpL3pJZMkpK5C0ulW9almRn0gOEh0FjUC19zWrub1Zzb5Na+pvV0teslr4WtfQ3q7W/WR3edjV2NQVCZW0yTOOSflakI1LJkSlKjkpRUmTyiBDZmdvEiMThkFlkkqKcUZf5VQOTCwE0ABiDaZo62XUiGDQb2lZ3VI25fKbD5lB+YoFKU2apNGV2cJsZO00ul0NJSTFqa+uR1zv20psAAAAAAAAAAABWYJpSZeXwspqbN49eVrO01NC11/pDZ0uWGIoi1zEmW2vLcMBsaGaz8sOy9fWN2d7ImCojEDTzls6St3S2jIJCye0e555jsuvz9gUCZM1q6W9WcyBM1tzX9Df7mtXS36Kuwc5L+jkxrlilRAaCZJFJ/mBZZLKSA/uGjp25L9oVfZlfLYALQQANwKQ3YAzocMshfdS0T4eaD6is5ZAOt5ad9YNQSmSKSlPnqDRllmalzNaslNkqSCpSpDNynHsOAAAAAAAAAABw5bW2Sh9+6AyGzmprR86slZrqCwbOVq82lJ7Ospoj+Hyy1xyT8+B+uQ7sl+PgfjkPHZSjoX7M5mZkpLzFJf6AWSBo5i2ZJTMlZZw7jsnCNE11DnaoqbdJTX2NauptPGPbfMbzJjX3NqnX23PRP8Npdyo5MkUpkalKjUpVSlSKUqOmKCUqVWkxUzQ9dZrc3mgluP2BsqTIZEU4Iq7AqwVwJRBAAzCpnBk229+0T/sa96q8tWzM9cBddpcKk4pHzmqWOltpUWksnwkAAAAAAAAAACYsj0fatWt4Wc19+0YuqxkRYWrJkuFlNUtLfaz2OGRwUM4jh+U4eEDOAx/5A2eHDsre3TVmc2N6bmA2s1nyzpoto2SWjBkzJYdjnDuOicZn+tTW3zY6UBYImTX3NQVDZU29jRr0DV7U9V12l1KiUv0hssiUwPNUpUSmKiUqNXgsNcofOkuISDzrd6xOp50VpQCLI4AGYMI6M2z2UeNefdS076xhs6SIJM2dcpXmTJmnWSmzVZoyW/mJBXI5XCHoOQAAAAAAAAAAwPg6fdqmdesceu89pzZscKq7e2RQpKTE0OrV/tDZ0qWGolnlTrauTjkPHZTzwEeBwNl+OY8cls0z+rsoMyJC3pJSeefMk3fWHHlnzZFRWiozLj4EPYeVDRgDauw9rdM9DTrde1qnexvU2NOgxt5Gne7172vsPa2m3kYZpnFR145zx2tK1BRNiU7TlKg0TYmeotSoKYHn/n2p0alKjUxVnDueSTsABBFAAzAhDIXN9jXu1f6mfecMmyVHJmvulKs0b8r8wPYqZcdN5wMSAAAAAAAAAACYNAxD2r3brnXrnHrvPacOHBg541ZKii8YOLv2WkMZGZN7WU3b6dNyHfzIHzIbWkbzWPWYbX0JifLOniPv7Lnyzpkr7+y5MgoKJRcTH2Bspmmqa7BzOFDWe1qne/zPT/c0qLGvUY09DTrd26D2gfaLunZSRNLZA2XRacHAWWrUFEU5o67MCwQw4RFAA2A5A8aAypoPBpfRvJiw2VVp85UVm03YDAAAAAAAAAAATDrNzTatX+/QunVOrV/vVFvb8PclNpup+fN9WrPGqxtu8GrevEm6rKZpyl57Ss6P9sl9YK9UdlAJe/bI3tg4ZnNjamYwZOadM0/eOXPly54u8V0UAvq8fWroqVdDT73qe+pU312vht56NXT7/zwUOOvz9l3wNd12t9JjMpQWnaa06AylR6cH/pzufx7tf54SlSq3w30FXx0A+BFAAxD26rprtathh3ae3qFdDTt0oOmjMdcgT4lMGTmzWdpVhM0AAAAAAAAAAMCk5fNJBw7Y9d57/lnO9uyxyzSHvzdJSDB13XVerVnj1fXXG5oyZZLNcmaastfXyblvr5z798q1b6+c+/fJ3tw8opldkmmzycgvCMxsNi8YOjNTU0PTd4Scz/Spqa9JDd11auhtUH13nRp66lQfCJsNBc4uZsayOHe80qPTg0GytJgMpQcCZmmBkFl6dLoSI5L4DhRAWCGABiCsDBgD2t+0T7sadmpXIHBW31M3qt3fhs2uSpuvabFZfNACAAAAAAAAAACTWkeH9MEH/sDZunUONTWNnMZs1ixDN9zg1Zo1hhYtMuScRN8Y2xvq5fxon5z79sj50V65Ptone9Pomc1Mh0NGcamM+QsUsWyxOvOKNVBUKsXEhKDXCAWP4VF9T53qumtV11Or2u5a1XfXBsJldWoILIfp9Xkv6HpRzihlxEzV1JhMZcRkKCMmU1NjpiojZqrSY6YGZy2LdkVf4VcGAFfGJPo4ASAc1XadCgbNdp3eOebsZg6bQ7NS52hR+tValLFYC9OvVm78DMJmAAAAAAAAAABg0jNN6fBhezBwtmOHQ4Yx/B1KTIyp1au9uuEGQ2vWeDV16uSY5cx2+rRcH+3xB84+2ivnR/vkON0wqp3pcMgoLJbnqvnyzpsv77yr5C2dLUVFyem0KyIpRkZbj+T1heBV4Erw+rw63dPgD5UFwmV13aeC27ruOjX2npap898rNtmUFp0eDJMNh8wCz2MzlRGdoYSIRL7bBDChEUADMG76vf3a3/SRdp8+9+xmqVFTtChjsT9wlr5Y89LmK8bFb5QAAAAAAAAAAABI0sCAtHmzQ3/9q1PvvutUbe3IWc4KCw2tWeOf6WzJEkNud4g6Ok5szc1y7ds9MmxWP/o7KNNul1FYJO+8+f7A2dyr5J01R4pm1qmJwmf6VNdVp7KGozrRcfKMYNnwo6G3Xj7z/IHCCEeEpsZkKjN2mv8RM01TY6eOmL0sLTpdTjuxCwDg/4QArpj67jrtaNgWmN1shw407T/v7GaL0hcrJz6X3wAAAAAAAAAAAAA4Q1ub9O67Tq1d69T77zvV0zP8XUpUlKmVK/0znK1Z41VOzgSe5ay3V879H8m1d7ece3fJtWe3HCeOj2pm2mwyCgr9s5pdNV+eufPlnT2HZTQtbsAYUG33KdV2ndKprpM62XVCp7pPBp/XddfK4/Oc9zouu0tTYzI1NTZT02KnKTM2K7jNjMlUZmyWUqNS+c4SAC4QATQAl82prpPaUrdJW2o3aUvdJtV0HhvVZnh2s8W6OmOx5k2Zz1rmAAAAAAAAAAAAYzh2zKa//tUfOtu+feTSmunpPt18s1e33OLVihWGoqJC2NErxTDkqDjiD5vt3iXn3t1yHj4km2GMaurNLwiGzbzz5ssze64UGxuCTuPj6Brs1MmukzrVdUKnuv0hs1NdJwL7Tl7Q0pgOmyO4FOa02Cxlxk4bDpfF+vdNiU6T3WY/53UAABeOABqAS2Kapo531mhr3WZtqdukrXWbdaJr5G+X2G12zU6dy+xmAAAAAAAAAAAAF8Dnk/bssQdDZ0eOOEYcLy01dMstXt18s1fz5vlkn0j5GdOUvb5Ozt27ArOb7ZZz317Ze7pHNTXS0uVdsEjeBQvlmb9Q3vkLZMYnhKDTuFjt/W060XVcxzuP+2cv6zoRmL3spE51n1THQPt5rxHljFJWbLay4rKVFTddWbFZyorLVnbcdOUm5agkK19dHQPyes+/zCYA4PIggAbggpimqWMdVdocmOFsa91m1fXUjmjjsDl0Vdp8LctcqeWZK7Q4Y6niI/iwDwAAAAAAAAAAcDa9vdKHHzr017869c47TjU1DafKnE5Ty5b5Q2c33TSxlta0dXbIuW+vnHt3yxWY3cxxumFUOzM6Rp6r5ss7f6E8gdCZL3OaxIQHYanX06uTXSd0orMmGDQ70XlcJ7r8287BjvNeIykiyR8si8tWdly2pgXCZtmBwFlKZMpZJ7xwOu1y2p2SBi7zKwMAnAsBNABjMk1TR9sqArObbdKWus063TvyQ7/L7tJVaQu0PHOllmWu0OKMJYp1x4WoxwAAAAAAAAAAANbQ2GjTe+/5Q2cffOBUX99wmCYuztSaNf6lNa+/3qvExND187LxeuUoPyzXrh1y7d7pD5sdrZDNHBmoMx0OGcWlwaCZZ/5CGUXFksNxlgtjvHkMj2q7TwUDZf5wWU0waNbU13jea6RGTVFOfI6mx+UoOy5H0+KyguGyrLhsxbpYOhUArIYAGgBJks/0qbz1cDBstrVus5r7mka0cdvdWpC+SMszV2hZ5kotylisGFdMiHoMAAAAAAAAAABgHUeO2PTBB9Irr0Rq1y67THM4dJaV5dPNN/tDZ8uWGXK7Q9jRy8DW0iLX7h1y7trpD53t2S1bb8+odsb0nMASmoHZzebMlWL47inU2vpbVdNxTDWdx4LboVnMartPyWeee2nLOHe8psflaHq8/5ETfJ6r7LjpfL8IABMQATRgEjvVdVIbTr6vDSff16baD9Ta3zrieKQjUosyFmtZ5gotz1ypBemLFOWMClFvAQAAAAAAAAAArMM0pYMH7XrjDafeeMOpo0eHZvHyb+fNM4Khs1mzfNZdUdIw5Dhc5g+a7doh564dclZXjWrmi4mVd8Eiea6+2r+9aqHMtLQQdBg+06eGnvq/CZlV61jgzx0D7ec8P8IRoey46f5QWZw/WJYTfJ6jxIiksy6RCQCYmAigAZNIt6dbW2s3BUNnR9srRhyPdkZrUcYSLQ8EzuanL1SEIyJEvQUAAAAAAAAAALAWn0/au9euv/zFpTffdOr4cXvwmMtlas0am264YUA33OBRZqZ5jiuFL1tri38ZzV075Nq1U849u2Xv6R7VzptfIO+ixfIsvFqeRYtlFJewlOY4GjQGdbLruGo6julYR/Wo2cz6jf5znp8Wna7c+BnKTZih3PgZyonPDQbN0qLTZbfZz3k+AGByIYAGTGA+06eDzfu1/sQ6bTj5vnY0bJPH5wket9vsWpC2SNdmX6/V2ddrftoCuR0Wn9MZAAAAAAAAAABgHBmGtGOHQ2+84dSbbzpVVzcczImMNHX99V7dfrtXt93mU05OjNravPJ6LRI+Mww5yg+PnN2sqnJUsxGzmy1aLM+CRTKTU0LQ4cml39uv4501qu6oUlV7pT9oFgibnW+pTIfNoey46cGAWW7CzGDgLCc+l2UyAQAXhQAaMMHUd9fpg1PrteHkOn1wcr1a+ltGHJ8el6Nrs9fo2uzrtSrrGiVEJIamowAAAAAAAAAAABbl8UibN/tDZ2+95VRz83DoLCbG1E03+UNn11/vVUwgx+N0hv+MUbauTjl37ZRrxza5dmyXc+9u2bu7RrXz5uX7g2aBB7ObXTkew6MTXTWqbq9SdUdVIGxWpWMdVTrVdVKmzh5mjHZGK+eMWcxyE2ZoRiBolhWXLaeduAAA4PLgHQWwuF5Pr7bVb9GGk+/rg5Pv63Br2YjjMa5YrZp2jVZnX6/rsq/XjIQ81lwHAAAAAAAAAAC4SAMD0gcfOPTGGy6tXetUW9vw9y0JCaZuvtmr22/36NprDUVGhrCjF8Fee0qu7Vvl2rFNzh3b5Sw7KJtv5KxZ/tnNFsqz6OrgkprMbnZ5GT5Dp7pPBkJmlSPCZic6j8swjbOeG+uKU15ivmYmzNSMxDzNiJ/pn80sYYbSotL4XhAAMC4IoAEWY5qmDjUf1HvH3tP6k+u0vX6LBoyB4HGbbLoqbb6uy16ja7PXaGH61XI5XCHsMQAAAAAAAAAAgDX19krvv+/UG2849c47TnV3D4d5UlN9uvVWrz7xCa9WrjTkdoewoxfCMOQoOxSY3WyrXDu2y1F7anSz6bnyLF4iz+Kl/tnNSkqZ3ewyME1TjX2NqmyrUGX70RFhs+OdNRr0DZ713GhntHITZmpmQp5mJuQpLzFfMxL9z6dETSFkBgAIOQJogAX0eHq08dQGvXP8ba078Y4auhtGHM+Mmabrpg8tq7layZH81gkAAAAAAAAAAMCl6OqS3n3XHzp7/32nenuHwz0ZGT594hP+5TWXLDHkDOdvW7u75dqzKxA42ybnrp2jltM0HQ5558z1h80WL5V38VL5MqaGqMMTQ7+3P7BM5lEdDYTNqtqPqrK9Ul2DnWc9z213KzdhhmYm5geDZjMT85SXkK+MmKmEzAAAYS2cPxIBk9rpnga9c/yvWnvsLW08tUH9Rn/wWLQzWiumrdK12dfr2uw1yk8s4EMnAAAAAAAAAADAJertld57z6k//cmpdeucGhgY/t4lO9sfOvvkJz1auNAnuz2EHT0He0O9nDu2BZbU3C7nwf2yGSOXbvTFxsm76Gp5lizzh87mL5RiY0PUY+syTVMNPfWqbD8aDJgdbatQVXulTnadkClzzPPsNruy46YrP7HAv2zmGWGzabFZctiZaQ4AYE0E0IAwYZqmDreWae2xt7S25i3tadw94vj0uBzdMvM2fW7unZodt0AOsawmAAAAcC6maapnsEc9nh55vb5QdwcXwGna5R4UY2YhjJk1MW7Ww5hZD2N25UU7o/mlXAAf2+CgtGGDQ6++6tJf/+pUT8/w/1fy8ny6/XaPbr/dq7lzfQq7/+WYphxHK+TatsX/2LFNjhPHRzUzsrL9y2levVSeJctYTvMi9Xp6daKhUruO71NFy9BsZpWqbD+qHk/3Wc+LdyeoIKlAeYkFgbCZfzsjYaYinZHj+AoAABgfBNCAEPIYHm2t3xwInb2tE10jC4OF6Yt0U86tunnGbSpJLpXL5VBSUoza2viHKwAAAOBcTNPUrX+8STvqt4W6KwAAALgCFmcs1V8+s5YQGoCLZhjSli0OvfaaU2+84VJb28iZzu64w6PPfMarWbPCLHTm9cp56IA/bLZ1i1w7tsre3DyiiWm3y1s6W94lS4NLavqmZYWow9bS1t+qirYKHW07ooq2IzradkRH2yrOOZuZw+bQ9Pgc5ScWKD+xUPlJw2GzKVFTeI8CAEwqBNCAcdbe36b3T76ntcfe0roT76lzsCN4LNIRqdXZ1+nm3Nt0Y87NSo/JCGFPAQAAAGuziX/oBQAAAABIpint3m3Xq6+69PrrTjU2Dq+hOWWKT3fc4dUdd3i0aFEYhc4GBuTcu0fubZvl2rZFzh3bZe/uGtHEjIyUZ2FgOc2ly+VduEhmXHyIOhz+hpbNHAqYVQRCZhVtR9TU13jW85KjkpWX4F8yMxg2SyxQbsIMuR3ucXwFAACELwJowDio6TimtTX+Wc621W+R1+cNHkuNmqKbc2/Vzbm36ZqsaxXtig5hTwEAAICJwWaz6a273lFErE1t7cwgbBVOp11JiTGMmYUwZtbEuFkPY2Y9jNmVxxKcAM7HNKWyMrtefdWp115z6cSJ4dBZYqKp22/36I47vFqxwgiLFSlt3V1y7twh17bNcm3bKteeXbINDIxo44tP8C+nuXSFP3B21XzJTQDqbxk+Q8c7j6kiEC47OvRoP6quwc6znpcZM00FSYUqTCpSQVKRipKLVZJarIJpuaxOBADAeRBAA64An+nTntO7tLbmba2teUvlrYdHHC9OLtHNubfp5txbtSB9kew2+1muBAAAAOBS2Ww2xbhjNOiSvDb+kdgKnE47Y2YxjJk1MW7Ww5hZD2MGAKFTXW3Tq6+69OqrTlVUDCfLoqNN3XKLV3fe6dG11xohz23ZWlrk2r7Vv6Tmts1yHtgvm2GMaONLnSLPshUaXLZcniXLZZTOUlik5cLEoDGoYx3VOtJ6WOWth4Nhs6r2Sg36Bsc8x2FzKDdhhgqSilSYWHRG4KxQse64Ue2dTr7DAwDgQhBAAy4T0zS1p3GXXq98VX+pek213aeCxxw2h5ZlrtDNubfqptxbNSNhZgh7CgAAAAAAAAAAMHHU1tr02mv+mc4++mg4oOV2m7rhBq8+8xmvbrzRq+gQLkJjr6+Ta8cWafcOxa/fIMeR8lFtjOk58ixd7n8sWy5jZr7CZ03Q0PEYHlV3VI0Imh1pPayqjsoRqw6dKcoZpbzEAhUmFfrDZoFZzWYm5LFsJgAAVwABNOBjME1T+5v26fWqV/Xnyld1out48FisK0435Nyom3Nv05rpNyoxMimEPQUAAAAAAAAAAJg42tqk117zz3S2bdvwV54Oh6lrrjH0mc94dNttXsXHh6Z/9tpTcm3ZFHw4j1UP9zGw9RYVB5bTXCbP0uXyTcsKTWfDxKUEzWJdcSpKLlJRUokKk4uDgbPsuOmsQAQAwDgigAZcJNM0dajloP5c+aper/qTjnUMFwzRzhjdnHuLPp3/WV0//QZFOiND2FMAAAAAAAAAAICJw+uV1q936KWXXFq71qnBweHZwZYu9c909slPepWaao573+wnjvvDZls3y715kxwnakYcN+12GXPnyXndtepesFj9i5bKTEkZ936GgzODZkfaynWktfyig2bFycUqSipRZuw02ZglDgCAkCOABlyg8tbDeq3yFf258lVVth8N7o9yRunGnFv06fzPaM30mxTtCuH8zQAAAAAAAAAAABNMWZldL7/s0h//6FRT0/CsVqWlhu6+26M77vAqM3McQ2emKfvxGrmHZjjbulmOkydGNnE45J07T57lq+RZvkKeJcvkSE5SUlKMPG09Mr2+8etviBg+Q8e7alTecljlrWWBx2FVtVfK4/OMeQ5BMwAArIkAGnAOlW1H/aGzqldV3no4uD/CEaE102/SHfl36obcmxXrig1hLwEAAAAAAAAAACaWlhabXn3VqZdecmn/fkdwf0qKT3fd5dXdd3s0Z844hbhMU45jVXJt2SzX5g/9gbO62pFNnE55582XZ/lKDa5YKe/ipTJj48anfyFmmqbqumtV3lqmw63+sNmR1nJVtJWrz9s35jkEzQAAmFgIoAF/o7qjSn+ufFWvVf5JZS0Hg/vddreum75Gn86/Uzfn3qo4d3wIewkAAAAAAAAAADCxeDzSe+859fLLTr37rlMejz+I5HKZuvFGr+65x6M1awy5XFe4I6YpR1VlIGy2Sa7Nm+Q43TCyicsl71ULNLhilTzLVshz9RIpduJPWNDU2xQImB0Ohs3KWw+ra7BzzPaRjkgVJZeoKLlYxcmlKkkuUVFyiabFZhE0AwBgAiGABkg63lmjP1e9ptcr/6T9TfuC+512p67Nul6fyv+Mbp3xCSVEJIasjwAAAAAAAAAAABPRgQP+JTb/9CenmpuHl9icO9fQPfd49JnPeJWScgWX2Bya4WzTh3Jt3ugPnDWeHtnE7ZZnwSL/cprLV8mzaLEUHX3l+hRinQMdKm8tH7F0ZnlrmZr7msds77Q7lZ9YoOLkEhUnl/ofKSXKicuVw+4Y8xwAADBxEEDDpNXW36pXK1/RH468qN2ndwX3O2wOrcparU/n3anbZt6upMjkEPYSAAAAAAAAAABg4mlqsumVV/xLbJaVDQeUpkzxL7H5+c97VFp6hZbYNE3Zj9fIvflDuTZtlGvLJjnq60Y2iYiQZ+HV8ixf6X8svFqKiroy/QmhAWNAR9sq/MtntpTpcMshlbce1qnuk2O2t8mmnPhcFaf4ZzMbCpvlJebL7XCPc+8BAEC4IICGScXr82rDyXV6qfwF/fXYmxr0DUqS7Da7VmSu0qfz79RtMz+p1KjUEPcUAAAAAAAAAABgYhkYkN5916mXX3bpvfccMgz/Eoxut6lbbvGHzq67zpDzCnyDaT91Uq5NG/2hs80fynFqZMDKdLv9gbMVq/yPhVdLkZGXvyMh4jN9Ot5Zo/LWwzrcckiHW/wzm1W2H5VhGmOekxEzVSWBgFlJSqmKk0tUkFSkGFfMOPceAACEOwJomBQqWo/opSPP6w9HXtLp3obg/lkpc3Rv8X26o+AupUWnhbCHAAAAAAAAAAAAE9P+/Xa9+KJLf/qTS21ttuD+BQsMff7zHt1xh0dJSZf3Z9ob6v2zm23+UO5NG+U4XjPiuOl0yjt/oQZXrpJnxTUTaknNxt7GwIxmw0Gz8tZy9Xp7xmwf705QSUqpP2yWUqrS5FkqSi5mlSAAAHDBCKBhwmrvb9NrlX/SS+W/057G3cH9KZEp+mzh3fp88X2akzo3hD0EAAAAAAAAAACYmHp7pddfd+q3v3Vr797hJTYzMnz63Oc8+vznvSosvHxLbNoaG+Xe8qFcmz6Ua/NGOasqRxw3HQ55r5ovz4prNLh8pTyLl0qxsZft54dCt6dbR1oPj1g683DrITX3NY/Z3m13qzC5+IygWalKUmZpakymbDbbmOcAAABcCAJomFAMn6EPTr2vl8qf19vH3tSAMSBJctgcujHnZt1T/AXdkHMTa9ADAAAAAAAAAABcAUeP2vXssy699JJLHR3+UJPLZeoTn/Dqnns8Wr3akMNxnotcAFtri1ybN8m92T/LmfNI+Yjjpt0u75x5/uU0V66SZ8kymXHxH/8Hh4DH8Kiqo3LEjGZlrWU60VkzZnubbMpNmBFcOrM0eZZKUmZpRsJMOe18PQwAAC4/PmFgQjjaVqGXy1/Q7yteVENPfXB/SfIs3Vtyn+4suJslNgEAAAAAAAAAAK4Aj0d6+22nfvtblzZtGv76cfp0n774RY/uvdejKVPMj/UzbN1dcm3bItfGD+TatFHOQwdkM4evadps8s6a4w+crVglz7LlMhMSP9bPHG+maepU98ngbGZlgcBZZXuFPD7PmOekRaePCJoVJ5eoMLlYMa6Yce49AACYzAigwbI6Btr1euWrerH8d9p9emdwf1JEkj5beLfuKb5Pc1LnMWUwAAAAAAAAAADAFVBba9Nzz7n0u9+51NholyTZ7aZuvNHQl740qOuuM2S3X+LF+/rk2rVDrk0fyP3hRjn37pbNMEY08ZaUanDFKnlWXCPP8hUyk5I/5isaP639LSpv8S+ZWRaY1ay89bC6BjvHbB/jilVxcolKU2YFl9AsSZ6llKiUce45AADAaATQYCmGz9DGUxv08pHn9Vb1G+o3+iX5l9hcM/1Gfb74Pt2Ue4siHBEh7ikAAAAAAAAAAMDE4/NJ69c79MwzLr3zjlM+n38igLQ0n77wBY++8AWPsrIuYbYzj0fOvXvk3uSf4cy1c7tsAwMjmhi5MzS4arU8K6/R4IprZKaF/+o3PZ4eVbSW60hbuY60HdbRznLtb9ivhp6GMdu77C7lJxaqJKVEJcmzAkGzUmXHTWfSBQAAELYIoMESTnWd1HNlv9HL5S+qrqc2uL84uUT3FH9Bny28W+nR6SHsIQAAAAAAAAAAwMTV3GzTCy+49OyzLp04MTyt2cqVXn3pSx7deqtXLtdFXNDnk/PQAbk+3CjXpg/k2rpF9p7uEU2MjKnyrFrtD52tWCVf9vTL9GouvwFjQEfbKnSk9bDKWw8HZzQ73llz1nOmx+WoJDCTWUlKqYqTS5WXmC+3wz1+HQcAALgMCKAhbPlMnzae2qD/OviU3ql5Wz7TJ0lKjEjUnQWf0z3F92nelPn8tgcAAAAAAAAAAMAVYJrS9u0O/fa3Lr3xhlODg/7vZOLjTd1zj0f33+9RQYHvgi/mOFoh14cfyL1po1xbPpS9rW1EE19ysjwrrvEHzlZdI2NmvhRm3wN5fV5Vt1fpSNthHW7xh8yOtB5WdUeVDNMY85wpUWkqTi5RSWqJFmUvUE5UvgoSihTrjhvn3gMAAFwZBNAQdjoG2vVS+fP67aH/VFV7ZXD/qmmr9cVZD+iWGZ9giU0AAAAAAAAAAIArpKtL+sMfXHrmGZcOH3YE9191laEvfWlQd9zhVXT0+a9jP3lC7g8/kGvjBrk2bZSj8fSI477YOHmWr/AvqblytYzSWZLdfparjS+f6dPxzhodaS0PzGZWpvLWclW2VWjQNzjmOQkRiSpOLlFxcmlgW6Ki5BKlRqVKkpxOu5KSYtTW1iOv9wKDewAAABZAAA1h42DzAf3m4FN6peL36vX2SpJiXXH6fPG9emDWV1SYXBTiHgIAAAAAAAAAAExcZWV2/dd/ufTHP7rU2+ufeSwqytSdd/pnO7vqqnOHpmzNzXJv3ijXxg/k/nCDHDXHRhw3IyPluXqpBq9ZLc/Ka+SdN19yhvbrSq/Pq5qOY6poO6KjbUdUEXgcbTsS/L7qb0U7Y1ScXKyiM8JmJSmlSo/OYOUeAAAwKRFAQ0gNGoN6o/p1/deBp7SjYVtwf3FyiR6Y/RV9rvDzTD8MAAAAAAAAAABwhZimtGWLQ48/7ta6dcNfHRYUGPrSlzy6+26PEhLOcnJ3t9zbNgcCZx/IeejAyGs7HPLOXxgInK2WZ9FiKTLyCr6as+vz9qmqvVJH247oSFu5jrZV6GjbEVW1V8rj84x5ToQjQvmJhcGA2dCMZtlx02W3hcdMbQAAAOGAABpCoq67Vs8e+i89V/aMmvoaJUlOu1O3zfikvjz7K1qWuYLfEAEAAAAAAAAAALhCDEN66y2nnnjCrT17/Mts2u2mPvEJr778ZY+WLzc06quawUG5du+Ua+MGf+Bszy7ZvN4RTbwls/yBs1Wr5Vm2QmZc/Di9Ir/OgY7ADGYVwZnMjrSV60TncZkyxzwnyhml/MRCFSQVqiipWAVJRSpOLlFuwgw57XydCgAAcD58YsK4MU1Tm2o36r8OPqW/HntThmlIktKjM/TFWQ/o/yv9kjJipoa4lwAAAAAAAAAAABNXf7/0+9+79MtfulVd7Z/FKzLS1D33ePTII4OaOfOMkJbPJ+fB/cElNV3bt8rWO3JZSmN6bjBwNrhytcwpU674a/CZPjX01Ku6oyo4k9mRQNisoaf+rOclRiSqIKlIhUlFKkgqUlFgmxWXzYxmAAAAH4NlAmjHjh3TE088od27d6ulpUUZGRm69dZb9fDDDys6OvqirnX69Gn98pe/1JYtW9TQ0KDU1FRdf/31+trXvqbk5OQxzzlw4IB++ctf6uDBg+rs7FR2drbuuOMO3X///XK5XJfjJU5YXYOd+v2RF/Wbg0+rou1IcP/yzJX68uyv6NYZt8vl4O8QAAAAkxf1DgAAAACrsGL98tZbb+nZZ59VdXW1DMNQcXGx7r//ft10000X/fqtrKND+u1v3fr1r11qavKHrRITTX35y4N68EGPpkwxJdOUo6oyuKSma/NG2dvaRlzHlzpFg6uukWfVtRpctVq+nNwr0l/TNIMhs+qOKh3rqFZ1e5WOdVSppvOY+rx9Zz03I2ZqIGhWGAycFSYVa0rUFFbgAQAAuAJspmmOPddsGNm/f7/uv/9+9fb2au7cuZo6dar27NmjpqYmFRUV6YUXXlBsbOwFXevkyZO699571dTUpMLCQs2YMUNlZWU6efKkMjIy9PLLLysjI2PEOevXr9fXv/51+Xw+LVq0SPHx8dq5c6c6Ojq0YsUKPfnkk5f8pYxh+NTa2nNJ535cTqddSUkxamvrkdfru+zXP9xSpt8cfEp/qHhZPZ5uSVKMK1afK/y8Hpj9FZWklF72nznRXekxw5XBuFkPY2ZNjJv1MGbWc6FjlpwcI4eD3xq+UBO53pEmds2Dy48xsx7GzJoYN+thzKyHMbMmap7zs2L98s///M96+umnFR0drSVLlmhwcFA7duyQx+PR17/+df2P//E/PtbfSahqnov5/0xdnU1PPunWs8+61NPjD19Nm+bTI48M6r77PIrvaQguqenauEGOutoR5/ti4+RZvsI/w9mqa2WUlGr02pyXxjRNne5tUHX7GSGzjipVt1epprP6nCEzp92p6XE5ykvMV2FScWBWM/8ymgkRiZelf5cb7w/Ww5hZD2NmTYyb9TBm1nOl652wnwHN6/Xqf/7P/6ne3l79+Mc/1l133SVJ6u/v17e//W29//77+vnPf65HH330gq73D//wD2pqatLXvvY1feMb35AkGYahH/7wh3rppZf02GOP6cknnwy27+jo0He+8x1J0lNPPaWVK1dKktrb2/XQQw9p8+bNevbZZ/Xggw9ezpdtWYbP0FvH3tB/HnhSW+o2BfcXJhXpgdn/XXcX3as4d3wIewgAAACED+odAAAAAFZhxfpl69atevrppzV16lQ9//zzmjZtmiSpvLxcX/rSl/TEE09o9erVmjt37sf/CwpDR47Y9cQTbr3yilMejz8wVlJi6OsPdujulHWK3vK+3LdukPNI+YjzTLdbnquXBAJnq+Wdv1ByXvpXiobP0OneBh3vrAnMYFYdnNWspqNavd7es57rsDk0PT5HMxJmamZCnv+RmKfchJnKjp3OCjsAAABhIuwDaG+++aZOnjypZcuWBYsZSYqMjNRPfvITXX/99fr973+vb37zm0pISDjntXbt2qVdu3YpNzdXX//614P7HQ6Hvve972njxo3asGGDKisrlZ+fL0l6/vnn1d3drbvuuitYzEhSYmKifvrTn+q2227Tb37zG33pS1+Sw+G4zK/eOvq9/Xr5yAv65b5/07GOakn+ouDWGbfrgdn/XSunXcOUxgAAAMDfoN4BAAAAYBVWrF+GAmzf/va3g+EzSSouLta3vvUtPfbYY/rP//xP/eu//uvH/wsKI9u2OfT44269887w14ArZrXo7wpf1ydOPCnX3++WzTCCx0ybTd65V/kDZ9dcK8/ipdIFLqfqM31q7mtWXfcp1XbXjrGtVUNPvQzTOOs1HDaHsuOm+0NmiXnBoNmMhJnKjsshZAYAAGABYR9Ae//99yVJN95446hjSUlJWrJkidavX68PP/xQt99++wVda82aNbLbR04X53K5dP311+t3v/ud1q1bFyxohs656aabRl0vLy9PhYWFqqio0P79+zV//vyLf4EW197fpt8e+k/9ev+v1NzXJElKikjSA7P/u74468vKjJ12nisAAAAAkxf1DgAAAACrsFr90t3drR07dsjhcGjNmjWjzrnpppv0/e9/Xxs2bJBhGJb/pRufT1q71qnHH3dr507/a7HJ1KenbNLfd35PSw9tlA4Nt/fOmCnPNdf5A2crVspMThl1TdM01T7QNipQVtt9Krit767ToG/wvP1z2p3KjM3SzDNmMhsKnGXH5cjtcF+2vwsAAACMv7APoFVUVEiSioqKxjyen5+v9evXq7y8/LwFzdC1CgsLz3otyT/18pCjR4+e95yKigqVl5dPqi9k6rvr9B8fPaFny36jHk+3JCkrNluPzPua7iu9XzGumBD3EAAAAAh/1DsAAAAArMJq9UtVVZUMw1B2drZiY2NHtU9OTlZKSoqam5tVU1OjvLy8c/Y5XA0MSC+/7NQTv7DpaE2kJMmtAd2vZ/Qd/YsKm/x/b77UKepduUKtSxeqdmGpGlOj1D7Qrs7BDrWffFHtle3qGGhXe3+7mvuaAgGzWvV6e87bB5tsSotO17TYacqMzdK02GmaFpelabFZyoydpmmxWZoSlSaH3dohPwAAAJxd2AfQGhsbJUnp6eljHk9LSxvR7nJeq6OjQ/39/Zft508EFa1H9Pi+X+iVit/L4/NIkkqSZ+nr87+pO/I/yzTIAAAAwEWg3gEAAABgFVarX873M4bOaW5uVmNjo+UCaG1NXfrRA5v0u7UL1Ng/RZKUoHZ9Vb/UN/RvSoho1q6CWL2cn6J3cr3altQqr/ma1P+atPniflZKZEowWJZ5ZsgsEDDLiJnKDGYAAACTXNgH0Hp7eyVJkZGRYx4f2j/U7kKuFRUVdUHXGtq63e5RU0Bfys8fi91uU3JyaGYLs9n824SEKJnmudsOGAPqGOjQ1LRk/fimH+rHN/1QEY5IJUQkKMo59t8nLr+LGTOED8bNehgza2LcrIcxs54LHTO73TY+HZoAJnq9I1mn5kF4YMyshzGzJsbNehgz62HMrIma59ysVr/09PScs7+SFBERccF9PptQ1TzeXpu+9vOb9TVJDnmVoA65HZ3qd92jPtc9qndI02zSffI/zuSwOWS32WWz2eWw2WUf9XDIaXPKaXfIYXfKpsn53/yVwPuD9TBm1sOYWRPjZj2MmfVc6Xon7ANoDodDPp9PNtu5X6B5Af9FOxyBNe8v8FpDRcz52l/ozx+LzWaTwxHaD+5nK9bOFO2IUrSboFm4uJAxQ/hh3KyHMbMmxs16GDPrYcwun4le7wxd3wo1D8ILY2Y9jJk1MW7Ww5hZD2NmTYzb2KxWv1zozzjznEsRqppnas6Zy4o6JaVISlH0uPcEl4L/z1gPY2Y9jJk1MW7Ww5hZz5Uas7D/LyEmxv9bI319fWMeH5py+Wy/JfNxrjXUfmBgQD6f72P/fAAAAAA4E/UOAAAAAKuwWv0ydM7Q/rEMDAxIkqKjiW0BAAAAH0fYB9DS0tIkSU1NTWMeb2xsHNHucl4rNjZWsbGxl+3nAwAAAMCZqHcAAAAAWIXV6pf09PRztr/YPgMAAAA4u7APoBUVFUmSKisrxzw+tH+o3eW+VmFh4WX7+QAAAABwJuodAAAAAFZhtfolPz9fDodDtbW1Y8601traqpaWFkVERCgnJ+e8fQYAAABwdmEfQFu9erUkae3ataOOtbW1afv27XK5XFqxYsUFX+vdd98dNUWzx+PRunXrJEnXXXfdBf38qqoqVVRUKDk5WfPmzbvAVwQAAAAAftQ7AAAAAKzCavVLRESEli5dKo/Ho/fff3/UOWvXrpVpmlq5cqVcLtd5+wwAAADg7MI+gHbjjTcqMzNTmzZt0vPPPx/c39/fr+9+97vq7e3VXXfdpdTU1OAxj8ejqqoqVVVVyePxBPcvWLBAc+bMUVVVlX7+85/LNE1JkmEY+vGPf6z6+npdc801KikpCZ5z5513KjY2Vq+88kqw4JGk9vZ2/Z//838kSV/+8pcpTgAAAABcNOodAAAAAFZhxfrli1/8oiTpZz/7mWpqaoL7y8vL9a//+q+SpIcffvhy/PUAAAAAk5rNHPpUH8a2b9+uhx56SP39/Zo1a5aysrK0d+9eNTY2qrS0VM8995xiY2OD7U+dOqU1a9ZIktatW6esrKzgsaNHj+oLX/iC2tvbNXPmTBUUFOjw4cM6ceKEpk2bphdffFHp6ekjfv5f/vIX/a//9b9kmqbmz5+vlJQU7dy5U+3t7Vq1apV+9atf8YUMAAAAgEtCvQMAAADAKqxYvzz22GN66aWXgjOiGYah7du3y+Px6Jvf/Ka++tWvXsG/MQAAAGBysEQATZIqKir0+OOPa8eOHert7VVWVpZuvvlmPfjggyOKGencBY0k1dbW6vHHH9eHH36ojo4OZWRkaPXq1XrkkUdG/GbOmXbt2qUnn3xS+/btk9frVXZ2tu688079t//23+R2u6/MiwYAAAAwKVDvAAAAALAKq9UvpmnqT3/6k1588UVVVlYqIiJC+fn5euCBB3TDDTdcpr8VAAAAYHKzTAANAAAAAAAAAAAAAAAAABBe7KHuAAAAAAAAAAAAAAAAAADAmgigAQAAAAAAAAAAAAAAAAAuCQE0AAAAAAAAAAAAAAAAAMAlIYAGAAAAAAAAAAAAAAAAALgkzlB3AOPv2LFjeuKJJ7R79261tLQoIyNDt956qx5++GFFR0eHunv4G8eOHdMtt9xyzjZbt25VcnLyOPUI51JTU6M77rhDd955px599NEx22zZskVPPfWUysvL1d/fr5kzZ+qee+7RXXfdJZvNNs49xvnG7OWXXz7rWEpSQUGB3njjjSvZRUh6/fXX9cc//lHl5eXq6+tTSkqKli5dqoceekh5eXmj2nOfhYeLGTfutfDw9ttv6/nnn9ehQ4dkmqays7N122236YEHHlBkZOSo9txrCEfUO9ZDzWMd1DvWRM1jDdQ81kO9Yz3UO5goqHmshXrHWqh5rId6xzqoeayHmsd6Ql3zEECbZPbv36/7779fvb29mjt3rubMmaM9e/boP/7jP7R+/Xq98MILio2NDXU3cYaysjJJUn5+vkpKSsZsExERMZ5dwlk0Nzfrq1/9qvr6+s7a5sUXX9T3v/99uVwuLVmyRC6XS9u2bdP3vvc97dmzRz/96U/Hsce4kDE7dOiQJGnJkiVKS0sbdXzq1KlXrH+QTNPUd77zHb3xxhtyOp2aM2eOkpOTVV5ertdee01//etf9cQTT2jlypXBc7jPQu9Sxo17LfT+/d//XY8//rgcDocWLlyo2NhY7d+/X7/4xS/05ptv6vnnn1dCQkKwPfcawhH1jjVR81gD9Y41UfOEP2oe66HesSbqHUwU1DzWQ71jHdQ81kO9Yw3UPNZDzWNNYVHzmJg0PB6PuWbNGrOwsND8wx/+ENzf19dnPvLII2ZhYaH5gx/8IIQ9xFj+8R//0SwsLDRfeumlUHcF51BWVmbeeOONZmFh4VnvperqarOkpMRcsGCBeejQoeD+2tpa84YbbjALCwvNt99+ezy7PaldyJiZpmneeeedZmFhoVldXT3OPYRpmuZrr71mFhYWmitWrDAPHz4c3O/1es2f//znZmFhobls2TKzu7vbNE3us3BxseNmmtxrobZz506zsLDQXLRo0Ygx6+npMR988EGzsLDQ/P73vx/cz72GcES9Y13UPOGPeseaqHmsgZrHeqh3rId6BxMFNY81Ue9YAzWP9VDvWAc1j/VQ81hPuNQ89ssYqEOYe/PNN3Xy5EktW7ZMd911V3B/ZGSkfvKTnyg6Olq///3v1dHREcJe4m8N/XbMnDlzQtwTjKWjo0P//M//rLvvvlvHjx9XVlbWWds+/fTTMgxDDz74oEpLS4P7MzMzg1OSPv3001e8z5PdxYyZx+NRRUWF4uLilJubO36dRNAf//hHSdLf/d3fqbi4OLjf4XDoW9/6lgoKCtTS0qLNmzdL4j4LFxc7btxroffqq69Kkr7yla+MGLPo6Gh94xvfkCRt2LAhuJ97DeGIese6qHnCF/WONVHzWAs1j/VQ71gP9Q4mCmoea6LeCW/UPNZDvWM91DzWQ81jPeFS8xBAm0Tef/99SdKNN9446lhSUpKWLFkij8ejDz/8cLy7hnMoKytTRESECgoKQt0VjOHZZ5/V008/reTkZP3qV7/SHXfccda269evlyTddNNNo44tX75ccXFxOnDggE6fPn2lugtd3JhVVlZqcHBQs2fPZj35EImPj1deXp4WLVo06pjNZtOMGTMkKXjfcJ+Fh4sdN+610PvBD36gt956S/fcc8+oY4ZhSPIXl0O41xCOqHesi5onfFHvWBM1j7VQ81gP9Y71UO9goqDmsSbqnfBGzWM91DvWQ81jPdQ81hMuNQ8BtEmkoqJCklRUVDTm8fz8fElSeXn5uPUJ53by5El1dnYqNzdXL774ou68807Nnz9fS5Ys0Ve/+lXt378/1F2c9DIyMvT3f//3Wrt2ra6//vqztmtublZLS4tcLpdmzpw56rjD4QjuP3LkyBXrLy58zKTh9crT09P1s5/9TLfccovmzp2r1atX67HHHuPD7Th44okn9NZbbyk7O3vUMcMwgmM0depU7rMwcjHjJnGvhQOn06m8vDzFx8eP2F9fX6+f/exnkqQ777xTEu9pCF/UO9ZEzRPeqHesiZrHWqh5rId6x3qodzBRUPNYD/VO+KPmsR7qHeuh5rEeah7rCZeax3kpnYc1NTY2SvLf+GNJS0sb0Q6hd/DgQUn+G/tnP/uZFixYoKVLl6q8vFzr1q3TBx98oJ/+9Kf61Kc+FeKeTl6f+9znLqjd0H2Vmpoqu33s7C/34Pi40DGThj8wvfbaa4qNjdWiRYs0depUHTp0SC+99JLeffdd/eY3vznrP/rgynrhhRdUW1urxMRELVu2TMePH5fEfRbu/nbcJO61cPSP//iP+uijj/TRRx/JZrPpy1/+sh555BFJvKchfFHvWBM1T3ij3rEmap6Jg5rHeqh3rIF6B1ZFzWM91Dvhj5rHeqh3JhZqHuuh5rGGUNU8BNAmkd7eXklSZGTkmMeH9g+1Q+iVlZVJ8v/m0i9/+Uvl5ORIknw+n5566in9/Oc/13e/+13NmzcveAzh6Xz3nyRFRESMaIvQG7oHb775Zv3kJz9RbGysJKmrq0vf/e53tXbtWn3jG9/Qm2++KaeTt9TxtHXrVv3TP/2TJOk73/mOYmJiuM8sYKxxk7jXwtErr7yizs5OSZLb7VZTU5Oam5uVlpbGvYawRb1jTdQ8EwPvDdbF57DwRc1jPdQ71kG9A6ui5rEe6p2Jg/cHa+JzWHij5rEeah7rCFXNwxKck8jQmq7nW3fXNM3x6A4uwDe/+U29++67eu6550YUH3a7XQ8//LCuu+46DQ4O6sUXXwxhL3EhhtLDF7LuNfdg+HjmmWf0xhtv6F/+5V+CH5YkKS4uTj/96U+Vlpammpoabdy4MYS9nHzWr1+vRx55RIODg7r33nuDv/HEfRbezjZuEvdaOPrzn/+sjz76SH/4wx+0YMEC/eUvf9G9996r3t5e7jWELeoda6LmmRh4b7AuPoeFJ2oe66HesRbqHVgVNY/1UO9MHLw/WBOfw8IXNY/1UPNYS6hqHgJok8hQArWvr2/M4/39/ZKkqKiocesTzs3pdGr69OlKTk4e8/iaNWskSQcOHBjPbuESDN1/Q/fZWAYGBiRJ0dHR49InnF9kZKQKCgrkdrtHHYuJidHSpUslcQ+Op+eee05f+9rX1N/fr/vuu0+PPfZY8Bj3Wfg617hJ3GvhaOrUqYqMjNTcuXP11FNPqbCwUKdOndLvf/977jWELeoda6LmmRh4b7AuPoeFH2oe66HesR7qHVgVNY/1UO9MHLw/WBOfw8ITNY/1UPNYT6hqHgJok8jQOq1NTU1jHh9av3WoHcLf1KlTJZ294ET4SE9PlyQ1NzefNSnMPWg93IPjx+v16tFHH9WPfvQj+Xw+ffvb39ajjz46Ip3PfRZ+LmTcLgT3Wmi53W7deuutkvxTaXOvIVxR70xMvAdYA+8NExf34Pih5rEe6p2JgXoHVkLNM/HwHmAdvD9MTNyD44uax3qoeSaG8ax5CKBNIkVFRZKkysrKMY8P7R9qh9D78Y9/rK9//es6evTomMfr6+slSRkZGePZLVyCxMREpaena3BwUMePHx913DAMVVdXS+IeDBenT5/W//7f/1vf+MY3ZBjGmG24B8dHf3+/Hn74Yb388suKiorSL37xCz3yyCOj2nGfhZcLHTfutfDwb//2b/rWt76lhoaGMY8P/eaS1+vlXkPYot6xJmqeiYH3Bmvic1j4oOaxHuoda6HewURBzWM91DsTB+8P1sPnsPBCzWM91DzWEi41DwG0SWT16tWSpLVr14461tbWpu3bt8vlcmnFihXj3TWcxaFDh/Tuu+/qrbfeGvP466+/Lkm69tprx7FXuFRD9+A777wz6tjmzZvV1dWl4uJi3nzDRFxcnN58802tXbtWO3bsGHW8vb1d69evl81m0zXXXBOCHk4OhmHoa1/7mjZt2qSUlBQ9++yzuuWWW87anvssPFzMuHGvhYfNmzfr7bff1ptvvjnm8Q8++ECSNGfOHEncawhP1DvWRM0zcfDeYD18DgsP1DzWQ71jPdQ7mCioeayHemdi4f3BWvgcFj6oeayHmsd6wqXmIYA2idx4443KzMzUpk2b9Pzzzwf39/f367vf/a56e3t11113KTU1NYS9xJnuu+8+SdLTTz+tbdu2BfcbhqF/+qd/0s6dO5Wbm6tPf/rToeoiLsJ9990nh8OhJ598Uvv27Qvur6ur0//9v/9XkvTwww+HqHf4W9HR0brjjjskSd///vdVW1sbPNbR0aFvfvOb6urq0qc+9SnNnDkzRL2c+H71q19p06ZNio6O1jPPPKO5c+eesz33WXi4mHHjXgsPQ585Hn/8ce3fvz+43+Px6F/+5V+0Y8cOpaSk6LOf/WywPfcawg31jjVR80wcvDdYD5/DwgM1j/VQ71gP9Q4mCmoe66HemVh4f7AWPoeFD2oe66HmsZ5wqXls5tkW9cSEtH37dj300EPq7+/XrFmzlJWVpb1796qxsVGlpaV67rnnFBsbG+pu4gyPPfaYXnrpJdlsNs2bN0/p6ek6ePCgamtrNWXKFD3zzDPKy8sLdTcR8O///u96/PHHdd999+nRRx8ddfzXv/61/t//+39yOBxavHixIiMjtX37dvX29upzn/ucfvSjH4Wg15Pbucasu7tbDzzwgPbv36/IyEgtWLBAkZGR2rlzp7q6urRw4UI99dRTiomJCVHvJ7aOjg5de+216u3tVW5ubjCVP5ZPfvKTwbQ+91loXcq4ca+Fh0cffVQvv/yy7Ha75s+fr/j4eB0+fFgNDQ1KTEzUr3/9a82bNy/YnnsN4Yh6x5qoeayDeseaqHnCFzWP9VDvWBf1DiYKah7rod6xFmoe66HeCW/UPNZDzWNd4VDzOC/nC0L4W7Jkif7whz/o8ccf144dO1RZWamsrCzdddddevDBBylMwtAPfvADLV26VC+88ILKyspUVlamqVOn6oEHHtBDDz2k5OTkUHcRF+Ghhx5SXl6efvvb32r//v2y2WzKy8vTvffeq8985jOh7h7+RmxsrJ5//nk988wzeuONN7R79245HA7NmDFDn/rUp3TffffJ5XKFupsT1o4dO9Tb2ytJqqmpUU1NzVnblpSUBAsT7rPQupRx414LDz/84Q+1dOlSvfjiizp06JAGBweVmZmp+++/Xw8++KDS09NHtOdeQzii3rEmap6Jg/cG6+FzWGhR81gP9Y51Ue9goqDmsR7qnYmF9wdr4XNY6FHzWA81j3WFQ83DDGgAAAAAAAAAAAAAAAAAgEtiD3UHAAAAAAAAAAAAAAAAAADWRAANAAAAAAAAAAAAAAAAAHBJCKABAAAAAAAAAAAAAAAAAC4JATQAAAAAAAAAAAAAAAAAwCUhgAYAAAAAAAAAAAAAAAAAuCQE0AAAAAAAAAAAAAAAAAAAl4QAGgAAAAAAAAAAAAAAAADgkhBAAwAAAAAAAAAAAAAAAABcEgJoAAAAAAAAAAAAAAAAAIBLQgANAAAAAAAAAAAAAAAAAHBJCKABAAAAAAAAAAAAAAAAAC4JATQAAAAAAAAAAAAAAAAAwCUhgAYAAAAAAAAAAAAAAAAAuCT/PwQbrP11pShPAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"## Calculate exposure elasticity for consumption growth\n",
"quantile = [0.1, 0.5, 0.9]\n",
"T = 30\n",
"\n",
"expo_elas_shock_0_015 = [exposure_elasticity(gc_tp1, X1_tp1, X2_tp1, T, shock=0, percentile=p) for p in quantile] # The first shock is the growth shock\n",
"expo_elas_shock_1_015 = [exposure_elasticity(gc_tp1, X1_tp1, X2_tp1, T, shock=1, percentile=p) for p in quantile] # The second shock is the volatility shock\n",
"expo_elas_shock_2_015 = [exposure_elasticity(gc_tp1, X1_tp1, X2_tp1, T, shock=2, percentile=p) for p in quantile] # The third shock is the consumption shock\n",
"\n",
"## Plot the exposure elasticity for consumption growth\n",
"index = ['T','0.1 quantile','0.5 quantile','0.9 quantile']\n",
"fig, axes = plt.subplots(1,3, figsize = (25,8))\n",
"expo_elas_shock_0 = pd.DataFrame([np.arange(T),expo_elas_shock_0_015[0].flatten(),expo_elas_shock_0_015[1].flatten(),expo_elas_shock_0_015[2].flatten()], index = index).T\n",
"expo_elas_shock_1 = pd.DataFrame([np.arange(T),expo_elas_shock_1_015[0].flatten(),expo_elas_shock_1_015[1].flatten(),expo_elas_shock_1_015[2].flatten()], index = index).T\n",
"expo_elas_shock_2 = pd.DataFrame([np.arange(T),expo_elas_shock_2_015[0].flatten(),expo_elas_shock_2_015[1].flatten(),expo_elas_shock_2_015[2].flatten()], index = index).T\n",
"\n",
"n_qt = len(quantile)\n",
"plot_elas = [expo_elas_shock_1,expo_elas_shock_0, expo_elas_shock_2] # For illustration purpose, the consumption shock is plotted in the second column, the volatility shock is plotted in the third column\n",
"shock_name = ['growth shock', 'consumption shock', 'volatility shock']\n",
"qt = ['0.1 quantile','0.5 quantile','0.9 quantile']\n",
"colors = ['green','red','blue']\n",
"\n",
"for i in range(len(plot_elas)):\n",
" for j in range(n_qt):\n",
" sns.lineplot(data = plot_elas[i], x = 'T', y = qt[j], ax=axes[i], color = colors[j], label = qt[j])\n",
" axes[i].set_xlabel('')\n",
" axes[i].set_ylabel('Exposure elasticity')\n",
" axes[i].set_title('With respect to the ' + shock_name[i], fontsize=25)\n",
"axes[2].set_ylim([0,0.007])\n",
"axes[1].set_ylim([0,0.07])\n",
"axes[0].set_ylim([0,0.07])\n",
"fig.suptitle('Exposure elasticity for the consumption growth', fontsize=30)\n",
"fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "c6038a5c",
"metadata": {},
"source": [
"## 2.2 Calculate Price Elasticity for Consumption Growth\n",
"\n",
"Similarly, to calculate the price elasticity for consumption growth using the *price\\_elasticity* defined above, we need to input an approximation for the log stochastic discount factor. In the simple case that you will encounter in your problem set, you will be able to deduce this from the consumption growth equation. For now we will presume that we already have the approximation ready:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "27bc1ed8",
"metadata": {},
"outputs": [],
"source": [
"log_SDF = LinQuadVar({'c' : np.array([[-0.02005034]]),\n",
" 'x' : np.array([[-0.0299976, -0.02903654]]),\n",
" 'xw': np.array([[ 0. , 0.00001026, 0. , -0.03199734, -0.12719014, 0. ]]),\n",
" 'xx': np.array([[ 0.0000006 , 0. , 0.0000006 , -0.00725869]]),\n",
" 'w' : np.array([[-0.06399468, -0.24439539, 0.06087257]])}\n",
" ,shape=(1,n_X,n_W))"
]
},
{
"cell_type": "markdown",
"id": "651aa5f9",
"metadata": {},
"source": [
"Next, we compute price elasticities for the three shocks using the function `price_elasticity`:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4ab6059f",
"metadata": {},
"outputs": [],
"source": [
"quantile = [0.1, 0.5, 0.9]\n",
"price_elas_shock_0 = [price_elasticity(gc_tp1, log_SDF, X1_tp1, X2_tp1, T, shock=0, percentile=p) for p in quantile]\n",
"price_elas_shock_1 = [price_elasticity(gc_tp1, log_SDF, X1_tp1, X2_tp1, T, shock=1, percentile=p) for p in quantile]\n",
"price_elas_shock_2 = [price_elasticity(gc_tp1, log_SDF, X1_tp1, X2_tp1, T, shock=2, percentile=p) for p in quantile]"
]
},
{
"cell_type": "markdown",
"id": "8564dc1f",
"metadata": {},
"source": [
"We can then plot our results:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "038746c0",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACboAAAMVCAYAAAC74dDSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4UUlEQVR4nOzdd1gURx8H8O/RO4gCYgMVC6iIXRQFNPYWNVFjiy1GU4xJjDFviiWJKZpETWJLbDFqTGJii92AYsWGomIHQQUBQUBBafv+4cPmlmt7cMed+P08D8/D7s3Mzt7uzu3vbnZGIQiCACIiIiIiIiIiIiIiIiIiIiIiIiIzZWHqChARERERERERERERERERERERERFpw45uREREREREREREREREREREREREZNbY0Y2IiIiIiIiIiIiIiIiIiIiIiIjMGju6ERERERERERERERERERERERERkVljRzciIiIiIiIiIiIiIiIiIiIiIiIya+zoRkRERERERERERERERERERERERGaNHd2IiIiIiIiIiIiIiIiIiIiIiIjIrLGjGxEREREREREREREREREREREREZk1dnQjIiIiIiIiIiIiIiIiIiIiIiIis8aObkRERERERKWMGTMGCoVC/EtISDB1lZ5ZYWFhkmNBmpnLeRsZGSmpx6xZs0xSD3MTHR2NyZMno3nz5nB3d4elpaVZHK+nEdsFIioLfj4RPbF69WrJtbB69WpTV4mIiIiIiEg2K1NXgIiIiIiIni2+vr64efOm1jQWFhZwdXWFm5sb/P390aZNGwwePBjNmjWroFoSERlGYWEhXnvtNfz000+mrgoRERERERERERHRU40juhERERERkdkpLi5GZmYm4uPjsWPHDsyePRuBgYEIDQ1FXFycqatHZBTKI2uEhYWZujoVprKPzvXhhx+yk1spz+q5TkTlYy4jlxKZGq8FIiIiIiJ6lnFENyIiIiIiemocPHgQLVu2xIYNG/D888+bujpERFrdvXsXCxYsEJdtbGwwY8YM9O7dGx4eHrCw+O/5w1q1apmghkRERERERERERERPD3Z0IyIiIiIik9qwYQPat28vWVdUVIR79+7h9OnTWLNmDY4dOya+9ujRI7z00kuIiopC69atK7q6RESybd68Gfn5+eLyZ599hvfee8+ENSIiIiIiIiIiIiJ6erGjGxERERERmVT16tXh6+ursr5+/fpo27YtJk2ahB9++AFTpkyBIAgAnnR2e/vttxEVFWWUOq1evRqrV682StlExmIu521YWJh4rT7rTp48KVl+4YUXTFQTIiLi5xMRERERERHR089CdxIiIiIiIiLTeuONN/DOO+9I1h06dAhnzpwxUY2IiHS7e/euZJnTkxIRERERERERERGVHTu6ERERERHRU+F///sfrK2tJev27NljotoQEen24MEDyXLpNoyIiIiIiIiIiIiI5OPUpURERERE9FRwd3dH69atcfToUXHdxYsX9S4nNTUVx48fR3JyMtLT0+Hk5ISePXuiYcOGhqwuAODGjRs4c+YM0tLSkJGRARsbG7i7u6NRo0YICgqCo6NjmcoVBAFnzpzB5cuXkZaWhocPH6JatWqoVasWQkJC4OzsbOA9ka+wsBDR0dG4ceMG0tLS8PjxY3h4eMDX1xcdO3aEnZ1dhdWloKAAcXFxuHz5MpKTk5GTkwM7OztUqVIF9erVQ9u2beHg4FCubRQWFuL8+fM4f/480tPT8eDBA1hbW8PJyQk1a9ZE/fr1ERAQAEtLSwPtlfEZ67x9FhUXFxusrMLCQhw/fhzXr19HWloaioqKxGurQ4cOsLW1Ndi2gCfXz5EjR5CYmIiUlBQUFxejSZMm6Nu3r0G3Yww5OTmIiopCUlISMjIyUKVKFdSvXx8hISGwt7cvd/nm3AYXFxcjJiYGly9fRnp6OrKzs+Hg4IDq1avD398fzZo1K3N7dOHCBZw7d07c56pVq8Lb2xsdO3aEu7u7gfcEOHfuHC5cuIDbt29DoVDA09MTwcHB8PPzK3OZlbHNTktLw9GjR3H79m1kZmaiatWqaN26NVq1aqUz7+XLlxEdHY07d+7AwsIC3t7e6Ny5M+rUqWOw+hUXF+PYsWO4ceMG7ty5Azs7O9SsWROdO3eGh4eHwbZTUSq6LS4qKsLhw4dx48YNpKSkwMHBweTv36VLl3Dq1CkkJyfDysoKNWvWRJMmTRAQEGC0bZb1MykjIwOHDh1CSkoK7t27B0dHR3h4eKB58+ZGre/TThAEREdH4+rVq7hz5w5sbGxQvXp1hISEcHRaIiIiIiIyPYGIiIiIiKgC+fj4CADEv4iICNl5hwwZIsnbu3dvreX7+PiI6w8ePCg899xzgqWlpaQMAMJ3330nKePll1+WvB4fHy+7junp6cKHH36osp+l/2xsbISwsDBhxYoVQm5urqyyExMThUmTJgnVqlXTWK61tbXQq1cv4cSJE7LrbAgXL14Uhg8fLri4uGism729vTB06FDh8uXLsssNDQ2VlKHLnTt3hEWLFgndunUTHB0dtR4DKysroW/fvsLBgwf13t+UlBThzTffFKpWrap1GwAEBwcHoXv37sKqVat07p/cv5kzZ6qUZS7nbUREhM66zpw5s0z7HRoaKpbh7+8vrrewsBBu3Lghe3+V99vW1lYsx9vbWygoKNC7nBKrVq0q035pO1YJCQnCuHHjBFdXV63n2IsvvihcvHhRdl1LH4OStvjevXvCa6+9Jri7u6tsp3nz5mV+bwx5rmtqF27duiWMHj1acHBwUFuWnZ2d8NZbbwkZGRll2gdzboPj4uKE0aNHC1WqVNH6frq6ugovvviisGPHDlnl5uTkCLNnzxZq166tsUwLCwshJCRE2Llzp+z6amsnVq9eLTRt2lTj9po3b67XtgTBcG12idLXura06mhq19TRdL6fOXNGGDBggGBtba12P5o0aSLs379fbZlbtmwRmjdvrvE96Natm3Dp0iVZ+6LpWObl5Qlz5szReO5YWloKvXr1Ei5cuKC1/LK2q8r3gLrqKkdFt8V5eXnCRx99JFSvXl3tthQKhdC/f38hLi5O9rbK648//hACAgI07n/Lli2FjRs3iun1uYcz9GfSP//8I3Ts2FGwsLDQWN86deoIn376qfDgwQOd+x4eHi7ms7W11XnvXlRUpNLedOrUSed2YmJiJHneeust8TVDXgua2rCioiLhm2++EerWrauxvE6dOgnHjh3TuS9ERERERETGwqlLiYiIiIjoqSEIQpnyffLJJwgLC8O+fftQVFRk4Fr9Z8WKFfD19cXnn3+Omzdvak2bn5+PyMhIjB8/HsePH9dZ9ldffYUGDRpg6dKlSE9P15iuoKAAO3fuRNu2bTF9+vQyv2dyFRUV4e2330bTpk2xfv16ZGdna0ybl5eHjRs3okmTJli4cKFR6tOoUSNMmTIFe/fuxcOHD7WmLSwsxPbt29G5c2e88847KCwslLWNf//9F40aNcL333+Pe/fu6Uyfm5uLPXv24KOPPpJVfkUz5nlrTK+99pr4f3FxMZYvX653GatWrcLjx4/F5QkTJsDKynwGv1+8eDEaNWqElStXIisrS2O63Nxc/PHHH2jWrBlmzZpV5u0dPnwYgYGBWLx4MTIyMspcjins2LEDzZs3xy+//ILc3Fy1aR49eoSFCxeiQ4cOSEpK0qt8c22DCwoK8Oabb6JJkyb45ZdfkJmZqTV9VlYW/vjjD/Tu3Vtn2UeOHIGfnx9mzpyp9f0qLi7GoUOH0KtXLwwYMEBlyl65Hj58iBdffBFjxozB+fPnNaY7e/YsevXqha+//lpWuZWtzQaA1atXo23bttiyZQsKCgrUprlw4QK6deuGlStXiuuKi4vx+uuvY8CAATh79qzG8vfu3Yv27dvjxIkTZapfSkoKgoOD8cknn2g8d4qKirBz504EBQVh6dKlZdpORanotvjq1ato164dPvvsM6SkpKhNIwgCtm7dirZt2+Lff/8t87bkKCgowNChQ/Hiiy9qHU359OnTGDp0KF599VWD3G+X5TMpJycHffr0QZ8+fXD48GGtI6smJibi448/RoMGDXTe03Tv3l38//Hjxzhw4IDW9KdPn1Zpb44dO4acnByt+fbu3StZ7tatm9b0hpSamoouXbrg3XffRXx8vMZ0UVFR6NSpE9avX19hdSMiIiIiIlJmPt/eEhERERER6XDr1i3JcrVq1XTmWbBgAT799FNx2cfHB02bNoWLiwvu3r2LM2fOGKRuU6dOVdt5y93dHUFBQfDw8EBRURHS0tJw7tw5nZ0RShQXF2PcuHFYs2aNZL2FhQWaNWsGX19fODo6Ii0tDdHR0eIPsIIgYN68eUhNTcXq1avLvX/q5OXl4fnnn8eePXsk662trREUFIRatWrB1tYWKSkpiI6OFjufFBYWYurUqcjMzCzXD8HqlP5B08vLC/7+/nB3d4eDgwNycnJw7do1XLp0SfIj7HfffYf8/Hz88MMPWsu/evUq+vbti7y8PMl6Hx8f+Pv7o0qVKgCA7OxsxMfH4+rVqxo7IZgDY523FWH06NH44IMPxE41K1euxJw5c2BtbS0rvyAIks5xlpaWeOWVV4xS17KYPXu22uujSZMmaNCgAaysrMRpZks6UxUVFWH27Nm4ffs2fvrpJ722d+PGDbz33ntiZwJHR0e0adMG1atXx4MHD3D16tVy75OxHD58GIMGDRI7LXp5eaFly5aoUqUK7t+/j+PHj0s6HFy6dAlDhw7FoUOHYGGh/RlQc26Dc3Jy0Lt3bxw6dEjlNV9fXzRu3Bju7u7Izc3F7du3ERsbi0ePHskqe9euXRg4cKBK+po1a6J58+ZwcXFBcnIyjh07JuksunXrVoSGhiIiIgIuLi6y96W4uBjDhw/H1q1bATy5Hlu1aoXatWvD0tIS165dk5zrAPD++++jWbNm6NWrl8ZyK1ubDQCbN2/G+PHjxc87Pz8/BAQEwMHBAYmJiYiOjhY7bhcXF+PVV19FYGAgWrdujSlTpmDx4sUAnpzDQUFBqFu3LiwsLBAXFyfpYHj//n0MGjQIFy9e1Gs63sePH6NPnz6IiYkRt9OqVSv4+voiPz8fcXFxuHLlipi+oKAAkydPhkKhwKuvvlret8fgKrotTktLw7hx48SORo6Ojmjbti28vLzw+PFjnD17Fjdu3BDT5+Tk4IUXXsD58+dRo0aNsu+oBoIg4IUXXhCvzRKWlpZo06YN6tSpg8ePH+PKlSuIi4sDACxfvlzWPbo2ZflMun//PsLDw8Vzr4StrS3at28Pb29vZGdn4+zZs7h9+7b4enJyMsLDw7FlyxaNHcu6deuGDz74QFzeu3cvevbsqbH+pe+NgSfnemRkJPr16ycrn7W1NUJDQzWmNaS8vDz07dtX7Nxqa2uL1q1bo2bNmigqKkJcXJykk2NBQQHGjBmDpk2bIjAwsELqSEREREREJDLRSHJERERERPSMKuvUpRkZGYKNjY0k7xdffKG1fHt7e8HKykoAIAQHB6udZufRo0fC7du3Jev0nQLy22+/VZnWJzg4WNi/f79QVFSkNk9MTIzwv//9T/Dw8ND6HsyaNUtSrq2trTBz5kwhNTVVJW1BQYGwcuVKlanrli5dqrX+ZTV27FjJdlxdXYXvvvtOyM7OVkmbm5srzJ8/X7Czs5NMu6Vr+jx9py51dnYWevbsKaxYsUK4c+eOxnR37twR/ve//6mcU7qmwxs2bJgkfZcuXYSYmBiN6R89eiTs3r1bmDRpktC4cWOV15OTk4X4+HghPj5eUm67du3E9er+MjMzVcoyl/NWztRwmZmZ4r60a9dOpd6a/pKTkyXlTJ48WZJXeco0Xfbu3SvJ279/f9l5NcnJyZHUV+6+lZ4u9Z9//lE5NuHh4cL58+dVtpmQkCAMGjRIJf2yZcu01rX0NHHOzs4CAKFKlSrCkiVLhEePHqnkKcv0sCUMea6XbhdKphINDAwU9u7dq5K+oKBA+O6771Smrv7ll1901ttc2+Di4mLh+eefVznuI0eO1DhtYkFBgbBnzx5h7Nixgq2trcayk5KSVKYJrFu3rvDPP/8IxcXFkrRZWVnChx9+KH7WlvwNHz5ca/1LtxMlx9DS0lKYMWOGkJ6erpLn0qVLQtu2bSX5/Pz8VOqkzNBtdglTTl1acn4FBwcLJ0+eVEmfkJAgdOjQQZInLCxM+P3338XlMWPGCLdu3VLJe+jQIZWpMnVN71n6WCqf/y+99JLa7URHRwutWrWS5LOxsVHbxim3q4MHD5bkiYqK0th2JCUl6ayrrn0zRVtcci1UrVpVWL58ufD48WOVPLt27RI8PDwk+caNG6d1O2W1YMEClX2aPHmy2jYwNjZWPF8VCoVKO6KNIT6TXnzxRUkZ1tbWwscff6xyX1pcXCxs375dJSapVq2aSkygnEd52uqmTZtq3Z+wsDCV9w2A8MYbb2jMk5eXJ9jb24tpO3fuLHndkNdC6TasZN/s7e2Fr7/+Wu10rsePHxf8/PxU2lQiIiIiIqKKxo5uRERERERUocra0W369OkqPxap+4G3dPkAhL59+6r9oVATfToMXbhwQeUH/tdff11jR6HScnNzhfv376t97dixY4KFhYXkx+PTp0/rLPPy5ctC1apVxXyurq5qO5+Vh/IP5gAEHx8fnR2rBEEQDh8+LOns5ufnp/W90rejm5w6KNu7d6/k+GnrcFBcXCw4OjqKaRs2bKj2h1dNcnNztb6uT8cHdczlvNW3I4G+x1hZbGysSgcEuUr/SKyr02VZlGXfHj16JHh7e0vyvfjii0JhYaHWfG+88YYkj4ODg9qOCCVKdyoAILi7uwuxsbF67WNZlPdcL/2+lhx7dT/MK/vuu+8keUJCQrSmN+c2eNmyZSodOn799VfZ+Ut3GlU2cOBASdmNGzcW7t69q7W83377TfJeARC2b9+uMX3pdgJ40slt27ZtWreTlZUl1K5dW5Jv3759atMas802ZUc3AELv3r217sv9+/dVOqyVdECbO3eu1u0dO3ZMUCgUYr46depo7Uyo7lgCEN59912t23n48KHQqVMnva5JfTt066qrts8nU7bF3t7ewrVr17Ru58SJE5LOuw4ODgZvZ9LT0wUHBwdJ3b799luteQoKCoT+/furPSe0Ke9n0pYtW1Tak7/++ktrnjt37qh03HrhhRc0ph86dKgkraYHKh48eCB5kKJ3796SdkiTPXv2SMr/7LPPNKYt77VQug0DIDg6OgrR0dFa8928eVPshAg86dB49epVvbZNRERERERUXtrnZyAiIiIiIjIDS5cuxbx58yTrOnTogFatWunM6+HhgTVr1sDGxsYodfv888/FKcIAoFevXvj+++91TodXwt7eHq6urmpf+/TTTyVTca5btw4tWrTQWWbDhg2xZMkScTkrK0vvqbO0EQQBc+bMEZetrKywdetW+Pr66szboUMHSd5r165h8+bNBqubnDooe+655zBp0iRx+cCBA5LprJSlp6fj4cOH4nK/fv1ga2sre1v29vZ61c2YjHneVqSmTZuic+fO4nJERAQuX76sM19KSgq2bNkiLtetWxc9evQwSh31tX79eiQnJ4vLPj4+WLVqFSwtLbXmW7BgAYKCgsTl3NxcSTsgx4IFC9C0aVO98pgDNzc3/Pbbb3B0dNSa7o033kD16tXF5WPHjqlMaanMXNvgwsJCfPHFFyp1HTFihOwylN8HZdevX5dcG5aWltiwYQM8PT21ljd06FC89tprknXffPON7PoAT6Yi7du3r9Y0Li4ueP/99yXr/v33X7VpK1Obraxq1apYu3at1n1xdXVVOR6ZmZl47rnnJNMvqtOuXTuEhYWJy4mJiXpPXdyqVSt8/fXXWtM4ODhg/fr1cHJyEtcdOnQIp0+f1mtbxmLKtnjNmjWoX7++1jStW7fGwIEDJds5duyYXtvRZeXKleK088CTe4W3335bax4rKyusXr0aXl5e5d6+Pp9JpdubqVOnSt4fdby9vbF+/XrJvc9ff/0lThtbWvfu3SXLe/fuVZvuwIEDyM/PBwDY2dlJ7nuvXLmCxMREtflKl6dpGlVj+e6779CmTRutaerUqSOZYlgQBERERBi7akRERERERBLs6EZERERERCaVkpKChIQEyd/169dx8uRJLF++HCEhIZg8eTIEQRDz2Nra4ttvv5VV/sSJE+Hu7m6UumdkZGDjxo3isoWFBb7//nsoFIpyl339+nX8888/4nJoaCh69eolO/8LL7wAHx8fcXnr1q3lrlOJiIgInD9/XlweMWIEAgMDZed//fXXYWdnZ5S6lcXgwYMly0eOHJGVLzU11RjVMTpjnrem8Prrr0uWly1bpjPPzz//LOnoN3HiRNmd/IxtzZo1kuX//e9/OjtwAU86JH322WeSdatXr5a93dq1a+vVUcqcvPrqqzo7YgFPOmD07NlTXC4sLERsbKzatObcBu/YsQMJCQnicr169fDee+8ZpOy1a9dKOvcNGTJE0mlHm9mzZ0s6X0VERODmzZuy8trb2+Pdd9+VlbZ0Z7gzZ87Iyve0ttmlvfrqq7Lua9R1kpkxY4asbZTu0BMTEyMrX4lZs2bJalNr1aqFiRMnStbp024Zk6na4nbt2snu4FTWa0GuDRs2SJY/+ugjWfmqVKmCN954o1zb1uczKSEhAQcPHhSX7e3t8fHHH8vK26ZNGwwaNEhcLi4uxtq1a9WmLX1c9uzZozadcoe1kJAQtGrVCrVq1dIrX5UqVdC6dWvdO2AgNWvWxNixY2WlNfZ5R0REREREpIt5fItLRERERETPrJdeegl169aV/Pn5+aFNmzZ49dVXcfjwYUl6W1tbrFu3Du3atZNV/vPPP2+EWj9x4MABFBUVicvdunXTOQKHXPv27ZMsDx06VK/8CoUCoaGh4vLx48fF0SXKq/SIE/rWzcHBAW3bthWXo6KiDFIvbQoLC3H//n0kJSWpdKws3cErLi5ObRnVqlVDtWrVxOU///yzQupuaMY8b01h4MCB8Pb2FpfXrFmDR48eaUxfXFwsGV3LxsYG48aNM2od5SooKEB0dLS4bGVlhWHDhsnO37NnT3h4eIjL8fHxuHPnjqy8/fv3N5vOfvrq06eP7LT+/v6SZU2dn8y5Dd6/f79k+ZVXXjHYsTt06JBkeeTIkbLzuru7qxyL0p/hmgQHB8vulO7j4wMHBwdxWdMxrCxtdmlyO1w2aNBAsmxvby8ZAVOfvHfv3pVXOTzpoKPcoVSX4cOHS5ZLn4OmYMq22BjtWVk8fPgQ586dE5dr1qyJDh06yM4/ZMiQcm1fn8+k0udM37599Rp1dvTo0VrLK1G7dm00btxYXN63b5/kQZwSyh3ZSjqNKneSU9fRLTU1FWfPnhWXu3TpUqGfyT169ICVlZWstMY874iIiIiIiOR4Or/BJCIiIiKiZ1KHDh1w8uRJlRG4NLG0tNRrpDF9lR75S3mqr/Iq/SObp6enSgctXX/KHQEePXok+0dWfevm7u6ud91cXFzE/AkJCZIRhAwhJSUF33//Pfr27QsfHx9YW1ujSpUqqFOnjkrHytLHLTMzU22ZCoVC8kN3Xl4ewsPDMWzYMGzevBkPHjww6D4YizHPW1OwtraWjAiUkZGBP/74Q2P6HTt2SKYNGzRokKzRwCrChQsXJFNpNmnSRHKt6GJpaanSCfjEiROy8sqZktNcBQQEyE5bpUoVyXJWVpbadObcBhvzGj558qRkOTg4WK/8pTvCyD3/9DmGwJPpaktoOoaVpc0urXQnE01Kd/Tx8/ODtbV1mfJmZ2fLqxyeTFsqt8MMADRv3lwyyuu5c+cM1im0rEzZFhujPSuL8+fPSzrF6zu6WIMGDco1xbk+n0ml2y19OuSpS6/tWCl3WLt7966kMyAA3LlzBxcvXhSX1XV0279/v8p9b+lOc6VHVTQ2cznviIiIiIiI5JD/rQMREREREVEFsbCwgLOzM9zc3NC4cWO0bdsWgwYNkj19WglXV1fY2NgYp5IAkpOTJctNmjQxWNlJSUmS5RdeeKHcZWZkZMDX17fc5ZSuW/v27ctVXnFxMe7fv2+QKWZzc3Mxa9YsLFy4sMw/lGv7wW7WrFnYuXMnrl+/DgAoKirCxo0bsXHjRlhaWiIoKAjBwcEICQlB586dJSONmQtjnremMnHiRHz++efidKRLly7FqFGj1KZdunSpZHny5MlGr59cpUdFadiwod5lNG7cGNu3b9dYpibm0tmvLEr/6K5N6Y4+BQUFatOZcxtsrGs4Pz9f0v55eHjo9d4CkIx2BMg///TdjvJx1HQMgcrRZpcm970q3dlMuXOgvnm1vcel6dtuWVlZwdfXF5cuXQLw5Bjdu3fPpMfClG2xMdqzskhPT5csK0/FLIdCoUDt2rXL3AlKn8+k8h6vqlWrolq1auI+379/HwUFBWo7hnbv3h3ff/+9uLxnzx40b95cslzCy8tLfOCmW7duUCgUEAQBGRkZOHXqFNq0aaM2X0n6imQu5x0REREREZEcHNGNiIiIiIhMKiIiAoIgSP6Kiopw//59JCQkYNeuXZgzZ47endwAwNnZ2fAVVnLv3j3Jsr4/1OtTtiHk5OQYpBxzrduDBw/Qs2dPzJs3r1yjwWgbXa5q1ao4evSo2lEFi4qKcOrUKfzwww8YNmyYOM3XihUrzOpHQGOet6ZSo0YNyTTFR44cwfnz51XSJSYmYufOneJyQECA7Kn8KkLp0QTLMhpO6TwZGRmy8hm7vTQmY0zvZq7tHCCtm5WVlcGOnSnPP2NN0VcZ2uzSyvpeVdQ0iPqMfFairOeNsVTGa0Ff9+/flyyXpZ0py7lQlu1V5PEKCwuTdPQq3UFt79694v8lnduAJ1MpK49SVzqf8nTZ9evXR926dfXcg/Ixl/OOiIiIiIhIDkYwREREREREBlLyY5YhGGPaLuUpkcrDXOv2/vvvIyoqSlxWKBTo1q0bFi5ciEOHDiEhIQE5OTnIz8+XdKyMj4/XazseHh74888/ERsbi+nTp6NZs2Zqj70gCDh69CgmTJiAZs2a4ezZs+XeR2Mw5HlrSq+//rpkufTIbQCwfPlySUfGSZMmGb1e+ih9HRji2FSW41vRzLWdA4x3TCvr+VfZ2mxzVxnOm8p6LejD1tZWslyWNrGipqCtyOPl5OQkGcn40KFDePTokVgP5Q5rpacfVR6lTblD3MWLF3H79m2N+YiIiIiIiEiKHd2IiIiIiIjKqFq1apJlQ45AUrrsO3fuqIx8p+9fWFiYwetmZ2eH4uLictetvNP5JScnSzo22dnZYdeuXdizZw+mTJmCjh07wsfHB05OTipTLmVnZ5dpm02bNsVXX32Fc+fOISMjA7t27cLHH3+MTp06qUz7dvnyZXTt2lXvTnXGYMzz1pTCwsIkUziuXbsWDx8+FJcLCwuxcuVKcdnBwQGjR4+u0DrqUnr63rJM+VY6T2UYsc8UzLkNrlq1qvh/YWGhwUaKq+znn7m02UVFRQYv05xUhvOmsl8LcpSub+lR0+SoqPuLij5eyh3RHj16hIMHDwIAzp49K5lGtfT0o8r5jhw5ggcPHgAw/bSlRERERERETxt2dCMiIiIiIiojb29vyfLFixcNVraXl5dk+cqVKwYru7yU6/bo0SMkJiaasDZPbN++XTJS1/Tp02WPiHHnzp1yb9/NzQ09evTAnDlzcPDgQdy9exfz5s2TTIV17949fPzxx+XeVnkZ87w1tddee038Pzs7Gxs2bBCXN2/ejOTkZHH5pZdeKtP0Zsbk6ekpWS7LdX/58mWtZZI85twGG+satrGxkVwTqampKtMX6vK0nH/lbbNLd4wrLCyUve2ydBh6muh7rRQWFiIhIUFctrS0VOm4VNHYFgM+Pj6S5djYWL3yP3z4UHJcjam8xysjIwPp6enispubm8pDEcpKd0Qr6aimPEpbYGAgqlevLkkXEhICBwcHAEBBQQEiIyNV8llaWiI8PFyv+hMRERERET1r2NGNiIiIiIiojDp27ChZLvnByhA6dOggWS492oMpmWPdrl69Klnu27ev7LxHjhwxdHXg7u6OadOmYffu3ZLpr7Zu3SrpkGcKxjxvy8KQ07mNGjUKzs7O4vKyZcvE/0tPZWpu05YCQJMmTWBvby8unz9/Xq8RB4uKinD8+HHJujZt2hisfs8Sc2znShjzGm7durVk+ejRo3rlL92ePi3nn75ttouLi2RZnw6BFy5cKHM9nwanTp3Sq+Pf2bNnxakfgScdhEpPm1mioqb/ZFsM+Pn5SUa2jImJ0es8j4yMrLD7ndLtlr73dfq2W23atJGM+FbSUU35c0LdqGw2Njbo3LmzJF9+fj4OHDggKdvNzU1nnZ+2qXCJiIiIiIgMiR3diIiIiIiIyig0NFQyqsuePXsMNs1Zjx49JMtr166V/BBsSqXr9vPPP5uoJv8p/eOr3JG6ioqK8OuvvxqhRk+0a9cOTZs2FZdzcnIko4YoU/5h//Hjx0arkzHP27Io3aGhPPvu7OyMUaNGicsnT57EqVOncO3aNfz777/i+tatW6v8MG4OrK2t0bZtW3G5sLAQv//+u+z8e/bskUybVrduXdSoUcOgdTSEijrXy8Oc2+DnnntOsvzTTz8ZrENJSEiIZHndunWy82ZmZmL79u2SdaU75Zk7uW126RGk9BlV759//il7BZ8CmZmZ2LVrl+z069evlyyXPgeVGfLzQptnpS3WpWvXruL/jx8/xi+//CI77/Lly41RJbVKnzPbt2/Xq2Pi2rVrtZZXmoWFBbp06SIunzt3DgkJCTh06JC4TtOowsrr9+zZgyNHjkimWZc7GnFFXQtERERERETmiB3diIiIiIiIysjNzQ0jRowQl4uLizFlyhSDlN2sWTOEhoaKy0lJSZg7d65Byi6vXr16oX79+uJydHQ0Vq5cacIaQTKyBgBcunRJVr4ffvjB6J28Sk9xp2mkGuURPJSn2DQ0Y563Za2PsvLu++uvvy5ZXrp0KZYuXQpBEMR15jiaW4nRo0dLlufOnYvc3Fyd+YqKivDRRx9J1r388ssGrZuhVNS5Xh7m3Ab37NlT0gZfv34d3377rUHKHjlyJCws/vu6cOPGjbKnLJw1a5aks0VYWJjK9IdPAzltdmBgICwtLcXlnTt3oqioSGfZd+/erdAOQKYya9YsWZ0vb926pfJ+aGu3DP15oc2z0BbrUvqzcvbs2UhJSdGZb8eOHdi6dauxqqXC19cXnTp1Epdzc3Px+eefy8p76tQpbNq0SVy2sLDAyJEjdeYr3SHt448/FjtD29nZSUZu05Tv0qVLWLFiheR1dSPBqVOR1wIREREREZG5YUc3IiIiIiKicvjggw9gbW0tLm/fvh1Tp06VPbpOXl4esrKy1L72+eefS6Ym+vTTT/HDDz/oXcfjx4/jzJkzeufTxMrKCnPmzJGsmzx5Mv766y+9y9q3bx9u3LhR7jo1b95csjx//nydnQ527tyJ999/X/Y2YmJi8Pfff8vqzFDi3LlzOHv2rLjs7e2tcbQ5f39/8f+bN2/i8uXLsrejL2Oet/pS3m+g/FNEBgQEICwsTFzesGEDVq9eLS67urripZdeKtc2jGnEiBGoXr26uBwfH48JEyboPDbvvvsuTp8+LS7b29tj8uTJRqtneVTkuV4e5toGW1pa4sMPP5Ss+9///offfvtNdhmaOqv4+fmhf//+4nJhYSGGDRumcSTKEn/++afKe/Puu+/Kro8xGLPNdnBwQHBwsLickpKC77//XmvZDx48wJAhQwzWdpqzU6dO6fx8zcvLw/Dhw/HgwQNxXceOHdGqVSuNeQz9eaHNs9AW6xIWFibpQJaRkYHnnnsOiYmJGvPs378fQ4cOrYjqSZRub7799lts27ZNa567d+9i+PDhkjZi4MCBqFevns7tle7opjz6ZadOnWBnZ6c2X5MmTSSj+ynnc3Z2Rvv27XVuG6jYa4GIiIiIiMjcsKMbERERERFROTRq1EhlJJ2FCxciNDQUERERGn8QPXv2LD788EP4+Pho7ADRsWNHzJo1S7LuzTffRK9evRAZGamxbEEQcOnSJcybNw9t27ZF+/btJT/cG8Lw4cMxbtw4cTk/Px+DBw/GiBEjcOrUKY35ioqKcObMGcyePRsBAQHo1q2b1h9M5erVqxecnZ3F5aioKAwcOBBJSUkqae/du4cZM2agf//+ePz4MTw8PGRtIyEhAYMGDUL9+vUxffp0HDlyBAUFBWrTFhYW4s8//0SPHj0kx0nbqC7h4eGS5QEDBmD16tWIiYlBfHw8EhISxL/SU7Xqy5jnrb5K7/d7772Hr7/+GseOHcO1a9ck+y1nJBkAeO2118T/Hz58iHv37onLo0ePhoODg0Hqbgy2trYqIxxt2LABPXr0QFxcnEr6xMREvPjii1i4cKFk/bfffqsyvaK5qMhzvTzMuQ0eO3YsXnjhBXG5oKAAw4cPx5gxYzR2HCwsLMS+ffswbtw4+Pr6aix70aJFklEyL168iODgYOzevVsyMiLwZGrPmTNnYvjw4ZL3Y+jQoejbt28Z984wjN1mv/LKK5LladOmYeHChSgsLJSsFwQBe/fuRXBwMA4ePKgyAmllU7J/8+fPx4gRI3D79m2VNCdOnECnTp0QFRUlrrOxscHSpUu1lh0aGirpfPrNN9/g448/xqFDh3D16lVJ23Hr1q1y7cez0BbLsWrVKjg6OorLFy5cQEBAAKZOnYo9e/bg0qVLOHfuHP78808MGTIE3bp1w4MHD9CgQQO0bNmywuo5YMAADB48WFwuLCzECy+8gDlz5kg6UwJPrsmdO3ciODgYV65cEde7u7urHD9NfH194efnJymzhK7pR5VHbVPOFxYWpjKipCYVeS0QERERERGZG3mRExEREREREWn0xhtv4MaNG/juu+/EdYcOHUKXLl1QtWpVtGjRAtWqVUNRURHS0tJw7tw5ZGRkyCr7k08+QVpammSknF27dmHXrl1wdXVFixYt4OHhAWtra2RnZyM1NRUXL15U+VHPGJYuXYrMzEz8/fff4rr169dj/fr18PDwQPPmzVG1alVYWFggOzsbd+7cQVxcnDi1kyFVqVIFH330kWQEmW3btmHHjh1o1aoV6tWrh8LCQiQlJeHkyZPi6B1OTk5Yvnw5Bg4cKHtbN2/exLx58zBv3jzY2NggICAANWvWhJubG4qKipCSkoIzZ86ojNrTuHFjlenMlE2YMAHz589HTk4OAODy5csYO3as2rQzZ85U6YCjL2Oet/ro3LkzWrdujZMnTwIAsrOzNY4EFBoaisjISJ1lDhw4EDVq1MCdO3dUXjPnaUtL9OvXDx999BE+++wzcd2+ffsQEBCAZs2aoUGDBrC0tER8fDxOnTql0vlo7NixZr2fFX2ul4c5t8GrVq1CamoqDh48COBJh4k1a9ZgzZo1qFu3Lho3bgx3d3fk5ubi9u3bOHfunKz2t3bt2li7di0GDx4sTkV67do19OzZE7Vq1UJQUBCcnZ2RnJyMY8eOqZQZFBSEZcuWGX6Hy8hYbfaIESOwZMkSHDt2DMCTjtxTp07Fp59+ivbt28PNzQ2ZmZk4deoU7t69C+DJiKjr1q1D7969jbfDJvbqq69i165diImJwfr16/Hbb7+hTZs28PHxQX5+PuLi4tR2xly0aBGaNm2qtWxfX18MGjRInGoyPz8fn332maStLOHj44OEhIRy7Utlb4vlqF+/PrZs2YL+/fuLU7c+fPgQCxcu1NgpzMnJCX/++WeFT4v+008/4cqVK+J0y/n5+Zg5cya++OILtG/fHtWrV0dOTg7Onj2r0vnLzs4O69atQ82aNWVvr1u3brh27ZrKel0d3bp37441a9bonU9ZRV8LRERERERE5oQd3YiIiIiIiAzg22+/RePGjfH222+LPwQCT0YP27dvX7nK/v7779GmTRu8+eabyM7OFtdnZWXJ6vRjYWGhcbrM8rC2tsamTZswb948zJw5U9LZIS0tTdZ+W1tbS0YKKY/p06fj2rVr+Omnn8R1RUVFiI6ORnR0tEr6qlWr4q+//kKdOnXKvM38/HzExMQgJiZGa7qOHTvir7/+0rqvNWrUwMaNGzF8+PAKG8XKmOetPjZu3Ig+ffrg0qVLBinPysoKEydOVOkg1blzZwQEBBhkG8b26aefwtPTE9OmTUN+fr64PjY2VvwRvzQLCwt88MEH+PTTTyuqmmViinO9PMy1DXZycsK+ffswZcoULFu2TNLJJj4+HvHx8WUuu0+fPti7dy9eeOEFpKamiutv3bqldXSgPn36YMOGDZIRNs2JIdtsS0tL/P777+jevbuk7bp37x7++ecflfQODg5Yu3YtevXqVeb6Pw1sbW2xY8cO9OjRA7GxsSguLsbx48dx/Phxtemtra2xaNEivPrqq7LKX758Oe7cuYOjR48astoaVea2WK6uXbsiMjISEyZMwLlz57SmDQwMxO+//45GjRohLy9PXF8RbUKVKlVw6NAhDBkyBLt37xbXP3r0SGtbXb16dWzatAkdOnTQa3vdu3fHkiVLVMoKDAzUmu+5556DQqFQ6RipPNKbHBV9LRAREREREZkLTl1KRERERERkIBMnTkR8fDzeffddeHt7a01ra2uLbt26Ye3atQgODtZZ9ujRo5GYmIi5c+eiUaNGOtPb2dmhS5cumDdvHhITE/UasUwfCoUC06dPR3x8PGbMmAEfHx+deZydndG7d2/8+OOPSE5ORps2bQxWn+XLl+PXX39FgwYNNKbx8PDAG2+8gQsXLqBz586yy+7evTv++usvTJgwQTJdlSYKhQKdOnXCunXrEBUVJWvqsl69euHy5cv45ptv0Lt3b/j6+sLJyQkWFsYL34153spVr149xMTE4Ndff8WQIUPg7+8PV1dX2VN4qTNx4kRYW1tL1k2ePLm8Va1Qb775Ji5duoQxY8bAxcVFYzp7e3sMHjwY586dw2effSaZzsxcmeJcLw9zbYOtra2xZMkSnD17FkOHDoWTk5PW9O7u7hg+fLisjqydOnXCtWvXMHPmTK2jHFlYWKBDhw7Yvn07tm/fbjad3Cqiza5duzaOHDmCqVOnwt7eXm0aOzs7vPTSSzh79iwGDRqk9348jby9vXHs2DF88sknGs8dS0tL9OzZEzExMXqNeubu7o6oqChs3rwZo0ePRmBgINzd3VXae0OqzG2xXG3atMHp06exceNGDBkyBPXq1YODgwNcXFzg7++PF198EVu2bMGpU6fENlK5I7MxOvuq4+Ligl27dmHr1q0IDg7W+plSq1YtzJ49G1evXtW7kxvwZBru0vcpcjqreXp6onnz5pJ1tWvXlvXZoswU1wIREREREZE5UAilHx0iIiIiIiIigzh//jzOnz+PtLQ0ZGVlwd7eHtWqVUPDhg0RFBSk8UdxOZKTkxEdHY3U1FRkZGSguLgYzs7OqF69Oho1aoRGjRrBxsbGgHsjX3x8PE6fPo20tDRkZmbCwsICzs7OqFGjBho3bixO9WVMgiAgNjYWJ0+eRFpaGiwtLVG9enX4+PggODi4XB2oSty7dw8XLlxAfHw87t27h9zcXNja2sLFxQV+fn4ICgpC1apVDbA3FcuY521FysrKQo0aNcSR6jw9PZGUlGSy66K8CgoKcPz4cVy7dg3p6ekoKiqCh4cHfHx80LFjR9jZ2Zm6is8Uc22DCwoKEB0djevXryM9PR15eXlwdHREjRo14O/vjyZNmpS5M+H58+dx9uxZpKen4+HDh6hatSq8vb3RsWPHp6KtM3abnZeXh0OHDuHq1au4f/8+qlSpgtq1a6NTp04V1snHFCIjIxEeHi4ul55uuLi4GEePHsWNGzdw584d2NnZoWbNmujcubOszoTmhm2xPI8ePYKLiwsKCgoAAK1bt8aJEycqvB7p6ek4fPgwkpOTkZGRAUdHR3h4eCAwMFDnVLlERERERERkntjRjYiIiIiIiIgqncWLF+P1118Xl2fMmIEvvvjChDUiIqp8dHV0o2dTREQEunTpIi6/+uqrWLp0qQlrRERERERERJWFec4HQURERERERERUDkuWLBH/t7CwwMSJE01YGyIiomeH8mcwAINOd05ERERERETPNnZ0IyIiIiIiIqJKZefOnTh//ry43LdvX9StW9eENSIiIno27NixA3/88Ye47OTkhEGDBpmwRkRERERERFSZsKMbEREREREREVUaeXl5mDZtmmTdO++8Y6LaEBERPd1mzpyJ5cuX4/HjxzrTbtiwAS+++KJk3bhx4+Ds7Gys6hEREREREdEzxsrUFSAiIiIiIiIiKquEhAQAQG5uLi5evIgvvvgCFy9eFF/v1q0bQkNDTVQ7IiKip9vNmzcxZ84cvP/++xg4cCBCQkIQEBAAd3d3FBYWIi0tDdHR0di4cSNOnTolyVu/fn18/vnnJqo5ERERERERVUbs6EZERERERERETy1tU5La29vjxx9/rMDaEBERVU7379/HqlWrsGrVKlnpfXx8sHXrVjg5ORm5ZkRERERERPQs4dSlRERERERERFTp2NnZ4bfffkODBg1MXRUiIqKnVrVq1fRKb2lpieHDhyM6OhoBAQFGqhURERERERE9qziiGxERERERERFVCra2tqhduzaee+45vPPOO+zkRkREVE7z58/HpEmTsGfPHhw9ehSXLl1CUlISsrKykJ+fDxcXF1StWhWNGzdGaGgoBg0ahPr165u62kRERERERFRJKQRBEExdCSIiIiIiIiIiIiIiIiIiIiIiIiJNOHUpERERERERERERERERERERERERmTV2dCMiIiIiIiIiIiIiIiIiIiIiIiKzxo5uREREREREREREREREREREREREZNbY0Y2IiIiIiIiIiIiIiIiIiIiIiIjMGju6ERERERERERERERERERERERERkVljRzciIiIiIiIiIiIiIiIiIiIiIiIya+zoRkRERERERERERERERERERERERGaNHd2IiIiIiIiIiIiIiIiIiIiIiIjIrLGjGxEREREREREREREREREREREREZk1dnQjIiIiIiIiIiIiIiIiIiIiIiIis8aObkRERERERERERERERERERERERGTW2NGNiIiIiIiIiIiIiIiIiIiIiIiIzBo7uhEREREREREREREREREREREREZFZY0c3eiYkJCRAoVCIf4amXHZCQoLByyeislu9erV4fYaFhZm6OlQJGfszpqI9q59pYWFh4n6vXr3a1NUhIiNjfED07GJ8QGR6lS2GMpXIyEjxPfT19TV1dSoU77WInk6Mw4ieXYzDTOtpvP8eM2aMWN9Zs2ZpTCen7ef5p5vc97uy4bnx9GJHNzKaHj16iA1D9+7dZeerW7eu5EMpOjpaVr5ly5ZJ8qWlpZW16kREREREZGCMD4iIiIiIiCoW4zAiIiIiqmzY0Y2MpnPnzuL/R44cQWFhoc48t27dUultfeDAAVnbO3jwoPh/QEAAPDw85FVUybPaW5nMy6xZs8TzcMyYMUbZhq+vr7iNyMhIo2zDGPhUHhkbR/UiIjIexgdEZcP4QDPGB0Sm97S2H0REzwrGYURlwzhMM8ZhpI+nacSsp/WaJHoWsaMbGU1oaKj4/8OHD3Hq1CmdedQFS8qBkTZRUVHi/8rBGxERERERmR7jAyIiIiIioorFOIyIiIiIKht2dCOjadu2Lezs7MRlOYGQcpqqVasCAA4fPozi4mKt+RISEpCUlCQuKwdvwJMe2IIgiH9ERERERFSxGB8QERERwM9hIqKKxDiMiIieRqtXrxY/L8o7uueYMWPEsjhSG1HlwI5uZDQ2NjZo3769uKxPAOXu7o4RI0YAADIzMxEbGysrXwk+KUREREREZF4YHxAREREREVUsxmFEREREVNmwoxsZlXIgc+jQIa1P/KSlpeHSpUsAgJCQEEleXcGX8ut+fn6oUaNGWatMRERERERGwviAiIiIiIioYjEOIyIiIqLKhB3dyKiUh6a+f/++1id+lIOgTp06ISQkRO1r6kRFRandZomEhAQoFArxrzRfX18oFAqsWbNGXDd79mxJHm351cnKysLChQsRHBwMLy8v2NnZoU6dOhg2bBj+/fdfWWXoQ7l+CQkJAIC7d+9i3rx56NixI2rWrAkrKyvJ66Xdvn0bX375JcLCwlCrVi3Y2dnB3d0dgYGBeOedd3Q+saUsJycHS5YsQZ8+fVC7dm04ODjA2toarq6uaNSoEfr27YtPP/0UMTExGssoOS4KhUIcSvb+/ftYsGABOnTogOrVq8Pe3h5169bF6NGjJeeBXIIgYNu2bRg/fjwaN26MKlWqiMeqX79++Pnnn5Gfn693uZcuXcKsWbMQEhIivpeOjo6oV68eBgwYgIULF+LOnTuSPGFhYVAoFJg9e7a4bs2aNRrPQ03HURPl6+DmzZvi+vDwcLXlh4WFaS0vIiICr776KgICAlClShXY29vDx8cHvXv3xuLFi/Hw4UO96qdJZGSk2muvbt26aus9ZswYWeXGxsbi9ddfh7+/P5ycnODi4oLAwEBMnz4dKSkpetfTkNePvgRBwO+//45+/fqJ265Vqxa6dOmCFStWIC8vD8CToZ7lHN/ytieCIGDLli0YPXo0GjRoABcXF/H8Hzx4MH755RcUFBRo3afBgweLdfjmm280psvNzYWNjY2Y1tPTU+vUB9OmTRPTvv322yr7fODAAXHd2LFj1Z5jvr6+Wute4u7du/j888/RqlUrVK1aFQ4ODqhXrx7Gjh2LM2fOyCpDX2lpaZg3bx66deuGGjVqwN7eHtbW1nBzc0OTJk0waNAgzJs3D1evXtWrXEN/pl2+fBkffvgh2rRpAy8vL9ja2sLb2xsdOnTAnDlzJNNc6CMiIgJTpkxBUFAQvLy8YG1tDRcXFzRr1gyjR4/Gr7/+apC2KSMjA8HBweI5Ua1aNZw4caLc5RI9CxgfMD5gfMD4oLwYH8hTUFCA9evXY+TIkWjUqBGqVKkCa2trVK1aFe3atcOUKVOwZ88enVOQAYa7dys5pxUKBVavXg0AKCoqwu+//47evXujTp06sLW1hZeXF7p164aVK1fKqh8AFBcX4++//8bw4cPRqFEjuLi4wMrKCk5OTvDx8UF4eDimTZuGPXv2oKioSHb9dJFzDY4ZM0ZMUzLlTnFxMf744w/07dsXPj4+sLW1hYeHB/r164d9+/apLefo0aMYNWoUfH19YWtrC3d3d4SEhGD58uWy3idDtqHlbT90fQ6rk5eXh2XLlqFPnz7w8fGBvb093Nzc4O/vj4kTJ2p830rTFBcbug2Q4+LFi3jvvffQvn17VKtWDdbW1rCzs4OHhwdatWqFl19+GT///DPu3bunV7nx8fGYMWMGAgMD4ebmBicnJzRu3Bivv/46rl27pnc9jdG+G7KN0iUmJgZeXl7icW/VqhXS0tLKXS7R04RxGOMwxmGMw8qLcZhUUVERvL29xf39+eef9aqjpaWlmFfb98qFhYX49ddf8cILL6BevXpwdHSEs7Mz/Pz8MHLkSPz9998Gnwq6uLgYUVFRmDlzJnr06AEfHx84OjqKcWCnTp3w8ccfIzExUWs5JXHQ2LFjxXUHDhzQeC2VnlJUXRxVVtp+GyvrNXn9+nVYWFiI6+Pi4mTXZ/369WI+Dw+PMrVvygwRD2uya9cu8fyzs7NDtWrV0KlTJyxYsACPHz/WqyxDxXSlJSUl4csvv0TXrl1Rp04d2Nvbw97eHnXq1EHPnj3x5ZdflikOUmfu3LmS8+GTTz4xSLlUBgKREeXm5grW1tYCAAGAsGjRIo1p33rrLTHdsWPHBEEQhAYNGggABC8vL435UlJSxHwAhDVr1qikiY+Pl6QpzcfHR/K6rr/SlF+Lj48Xjh07JtSpU0drGW+++aZQXFws522UpXQdtm3bJlStWlXttuPj4yV5i4qKhFmzZgn29vZa62xhYSFMmTJFKCws1FqX/fv3C97e3rLfz+PHj6stR/m4RERECCdPntR5rCZNmiQUFBTIes/Onj0rtGnTRmf96tevr7GOpWVnZwtjx44VLC0tdZZrZWUlREdHi3lDQ0P1Og9LH0ddSl8Huv5CQ0PVlpOamir07t1bZ/6aNWsK27dv16uO6kREROhV75dfflmSf9WqVZJ9Ki4uFj7//HOtx8jFxUXYv3+/rPoZ+vrRV2pqqs5zJzAwULh27ZrKe6FJedqTa9euCcHBwTqPU6NGjYSjR49qrMOiRYvEtH369NGYbu/evSplnz9/XmP6Vq1aien+/vtvtfus68/Hx0dSprrPmO3btwvu7u5az4evvvpKYz3LYsOGDYKrq6vs/bh7967ackofX0N+phUWFgrTpk0TrKystJZnb28vzJ07V/a+X7p0SejcubOs/XZ1dVVbhvJ1tGrVKo3bun37ttCkSRNJW3fhwgXZdSV61jE+KH9bKld5Ps8ZH2ivH+MDKcYHUqaODwThyb1ovXr1ZL0/AwYM0FiOoe/dSt9vJScnC2FhYVrL7tixo3D//n2t5d68eVPWtVvyp+k+XO79oDI51+DLL78sppk5c6aQnp4udO/eXWsdP//8czF/YWGh8Prrr2tN37VrVyEvL09rXQ3Zhpa3/dD1OVzazp07hdq1a+vcTo8ePYSUlBStZRm7DZCjuLhYmD59umBhYSHr/fP391dbjnJ7WBKnrlixQmv7Y2NjI6xbt05WPY3VvhuijZJz7QmCIBw8eFASJ4eGhgpZWVmy60pUWTAO01wG47D//hiHPcE4TD3GYaqmTp0qlhsWFiY737x588R8DRo00JjuxIkTgr+/v873um3btsLly5e1blPu/XdcXJxQs2ZNWcfY2tpamD17tsY2VDkOkvMXERGhMf/MmTM11lnO9ajtt7HyXJPPPfecuP7dd9/VWMfSunTpIuZ7++23ZedTx1DxcOn3OysrS3jxxRe1ltW4cWMhKSlJVj0NGdOVyM/PF9577z3B1tZWZ7kKhULYtGmTShlyfzctLi4W3nnnHUl5CxYskFVPMg4rEBmRvb092rRpgyNHjgB48sTPm2++qTZtydNADg4OaNWqFYAnTwxdvXoVd+/exeXLl9GoUSON+Uqoe1JIl9DQUNy9exexsbHi0xv169eHn5+f3mWdP38eL730Eh48eAALCwsEBATAw8MDaWlpuHDhgtiz/vvvv4ePjw/effddvbehy+HDhzFmzBgUFhZCoVDA398fXl5eSE9Px8WLFyVpCwoKMHz4cPz555/iOoVCgcaNG6N69ep4+PAhYmNjkZeXh+LiYixatAhJSUnYtGmT2qemzp07h759+4ojSAGAh4cHGjRoAAcHBzx48ABJSUm4ffu2+LqcpzOTkpLw1ltvITMzEwDQoEED1KxZE6mpqZJ9Wrp0KR4+fIhffvlFa3kHDhxA//79kZ2dLa5zc3ND48aNYWdnh5s3byI+Ph7Ak175Xbp0we7du9GxY0eNZSYnJ6Nnz544d+6cZH3dunVRu3ZtFBcX486dO7hx4waAJ09iKD9N07ZtW9jZ2eHatWu4fv06AKBGjRpo1qyZ2u3Z29tr3Ud16Xv06CHu/6NHjwAAbdq0gbu7u0r6wMBAlXUpKSkIDw8Xh68HAFtbWzRt2hSOjo64evUqkpOTATx5KmXAgAFYs2YNRowYoVddlbm7u4v13r17t7i+c+fOat8DTe9XidmzZ4tPY7m4uMDf3x92dna4dOkS7t69CwDIzs5G//79ceHCBfj4+Ggsy9DXj76ys7PRrVs3nD17VlxnZWWFZs2awdXVFYmJibhx4wbOnTuH7t2746233tJ7G/q0J3FxcejSpYvkSSsnJycEBATAxsYGcXFx4pPoly9fxnPPPYetW7eiS5cuKttVfqrm0KFDKCoqgqWlpUo65RHYSkRGRqJJkyYq67Ozs8WnExUKhWTqhZJzLDo6WmxnmjZtipo1a6qU4+XlpbJO2f79+zFgwAAUFRWJx8PNzQ23bt0SR1IrLi7G+++/j/r162Pw4MFay5Nj9+7dGDFihKQ9rVmzJurWrQs7Ozvk5OQgPj4eqamp4uty2l5DfqYVFRVhyJAh+Ouvv8R1JeeUp6cn7ty5gytXrgB48mTP//73PyQmJmLJkiVa63jo0CH0799fPG4AYGlpCX9/f3h4eCAvLw83btwQ9z0rK0vnfmty7do1dO/eXfx88PPzw759+7S2E0QkxfiA8QHA+IDxAeMDY8UHAPDDDz/grbfeklxHjo6OaNSoEdzc3JCVlYVLly6J59r9+/fVlmOse7cSDx48QLdu3XD+/HkAT0YK8fHxQV5eHmJiYsQn2g8fPoyRI0di27ZtasvJzc1F165dJU9nOzo6iiOBPHr0CHfv3sX169fF98QQI0SVVWFhIQYMGIDDhw8DAOrVq4c6derg/v37OHfunFi3Dz/8EL6+vhg+fDgmT56Mn376CQBQrVo1NG7cGMXFxYiJiUFubi6AJzHIW2+9hWXLlsmqR3nbUEO0H3L98ccfGD58OAoLC8V1Xl5eaNiwIfLy8nD+/Hlx+7t370ZISAgiIiJQq1YtWeUbsg2Q66OPPsLXX38tLisUCjRo0AA1atSAhYUFMjMzcfXqVTx48ACA/HN29erVGD9+PADAzs4OTZs2hZOTE27cuCGOuJGfn49Ro0bBz88Pbdu21ViWsdp3Q7VRcmzfvh1DhgwR70H69euH33//HXZ2dmUuk+hpxTiMcRjAOIxxGOMwQ8dhI0aMwIIFCwA8aQNv3bol6x50/fr1kjLUiYqKQu/evcX7QQCoUqUK/P39UVxcjIsXL4rXTXR0NEJCQrB//36d77su6enpknahZPQ4Nzc3FBUVITExURzFsKCgADNnzkROTg7mzZunUlazZs3Qo0cP3L59W4z7qlSpovEeVN35XxHKc00qj0L2yy+/4IsvvoC1tbXW7d24cQMRERHi8oQJE8pcd2PFw0VFRRg0aBD2798PAPD29oafnx+Kiopw9uxZsc28dOkS+vXrhxMnTsDKSnO3I2PEdA8ePMCAAQNURmetWbMmfHx8YG1tjZSUFFy9ehXFxcUQBEHyWaOPoqIivPLKK1i1ahWAJ78/rVy5EqNHjy5TeWQgJu1mR8+EGTNmiL1bNT3xk5WVJT7F2LVrV3H9ypUrxbzLly9Xm/fNN98U05QeZaeE3J7qcnuHl6ZcdsnTOePHjxfu3LkjSRcXFyc0a9ZMTOvo6GiwpwiV6+Ds7CwAEEaMGKHSk/rOnTtCbm6uuDxt2jQxn4WFhTBt2jSVntK5ubnCF198IXmK+5tvvlFbj759+4pp/P39hUOHDqlNd/fuXWHFihVCu3btNI7qpPxUULVq1QQAQuvWrYWYmBhJuitXrqg8Bb569WqN71VSUpJkpKWAgABh586dQlFRkSTdqVOnJL3ga9euLWRmZqots7CwUOjUqZOkDqNGjRKuXr2qkjY1NVVYvHix4O/vr/KEgiAIwsyZM8UySj/1Yiiln8KSq2fPnpLe6tOmTZO8J8XFxcK2bduEGjVqiOns7OyEuLg4g9Rb+f2V+6SUcm98d3d3QaFQCG5ubsKqVauE/Px8Sd1Xr14t2NjYiOlHjhyptWxDXz/6mjhxouQ9GT9+vJCWliZJEx0dLTRv3lxyHUHHkwllaU8eP34sBAYGivlsbGyEr776Snj48KGYvqCgQFizZo3kaWoPDw8hNTVVpQ7FxcWSpx1PnDihtq4hISHieaZQKAQAwgsvvKA27bZt28TyAgMD1aYpyygOpT9jqlatKigUCmHGjBkqbcaxY8eEWrVqiWnr1Kmj0vaURdOmTcUyO3bsKJw9e1Ztups3bwqLFi0SAgIChOTkZLVpjPWZ9sUXX0jK7tmzp3D9+nVJmtjYWKF9+/aSdNqOw61btyTntb29vTBnzhwhPT1dJe2lS5eETz75RKhatarasnQd+5iYGMHLy0tMExQUJPvJIiKSYnzwH8YH/2F8wPigLBgfSO3atUu8JwYg1KpVS/j111+FR48eSdIVFhYKhw4dEsaPHy90795dbVnGuHdTvt8qaRs7duwonD59WpIuIyNDGDJkiKTcffv2qS1z/vz5YhoXFxdh7dq1kuNY4uHDh8KWLVuEF154Qfj666911s9YI7qVtDWtW7cWTp06JUl37do1SUxVr149Yf369QIAwdPTU/jzzz8l7VJWVpYwdOhQyTl36dIljXU1VhtalvZD7ufwtWvXBEdHRzFd9erVhb///lvlffjggw8k5354eLjGkSWM2QbIkZycLBlV6ZVXXlEbmxUXFwtnzpwRPvzwQ6FTp05qy1IeWcXR0VGws7MTbG1thfnz50ticUEQhH/++UcSi4eEhGitpzHad0O2UbquvV9//VXSzo4aNUr2yEJElRXjsP8wDvsP4zDGYWXBOOw/jRo1EsubN2+ezvRxcXGS9+/KlSsqaTIyMiTHztnZWVixYoXkfcrLyxO+/fZbyUhWjRs31jjKs9z2NyoqSqhXr54wd+5c4cKFC2rvqa9duyaMHj1acg4ePnxYY5lyR8wqraJGdFOm7zWZn58veHp6inn+/PNPnXk+/PBDMX1wcLDO9NoYMh5Wfr9LPkMDAgJU3ofc3FzJ6K8AhJ9//lljHY0R0wmCILz00kuSOvTu3Vs4c+aMSrr79+8La9asEdq1a6c2ztd1bjx69Eh4/vnnxTS2trbC5s2bNdaLKg47upHR7dy5U9LQqPvS7Z9//hFfnzVrlrj+6tWrOm9kSjpwlNywqlORARQAYcaMGRrTJiYmCg4ODmLaFStWyN6OPnWYNGmSzjzR0dHih4ZCoRA2btyoNf2GDRskH5jZ2dmS1wsKCsSbT4VCofYGTR1NQwSXHv66WbNmKtss8ejRI6Fjx45iWg8PD5UvykooB3nt2rUTHjx4oLFuDx8+FFq0aKH2/FS2YMECSV3nz5+vY6+fDKVc+otHQTDfAOrvv/+W7OMXX3yhMe3ly5clQaqmLyb1Vd4ACnjSEab0DynKvvnmG0nanJwctekMff3oKy4uTnLTN3nyZI1pMzIyhIYNG0reB7kd3eS2J999950kz/r16zWmPXz4sCRQnThxotp0AwcO1Bok5uXlieU899xz4nSSHh4east79913xfKmTJmiNo0hOroBEJYuXaox/YkTJyTHrrxT4CQmJoplOTk5afyiR1lxcbHGDnbG+ExLSUmRBN29e/fW2PY/fPhQaNu2rZi2SpUqattKQRAkAYaDg4Nw8OBBHXsuaLymtR37qKgowc3NTXw9JCRE5xRaRKQZ4wMpxgeqGB9IMT7QjPHBf/Ly8oTq1auLZTZs2FDlR1111O2Pse7dSk8DFRoaqvG6LCwsFIKCgnS258pTvmj7cr102brqZ6yObgCE5s2bazyPrl27JukEZWNjIzg5OWn8UTI/P1/w8/MT03/88cca62qsNtSYHd0GDBggpnF1ddX646zyjzyA5pjUWG2AXL/88oskrpBD0zlbegoxhUIh7NixQ2M5mzZtkqS/du2a2nTGaN8N2UYJgvZrb9GiRZKY29DTEhI9rRiHSTEOU8U4TIpxmGaMw/4ze/ZssbygoCCd6T/66CMxfdu2bdWmUe5EZG1tLRw4cEBjeX/88YfkfZ07d67adHLb39zcXNkP5itP3Tp48GCN6SpzRzdBEITp06eLeXr16qU1bWFhoWRq2PJ+9hgyHi4dt/r7+2v9ralfv35iWk0P5giCcWK6zZs3S9K9+eabGstUpq4d0XZuZGdnC+Hh4eLrzs7OenVKJuNiRzcyuuzsbMkc6+qe+Hn//ffF10v/4F/yJUidOnVU8mVmZopPGGlrxCsygGrYsKHOJwRHjRolph83bpzs7citg5eXl8YvlpUpPyE9YcIEWdvp1auXmGfJkiWS1+7cuSOpQ3mVDqC0PREgCIJw8eJFybm2bt06lTQXLlwQb3ptbGxUnkhX5/jx42KZ1atXV/lyrKCgQKhTp46Y5vnnn9dvR0sx1wBKea75li1b6rzZXbx4sZheoVAIly9fLne9DRFAzZkzR2v6Bw8eCPb29mJ6TR1nDH396Eu501b16tW1fhEgCKpfZsnt6CanPSkuLhYaNGig1zWgfPPv4OCg9oZZ+YuJPn36qLy+f/9+8fXPPvtMeP3118XlCxcuqKRv3bq1+Ppff/2ltl6G6OjWpUsXnXmUnyzUdU7qcuTIEbGsdu3alassQTDOZ9pnn30mpnF0dBRu376ttczY2Fid9w6XLl2S/HixYMEC+TuphqZj/88//0jahF69ekmeuCUi/TE+UMX4QB7GB4wPSmN88J/ly5eLZVlaWqqMFqYPY9y7CYL0fsvS0lK4ceOG1nJXrFghpq9Xr57aNMoP9JR3hIqK6uh27NgxrWUqj9ABQPjyyy+1pp87d66sWMQYbWjpcg3Z0e3mzZuS7eu63y8uLhbatWsnpu/QoYPadMZqA+RSPl7vv/9+ucoq3dFN1z1EcXGx5Hj98ssvatMZo303ZBslCJqvvVmzZkle0+f+jaiyYxyminGYPIzDGIeVxjjsP9euXZPs18WLF7Wmr1+/vph20aJFKq8/fPhQMgrv1KlTddZB+T2oXbu22o5McttffeTk5IjHyN7eXmObW9k7ul29elVszywsLITExESNabdv3y6W7+zsrPN3PV0MGQ+Xjlt1xT3Kv8/Z2tqqPf7Giuk6dOggpmndurXGzntyaDo30tLSJL8pVqtWTePMU2QaFiAyMmdnZwQFBYnLBw8eVElTss7a2hrt27eXvBYSEgIASExMxM2bNyWvHT58WDKXdGhoqKGqXWbjxo3TOg818N8+AU/mrza0ESNGwMHBQWua3Nxc/P333+LyW2+9JbvsEspziAOAnZ2d+H9qaiqSk5NllSlHUFAQOnTooDWNv78/unTpIi5v3rxZJc26desgCAIAoF+/fqhXr57Obbdt2xZ+fn4AgJSUFJVjdvToUSQmJorLH3/8sc4ynzYPHjyQzHP+5ptvwsJC+0fI2LFj4erqCgAQBAFbt241ah3lmjhxotbXHR0dJW2WumvUGNePvnbs2CH+P3LkSDg6OmpN36NHD/j6+uq9HTntSVxcHK5evSouy3k/pkyZIp5Dubm52Ldvn0qasLAw8f9Dhw6hqKhI8vqBAwckaZXTR0ZGStJmZ2fjzJkzAACFQoHOnTvrrGNZ6TrHAMN+Dii3vVevXkVubm65ylNmqM+0LVu2iP+/8MILqFGjhtYymzZtiq5du6rNX+L3338X2/Nq1aph0qRJWsssiw0bNuD5559HXl4eAGDYsGHYsmUL7O3tDb4tomcJ4wNVjA/0x/jAtBgfSJlDfPDbb7+J//fu3RstW7Ysc1nGuHcrrVu3bqhbt67WNMptY3x8PPLz81XSKLczZ8+e1bldU2vSpAnatWunNU2bNm3E/xUKBcaNG6c1vXJ5cj9DDNWGGtP27dvFGNDBwQETJkzQml6hUEiuvSNHjiAtLU3ndgzRBujDmOesrn1RKBSS465uX4zVvhuyjVJHEARMmTIFs2bNAvBkXxcuXCguExHjMHUYh+mPcZhpMQ6TMoc4rH79+pL2ct26dRrTHjt2DNevXwcAWFpaYujQoSppIiMjkZWVJS5PmTJFZx2mTp0q/p+UlCT+DmJsTk5OaNKkCQAgLy8PFy5cqJDtmhs/Pz+Eh4cDAIqLi7F69WqNaVesWCH+P2zYMJ2/6+lirNiicePG6NSpk9Y0wcHBYvvz+PFjxMfHq6QxRkyXlJSEI0eOiMsffPABLC0tte+QnpKSktCpUyecPHkSAFCrVi0cPHgQrVu3Nuh2qHzY0Y0qhHJgUzqAysvLw6lTpwAALVu2VLnxV25IS+dVXvb29hZvck0pODhYZ5patWqJ/9+/f9/gdVAO0DQ5duwYCgoKADzpINC0aVNZZSunO336tOS1KlWqiAGJIAjo37+/wT5Ye/ToIStdr169xP9PnDih8npUVJT4f8mNhxza9lu5TF9fX4N/WWcOTpw4IfmyQvl91sTOzk7yY8fx48eNUjd91K1bF15eXjrT6bpGjXH96CMnJweXL18Wl+WcywqFQtIRTC457YnysXV0dJTViaxmzZqSQFXd+REYGAh3d3cAQFZWlkqAVtKZzcHBAW3btkVYWBgUCoXktRJRUVHiDXXTpk1RtWpVnXUsq4r+HAgICBA/OzMyMjB48GDcuHGjXGWWMMS+PH78WPJZIKf9AIC+ffuK/6s7P5Tb3r59+8LW1lZWuXL9+OOPGDFihHitT548GevWrYO1tbVBt0P0rGJ8IMX4QH+MD0yL8YGUqeODwsJCHDt2TFwePHhwmcsy1r1bafq2jYIgSH7wKaH8RfObb76Jbdu2iT+amqPSnQbUqV69uvh/vXr14OHhITt9ZmamrHoYqg01JuXzqHPnzrJ+BOrTp48YEwJAdHS01vSGagP0oXzO7tq1C9OnTzfIZ7+NjQ1atWqlM52ufTFG+27INkqdwsJCjBo1Ct9//z0AwMrKCmvWrJH1wzDRs4ZxmBTjMP0xDjMtxmFSpo7DSih3nFu/fr3GdMqvdevWDZ6enipplI9P48aNdT4cBDxp75R/7zDUMb5//z42btyIGTNmYOTIkejfvz969uwp+SvpuAcAt2/fNsh2n0bKHTdXrlypNiZNTU3F9u3bxWVdnb7kMFY8LOcz1N7eXnLeqbtGjRHTKbf1NjY2ku8iDOHy5csICQkRO9c2bNgQhw8fhr+/v0G3Q+Wn/XEGIgPp3Lkzvv32WwD/PfHj4+MD4MmNSMlTueo6R5QOoEaNGiVZLmEOTwkB0i8YNVEOEg058k4JOU+/KPesf/z4MXr27Cmr7JJRbQAgPT1d5fW3334bb775JgDg5MmTCAoKQlBQEHr27IlOnTohODgYVapUkbUtZXJvUEueHgCAhIQEFBYWSp7cUt7vFStWYNu2bbLKjY2NFf8vvd/KHY7kfKn4NFK+WfXw8JAVhABPOir99ddfKmWYipzrE9B9jRrr+pHr1q1bkoC2cePGsvLJTadMTnuifGwDAgJ0PkVWIjAwUAwk1Z0fCoUCnTp1EkeEiIyMFG/cHz16JN4kd+jQAdbW1qhWrRoCAgJw4cIFyWhvJXlLGPvzoqI/B2xtbTF58mR88803AJ78WOLn54fg4GB0794dISEhaN++fZmeDjLEviQlJUlG32jWrJmsbQcGBor/p6enIzs7Gy4uLuI6Y7a9ixcvlnwJ97///Q+ff/65QbdB9KxjfCDF+IDxwdOG8YGUqeODpKQkSb3Kc94Z696tNH3bRkD9e//GG2/gl19+QWFhIdLS0tC/f3/UqlULffr0QVhYGDp06IA6derI2oeKoO7HrNKU91vf9MrnlDaGakONSbmNkHseuri4wMfHBwkJCSplqGOoNkAfISEhaN26tTg6wLx58/D999+jW7du6Nq1Kzp06ICWLVvqPSpB1apVZR0bXftijPbdkG2UOsOHDxfjNzs7O/z+++/o16+fQbdBVFkwDpNiHMY47GnDOEzK1HFYiaFDh+Ltt99GYWEh4uPjcfToUZWOQkVFRfj999/FZeXOccrKcg9ckrbkN5DyHuPMzEx88MEHWL16NR4/fiw7n7oHk54VAwcOhIeHB9LS0pCQkID9+/fjueeek6RZs2aN2DGzWbNmaNu2bbm3a6x42FDXqDFiOuW2vlmzZrCxsZFVrhw3b95Ep06dxFHkWrRogV27dsmKy6nisaMbVYhOnTpBoVCIvYiVAyHlIEjdMJiBgYFwcXFBdna2JK3yE0aA+uDLFPRtUI3xpLGzs7PONPfu3RP/z8nJwe7du/Xejrqbltdffx1XrlwRn6IEgJiYGMTExODLL7+EhYUFWrdujWHDhmHcuHHikMm6yB19qXS6+/fvo1q1agCeDBmr3KO8rMP3lt7vjIwM8X9dT1o/rZTft5L3Uw7ltHKfLDemstzwqLtGjXX9lDWvm5ubrHxy0ymT054Y8/wICwuTdHSbNm0agCdfvpUEWcoj1YWFheHChQtITU3FxYsXERAQIOZVTmNMpvgcmDt3LhISErBp0yaxzCNHjohDOFtbW6Njx44YPnw4Ro0aJRnSWhtD7EvpJ3nkniOl02VmZkp+LDVm26vcyc3f3x8zZ840aPlExPhAG8YHjA+eBowPpEwdHyifc0D5zjtj3buVZqj3vkWLFli9ejXGjx8vxge3bt3CsmXLsGzZMgBPppIZNGgQJk6ciPr16+u9XUPSd78N+aW9MkO0ocZWnnam5EcRXe2Moc5DfSgUCmzatAm9evXCxYsXATx5kGvbtm3ij/wuLi7o3r07xowZgz59+sgq11D7Yoz23ZBtlDrK8dvw4cPZyY1IC8ZhmjEOYxz2NGAcJmXqOKyEh4cHunXrhp07dwJ4Mn1p6Y5u+/btw927dwE86Rz0/PPPqy3L1Mc4OTkZoaGhuHr1qt559ekUV9nY2Njg5Zdfxvz58wE86cBbuqPbypUrxf8NMZobYLx42BxiC00xnTHb+pJtlli4cCE7uZkxTl1KFcLd3V3ypIdyIFTyv0KhQMeOHVXyWlpaijcEV65cEW8Ejh49KvZ8BsznSSFzIGc0pYcPH5Z7O+o+tBQKBRYtWoSDBw9iwIABKh+GxcXFiI6OxjvvvIO6detqHcZXmdwP1dJT1ynfWOXl5UlGwSqr0mUob8PQU+eZC+V91OcGR/n9qEw3uca6foydtyz55LQnxjw/lNt25elHNXVcU/6/ZFS3nJwc8QsThUJRKT8vbGxs8Oeff2LLli3o2rWrytP/BQUFiIyMxMSJE+Hn54d9+/ZVWN1KH1tDtOellw3d9vbo0UM89+Pi4vDiiy9K7jmIqPwYH1Qsxgf/YXxgGIwPpEwdH5R+L8tz3hnr3s2YRowYgbi4OEyePFntyCTXrl3D119/jcaNG+P9999HYWFhhdXNXD0Nx7UytzN16tTB6dOnsWjRIrUj42RnZ+PPP/9E3759ERwcjPj4+AqrmzHed0O2UeooT9u2cuVKfPXVVwYtn6gyYRxWsRiH/YdxmGFU5vujsjB1HKZMeYS233//XSXmUL7Gnn/+eTg5Oaktx9THeNy4cWInNwsLCwwZMgQbNmzA+fPnkZmZicePH0MQBPGPbf5/lKcv/fvvvyUdsg4dOiROhWlra4uRI0cabLvmHA8bO7YwdFtferrgQYMG4fz58wbdBhkOO7pRhVH+sCsJmgoKCnDs2DEAT4Yydnd3V5s3JCREJa9yEObh4cG5kfWkPLJTWFiY5MZEnz9NOnXqhM2bNyMzMxN79uzBxx9/jJCQEEnni8zMTIwYMUIcMlmbnJwcWftVOp3yk0iOjo6wtrYWlyMjI8u0z7NmzZJsQ/m9rKxD8yq/j3KPBfDky9kSZRlNzFwZ+/rRZ/uA6qgLmhjr/DTm+dG8eXPx5jw7O1vssFbSic3BwUEyxHNoaCgUCgWA/zrDKXeQCwgIqLARCEyhf//+2LdvH+7du4etW7fivffeQ6tWrcT3BABu376NPn36iJ+/xlb6iVC554jy+QGoniPGbHuHDRuGn376SXzftm7diiFDhrCzG5GBMT4wL4wPGB/og/GBlLnFB+U574x172ZsdevWxeLFi5GWlobjx49j/vz56Nevn+QHpMLCQnz99dd49913DbJNQ/xAayqGaEONrbK3M7a2tnjzzTcRGxuLxMRE/PLLL3jllVckP6wAT0YzDw8Pr7DRV4zxvhuyjVLnxx9/xNixY8XlGTNmiKNpEJEqxmHmhXEY4zB9VPb7I32ZOg5T9vzzz8PR0REAkJaWhr1794qv5eXl4e+//xaXNU1bCpj2GMfExGDXrl3i8m+//YaNGzdi2LBhaNKkCdzc3FQ6K+lTx8quQYMG4kAMjx8/xq+//iq+tmLFCvH/QYMGafycLStTxMNyGDu2MHRb7+XlhYiICHFa9/T0dHTt2lUciZvMCzu6UYVRHrK65ImfkydPinM2qxsOu4TyayWBU1RUlOR15R/xSTfloTbLMgStXA4ODujWrRvmzJmDqKgo3L17F19++aVk3u733ntPZzmlhwvVRPkpVwcHB5WnIpSHMTXUfivPVW7M99KUlN+3W7duye7soTx3emUaLryirh9NatWqJXkisORJEF3kptOX8rHV50lzOeeHhYWF5DMgMjISjx8/Fr9869Chg+SLEQ8PD3G60pLOcBU5bam5cHV1Rb9+/fD111/j5MmTSExMxPvvvy9+iZWfn48PP/ywQupS+tjKPUeUzw9LS0uVp5GM3faOGzcOy5YtE+8vNm/ejJdeeokjgBAZEOMD88L4gPGBPhgfSJk6PlA+58pbB2Pdu1UUS0tLtG3bFu+++y62bt2K9PR0bNiwQfyiGgB++OEHtW2I8o82cs5pc5j2qawM1YYaU1niTEEQJGmflnamdu3aGDVqFJYvX44bN27g1KlTGDhwoPj6zZs38cMPP1RIXYzRvhuyjVJHoVDg559/xujRo8V17733HhYsWGDQ7RBVFozDzAvjMMZh+mAcJmXqOEyZo6OjZDpS5RHctm3bJnbyqVatGrp3766xHGP+1qKLcue80NBQvPjiizrz3Llzp0zbqqyUR3Ur6dyWk5ODP/74Q1xvqGlL1SlPPGwMxojpjN3W+/j4ICIiArVr1wYApKamokuXLkb7fZXKjh3dqMIoB1DAk0BI+WkfbQFUu3btxC8cDx48KHnCCDDccNjKHUcM1YvfXLVv3178//bt27h8+XKFbLdq1ap4//338eOPP4rrbty4IbkJU+fEiROyyldO16JFC5XXlfd7//79ssrURbnM06dPl3u45Io4D/XdRsuWLcX/8/PzERMTI2s7ytepchllpfxFiSmvUVNdPyWcnZ3RqFEjcVm5I5c2JR2/DE352CYkJCA1NVVnnqKiIpw8eVJtGaUpt/GRkZE4fvw4Hj16BEB9x7WSdXfv3kVcXJzk/dH1eVFZPwdq1aqFL7/8Eh999JG47uDBgxUyVL2Xlxdq1KghLh8/flxWPuX2o1mzZpIOjYD0OlS+nzCkV155BYsXLxbbnk2bNmHEiBHiCIFEVD6MD8wL4wPGB/psg/GBlKnjA3d3dzRo0EBcLs+9kbHu3UzF1tYWw4YNw549e8Q6FRcXq73enZ2dxf/ldGJ7mqcwMVQbChivjVJuI+Seh+fPn8eDBw/UlvE0admyJTZt2oTw8HBx3Z49eyps2yUM1b4bso3SxMLCAqtWrZKMkPL2229j0aJFBt8W0dOOcZh5YRzGOEyfbTAOkzJ1HFaa8n3I5s2bxQ7Eyp3ehg4dCisrK41lKB+f06dPy+rMeP/+fcm+l/UYJyYmiv+3adNGZ/r4+HikpKToTPc0tenlreugQYPEGYXOnTuHEydOYMOGDWJ7VK9ePck9vrHpEw8bgzFiutLX/Y0bN8pZS1V169ZFREQEatWqBeDJb41dunTBlStXDL4tKjt2dKMK4+XlJemYUTqAKh1gKbOzs0OrVq0AALGxsdi7d694g6Arrz5KhpUFngwlW5k1bdoU3t7e4vLSpUsrdPsDBgyQLN+9e1dr+u3bt0uOuTqFhYX4888/xWXlodRLKD8psXnzZlk3YbqEh4eLoyTl5eVJhqMti4o4D/XdRoMGDSS95Dds2KAzT1xcHE6fPi0ua/uSRC5zuUZNff0AQO/evcX/f/31V53Xx549e/R6Akgfbdu2Fb/kEgQBv/32m848e/fulXSI03Z+KHdmi4qKktyEa+voBjx5Wkr5PNT1hZu5nGPGovxUWWFhIe7du1ch21U+vnLaj4KCAvz+++9q85d47rnnxP8PHTpktCdqJk2ahO+//15c/v333zFq1Ch2diMyAMYH5sXU9zeMDzRjfKCZuVyjpr5+AOm90Zo1a8o15box7t1MrWHDhuLIz4D6NqZOnTri/7GxsTrL3LJli2EqZwKGakMB412HyufRxYsXcfbsWZ151q1bJ/7v5uaGpk2bGqw+FU2hUKB///7isq7PRUMxVvtuyDZKEwsLC6xZswYvvfSSuO6tt97C4sWLDb4toqcZ4zDzYur7SMZhmjEO08xcrlFTXz+ldevWTRxl7sGDB9iyZQsyMzOxc+dOMY22aUsB6fHJysqS5NXkt99+E7+rtrS0RHBwcFmqL7k/kzM655o1a2SVay7nixzlrautra1klOEVK1ZIpi0dP368SUY+lRMPG4MxYrrWrVtLpi/96aefyl9RNerXr49///1XfBAwOTkZ4eHhuHbtmlG2R/pjRzeqUKVH5Tl8+DCAJz1ja9asqTVvSWMoCAK++OILcb2bmxsCAwMNUj/lG0RdT6487RQKBd566y1xecmSJYiOji5Xmfr0bi/9NI2u+cizs7Px1VdfaU2zZMkS3Lp1S1x++eWXVdKMHDlS7E3/6NEjvPbaa+V+gsDb2xuDBw8Wlz/66KNyBWYVcR6WZRtjx44V/1+6dKnOoW3ff/998X9PT0/07dtXv0qqYS7XqDGuH31NmDBBvCFOTk7GjBkzNKbNysqS1NfQXF1dJdfAF198gaysLI3pCwsL8b///U9cDgoK0vqUUVBQkHjjmp2djWXLlgF4Mux927ZtVdKHhoaK7823334rBnkBAQGS4czVMZdzTB/6tGHKT8IAqLAppcaNGyf+f+bMGckPoeosWrRI0p6PHz9eJc3AgQPFewdBEDBp0iSjdT57/fXXsXDhQnF5w4YNePnll1FcXGyU7RE9SxgfmA/GB4wP9N0G44P/mEN88MYbb4j3wImJiZgzZ06ZyzLGvZuxlLWdUdfGKMckO3bs0PojbkJCAn7++WfZ2zY3hmpDAeNdh926dROniwGADz74QGv6pKQkyfSeY8aMEX/sNidljd90fS4akjHad0O2UdpYWlpi7dq1GDJkiGTbJd8jENETjMPMB+MwxmH6boNx2H/MIQ5TZmVlJbkHWb9+Pf7880/k5+cDeDKal65OaI0bN5ak+fjjj7U+IJCTk4NPP/1UXO7Xr5/O30A0Ue40WPK5oElCQgK++eYbWeUqny83btww61HdDHFuK09fumbNGvGctLS0xJgxY8pVv9IMGQ8bgzFiOhsbG8l7vGDBAly4cMFANZZq0KABIiIixGvjzp07CA8Pr/T3Jk8LdnSjCqX8RM/58+fFjhByniBQTnPo0CHJeuWhRMtD+UvN3bt34+LFiwYp11y9/vrrqF+/PgDg8ePH6N27N3bv3q0zX3R0NIYNGyaZrx148vRX3759ERkZqfXDtaioSNLJpXr16mjYsKHO7X7++ecav2Dfs2cP3nvvPXF5wIAB8Pf3V0nn6Ogo+TLt77//xogRI5CTk6N121lZWfjhhx8wbNgwta/PnDkT9vb2AID09HR06dJF69zgxcXF+O2339SeY8rn4ZkzZ2RPS6kP5W2sXLlSa6ekEm+88QZcXV0BPHmSoV+/fkhOTlZJJwgCPvjgA2zbtk1cN336dHHEL0PVe/HixRUy7aImhr5+9NW4cWPJzdz333+PV199Fenp6ZJ0p06dQlhYGC5duiR+eWAM06dPF4fcTklJwcCBA9WeV/n5+Rg7dizOnDkjrlOeTlMdCwsLyZN/JU+bdOjQQe2USB4eHuLTKcpPpsiZPkH5HNu4cSPu3LmjM4+prVu3DiNGjMCpU6e0psvLy8OsWbPE5TZt2ojtlrF169ZN0ilxwoQJGoPlLVu2SAKevn37onnz5irprK2tJUH8gQMHMGTIEK3t2YMHD3R+GafJlClT8N1334nL69atw9ixY9nZjaicGB+YF8YHjA8AxgdlZer4ICAgAKNGjRKXP/vsM8ydO1frgwCJiYlYvny5ynpj3LsZS1BQENatW4dHjx5pTffTTz9JnrxWN+JMnz59xPMyIyND8qOgsjt37qB///462wlzZ4g2FChb+yGHpaWl5Bjs3LkT7733ntr775SUFPTt21f88cbR0RFTp041SD0MberUqfjggw+QlJSkNd3NmzclI5EZapQkOYzRvhuyjdLF0tIS69atEzs7CIKAyZMnG220B6KnEeMw88I4jHEYwDisrEwdh5U2cuRI8f/du3djyZIl4rKu0dxKfPjhh+L/586dw8svv6z2Pc7OzsagQYPE3zAsLS11diTSRvn3kyNHjuCXX35Rmy4+Ph49evRQeahek2bNmom/Hd27d09juebAELFNo0aNxM9Z5Ti1V69e4uhghmLIeNgYjBXTvfvuu/Dw8ADw5D3u1q2bzqm1d+3aJblvkathw4b4999/4eXlBQC4desWunTpYrQZtEg+zZNAExmBpk4GcgKojh07QqFQqNyYG7Ix7tq1Kzw9PZGamoqHDx8iMDAQLVq0QPXq1SU9hjdv3mywbZqSk5MT/vrrL3Ts2BEPHjzAvXv30LNnT3Tu3FkMQJydnfHgwQPcvn0bp06dwu7du8X5rkv3PBcEAf/88w/++ecf1K5dG7169ULr1q1Ru3ZtODs7IycnB+fPn8fatWtx7tw5Md+MGTN0BsFDhgzB77//jqFDh2Ljxo148cUXUaNGDaSmpmLLli1Yv369+MHo5uYmmWautMmTJ+PYsWPizdSGDRuwa9cuDB8+HCEhIWKP/YyMDFy8eBFHjx7Fvn37kJ+fj3bt2qktMyAgAIsWLcIrr7wC4Mlw0E2aNMHQoUPRo0cP1KpVC8XFxbh9+zaOHz+Ov//+G3fu3EFERIRkuFgA8Pf3R1BQEGJiYiAIAsLDwxEYGIjatWuLN4MAsHz58jI/mfHSSy9h3rx5EAQBMTExqFmzJlq2bIkqVaqIT9g2bdoUn332mZinRo0aWLRokfgE1vnz59GkSRO8+uqr6NSpExwcHHDlyhWsXLlSMtd6SEgI3n777TLVs7Thw4eLQfSuXbvg7e2NoKAguLi4iGm6dOmCKVOmGGR72hj6+imLr7/+GkePHhWvp+XLl2PlypUIDAyEq6srEhMTxScL6tati6lTp4pPONna2pZ7+8qCgoLw8ccfY+bMmQCAiIgINGnSBJMmTUKbNm1gbW2N2NhYLFu2DHFxcWK+l156SfKknSZhYWHYvn27yjpt6Us/xaEtfYlBgwbh7bffxuPHj3H79m3Uq1cPLVu2RLVq1cR2ytPTs0xfthtLYWEh1q9fj/Xr16Nhw4bo0aMHWrVqBW9vbzg6OuL+/fs4c+YMVq5cKbn5Vv4iy9gUCgVWr16N1q1bIzc3Fzk5OQgNDcWoUaPQt29feHh4IDk5GZs2bcIff/wh5qtatarWJ+/Hjh2L/fv3i8NZ//XXXzh48CBGjRqFkJAQeHh4IC8vD9evX0dUVBS2bt2Khw8favzRUpepU6eisLBQ/MLul19+gaWlJVasWGGSIceJKgPGB+aF8QHjA8YHZWcO8cGPP/6I6OhocUr3Dz/8EL/++itGjBiBoKAguLq6IisrC+fPn8e+ffsQERGBkJAQyQM0gPHu3Yzh3LlzGDlyJCZPnozevXujXbt28PPzQ5UqVZCfn4/r169j8+bN2LFjh5jn+eefV7nOgCdPtY8bN06c8uiHH37AlStXMGbMGNSqVQuZmZk4cOAAfvrpJ+Tk5GDkyJHlnhLLVAzZhpal/ZDrtddew99//439+/cDAObPn4/IyEiMHz8ejRo1wqNHj3D48GEsXboU9+7dE/N9++238PHx0Xt7FSErKwuLFi3CV199hQ4dOiA0NBTNmzeHh4cHrK2tcffuXURFRWHVqlXIzs4GADg7O+PNN9+ssDoaq303VBslh5WVFTZs2IAhQ4Zg8+bNEAQBr776KqysrCQj4RA9qxiHmRfGYYzDGIeVnTnEYcpK4pFr166hoKBA8sD/8OHDZZXRp08fjB07FqtWrQLw5No4ffo0Jk6ciMDAQBQXF+PUqVNYunQpEhMTxXzTp09XOwOOXKGhoeI5Dzx5b3bv3o1BgwbBy8sL6enp2LdvH1atWoXc3Fw0a9YM9vb2OkfRc3FxQd++fcU2e8yYMZg7dy7q168v6Xj52WefqUxTWdEMFdtMnDhRMi048OQBMkMzZDxsLMaI6Tw9PfHLL7+gX79+KCwsRHJyMtq1a4cBAwagb9++8PX1hZWVFZKTk3Hy5Els3rwZ169fx6pVq9ROp61L48aN8e+//yI8PBypqalITExEeHg4Dhw4YLZx5zNBIKpgdevWFQBI/i5duiQrb9OmTVXyRkdH68wXHx8vyaPNtm3bBDs7O5XtaMuv/Fp8fLzO+kRERIjpfXx8dKaXQ986KDt37pzg6+urdZ/V/e3cuVPjfsn9e/XVV4WioiK19fLx8RHTRURECCNHjtRZnqOjo3D48GGd+1xUVCRMmzZN7/q2a9dOa7krVqwQrKysZJcXERGhtpwTJ04Ibm5uWvPqe5xL++ijj7SWHxoaqjbfwoULBYVCIWv/OnbsKNy/f79c9SxN13nw8ssvS9KvWrVK5z6V9vLLL4t5Zs6cqTWtoa6fskpNTRVCQ0O1biswMFC4du2asGTJEnHdiy++qLHM8pxn7777ruz3YPDgwcLjx49llXvixAmV/IcOHdKY/o8//lBJn5KSImtby5YtEywsLDTWu3S7rc9nTImynJdyypL79/nnn2ssT9/jr89nWlRUlODq6iqrjt7e3kJsbKzO7RcWFgoTJ07Ua//VUb6OVq1apXWbX375paS8V155RSguLtZZVyJSj/EB4wPlP8YHEWrLYXygGeMDqdTUVKFdu3ayt6vtPTD0vZs+91sldJ3jZblmMzIyNG4vMzNTaNKkic5yOnXqJOTm5sq6BvU5fwRB/3NU7meaMdtQfdsPfT6Hs7OzhbCwMNnHeN68eVrLM3YboE9Zcv4cHR2FPXv2qC2rLPcPM2fO1Ng+lmaM9t1QbZSca08QBCE/P1/o37+/mNbCwkJYs2aNznoSPQsYhzEOU/5jHBahthzGYZoxDtPsk08+UdlOq1at9CojPz9fGDZsmOz9ePPNN7V+Py23/T1//rysGLBmzZrC5cuXZcd48fHxQq1atfS6DuUefznXoz7nX1mvSWWPHj0S3N3dxTze3t5CQUGBznz6KkvbqSkeLkvMU/rzQRNDx3QlduzYITg5OckuV905qs+5ERsbK1SrVk1MX7duXeHmzZuy6kqGx6lLqcKVflrI09MTjRo1kpW39BNFTk5OkmFEDaFv3744e/Yspk6dipYtW8LNzU1l/ufKplmzZjh//jy+/PJL1KxZU2vaKlWqYMiQIdi2bRu6deumUs6sWbPQunVrne9ZixYt8Ndff2Hp0qWyhzRfu3Ytvv76a1StWlXt6+Hh4Th9+jQ6dOigsywLCwvMmzcPx44dQ+/evSVP4JSmUCgQFBSETz/9VPK0ujrjxo1DbGwsBg8erHZKxRKenp5466230KxZM7Wvt27dGufPn8eHH36I9u3bw93dXWsdy+LTTz/Fv//+i5EjR6JRo0ZwcnKSNSLRlClTcOTIEa1P+Hl5eeHbb79FRESEOIy2oaxduxZ//fUXXnjhBdSrVw+Ojo4mHUnJUNdPWXl4eCAiIgK//fYb+vTpA29vb9jY2KBGjRoICwvDTz/9hGPHjqF+/fpITU0V8xlrGtP58+djx44dCAoK0pimbt26WL16Nf744w/ZQ6W3aNFCci45ODhofTopNDRUcl40btxYHFpYl4kTJyI6OhoTJ05E06ZN4eLiYrCpF4whPDwc06dPR9OmTbVeCwqFAp07d8aBAwcqdDQ3ZSEhITh//jxGjRql8dg7ODjgtddew7lz52Q9wWVpaYlly5Zh165dGp/mLNG4cWN8/fXXZaq7svfffx+ff/65uPzTTz9h8uTJWqeDICLNGB+YH8YHjA8YH5SdOcQHhw4dwuLFi7U+WWxpaYnOnTvjnXfe0ZjGGPduhvbDDz+ge/fucHBw0Jqudu3a+OqrrxAVFYUqVapoTOfm5oaIiAgMHTpU7etOTk54//33sX//fnFarKeVIdvQsrYfcjg7O2Pv3r1YuHAhvL29Nabr2LEjDh8+jGnTphlku8YyceJEjBs3DrVq1dKazs7ODsOHD8f58+cN1j7oyxjtuyHbKDmsra3xxx9/oE+fPgCeTFE3duxYcVRwomcZ4zDzwziMcRjjsLIzdRymTN0UpXKnLS1hbW2N9evX49dffxWnZlWnWbNm2Lp1KxYtWmSQ979JkyY4duyYxlGvrK2tMXToUMTExMia6riEr68vzp49iy+++AKdO3eGp6enQabRNQZDxDa2traS9+fll182eNsBGD4eNhZjxXS9evVCXFwcxo8frzU+d3Nzw/jx4xEeHq533ZU1bdoU+/fvFz//4uPj0aVLF9y6datc5VLZKAT+IkdEpVy4cAFnzpxBWloaHj58CCcnJ9SoUQP+/v5o0qSJrIDnwYMHiImJwbVr15CWlobHjx/DyckJNWvWROvWrVG3bl2dZfj6+uLmzZsAnkyDWDLtYH5+Pv7991/Ex8cjKysL1atXR0hICPz8/Mq8zzk5OTh06BASExORkZEBS0tLuLm5wc/PD4GBgWXqFJSTk4ODBw+KZdra2sLb2xtNmzZFYGBgpZjm7vbt24iKikJycjIeP34MDw8PNG3aFG3atDHrjkHGZIjrx1j69esnTv+5dOlSvPrqq0bd3vXr13H06FHcvXsXRUVF8PDwQMuWLdG8eXOjbvdZlpmZiZiYGFy/fh337t1DYWEhnJyc4OvrizZt2qBGjRqmrqIoJycHkZGRSExMRFZWFqpUqYK6desiNDS0XD8a3rlzB4cOHUJKSgqys7Ph5OSEOnXqoGXLlvD19TXcDhARPUMYHzA+kIvxgSpTxwfnz5/HmTNncPfuXeTn58PV1RV+fn5o06YN3N3dZZdjrHs3QyksLMS5c+dw5coVJCcn4+HDh7Czs4OnpyeaN2+OZs2a6f1e37p1CxEREbhz5w7s7e3h4+ODrl27wsnJyUh7YVwV2YYaiyAIOHHiBGJjY5GWlgZbW1tUr14dnTp10tlxzBwlJiYiNjYWN2/exP3796FQKODq6opGjRqhTZs2kum/TM1Y7buh2igiosqIcRjjMLkYh6kydRxmaLGxsTh9+jRSU1OhUCjg5eWF9u3bo0GDBkbb5oULF3DkyBGkp6fD2dkZNWvWRGhoKO/RZLh+/ToaNGgAQRCgUChw5coVo8ZXxoiHjcVYMd2jR49w6NAh3LhxA+np6bCysoKnpyeaNGmCFi1aGKWjIZkWO7oRkdnSFEARkf5u376NunXroqCgAABw9uxZBAYGmrhWRERERPIxPiAiKju2oURERFQWvIcgItLPjBkz8NVXXwF4Msrlv//+a+IaEVU+5tF1k4iIiMpETn/1goICjBs3Tuzk1qJFC3ZyIyIiIiIiIiIiIiIiIjKQrKwsLF++XFyePHmyCWtDVHmxoxsREdFTrGPHjpg3bx6uX7+u8pogCIiMjETnzp2xZ88ecf0nn3xSkVUkIiIiIiIiIiIiIiIiqrTy8vIwadIkZGZmAgD8/PwwaNAgE9eKqHIyeUe3xYsXo27durCzs0OrVq0QFRWlMW1kZCQUCoXK36VLlyqwxkRERObjxo0bmD59Ovz8/ODp6Yng4GB069YN7du3h7u7O8LDw3Hs2DEx/aRJk/D888+brsJERM8gxjxERERERFRZMd4hIiKiZ9WiRYvw/PPPo3v37vDx8cFvv/0mvjZ37lxYWlqasHZElZeVKTe+ceNGTJ06FYsXL0bHjh2xbNky9OrVCxcvXkSdOnU05rt8+TJcXFzEZQ8Pj4qoLhERkdmxsPivz3paWhrS0tLUprO1tcUHH3zA0dyIiCoYYx4iIiIiIqqsGO8QERHRs+z06dPYsmWLyvrx48fjxRdfNEGNiJ4NJh3R7dtvv8X48eMxYcIE+Pv7Y8GCBahduzaWLFmiNZ+npyeqV68u/rEnLBERPatiYmKwfPlyjBgxAs2bN0eVKlVgZWUFOzs71KxZE+Hh4fj0009x/fp1zJw5EwqFwtRVJiJ6pjDmISIiIiKiyorxDhEREdETDg4OaNu2LX766Sf89NNPpq4OUaWmEARBMMWG8/Pz4eDggD/++AMDBw4U17/11luIiYnBgQMHVPJERkYiPDwcvr6+ePToEQICAvDRRx8hPDxc43YeP36Mx48fi8vFxcXIyMhA1apV+WM/EREREdFTQBAE5OTkoEaNGpKRLM0dYx4iIiIiIpLjaYx5GO8QEREREZEcho53TDZ1aXp6OoqKiuDl5SVZ7+XlhZSUFLV5vL29sXz5crRq1QqPHz/G2rVr0bVrV0RGRqJz585q83zxxReYPXu2wetPREREREQVKykpCbVq1TJ1NWRjzENERERERPp4mmIexjtERERERKQPQ8U7JuvoVqL0EzeCIGh8CqdRo0Zo1KiRuBwcHIykpCTMnz9fYxD0wQcf4J133hGXs7KyUKdOHSQlJcHFxcUAe0BERERERMaUnZ2N2rVrw9nZ2dRVKRPGPEREREREpM3THPMw3iEiIiIiIm0MHe+YrKNbtWrVYGlpqfJkT2pqqsoTQNq0b98ev/76q8bXbW1tYWtrq7LexcWFQRARERER0VPkaZuWhjEPERERERHp42mKeRjvEBERERGRPgwV75R/8tMysrGxQatWrbB3717J+r1796JDhw6yyzlz5gy8vb0NXT0iIiIiIqJyYcxDRERERESVFeMdIiIiIiIyBZNOXfrOO+9g1KhRaN26NYKDg7F8+XIkJiZi0qRJAJ4MSX379m388ssvAIAFCxbA19cXTZo0QX5+Pn799Vds2rQJmzZtMuVuEBERERERqcWYh4iIiIiIKivGO0REREREVNFM2tFt6NChuHfvHubMmYPk5GQ0bdoUO3bsgI+PDwAgOTkZiYmJYvr8/HxMmzYNt2/fhr29PZo0aYJ//vkHvXv3NtUuEBERERERacSYh4iIiIiIKivGO0REREREVNEUgiAIpq5ERcrOzoarqyuysrLg4uJi6uoQERERPfOKiopQUFBg6mqQiVlbW8PS0lLta7yH1w/fLyIiIiLzUVxcjPz8fFNXg0xMW7wD8B5eH3yviIiIiMwLf+Ohio53TDqiGxERERE9uwRBQEpKCu7fv2/qqpCZcHNzQ/Xq1aFQKExdFSIiIiKicsvPz0d8fDyKi4tNXRUyA4x3iIiIiKgy4W88pKwi4x12dCMiIiIikygJgDw9PeHg4MAv+59hgiAgNzcXqampAABvb28T14iIiIiIqHwEQUBycjIsLS1Ru3ZtWFhYmLpKZCKMd4iIiIioMuJvPASYJt5hRzciIiIiqnBFRUViAFS1alVTV4fMgL29PQAgNTUVnp6eWoe5JiIiIiIyd4WFhcjNzUWNGjXg4OBg6uqQiTHeISIiIqLKhL/xkLKKjnf4GBkRERERVbiCggIA4A8+JFFyPpScH0RERERET6uioiIAgI2NjYlrQuaC8Q4RERERVRb8jYdKq8h4hx3diIiIiMhkOJQ1KeP5QERERESVDe9xqQTPBSIiIiKqbHiPSyUq8lxgRzciIiIiIiIiIiIiIiIiIiIiIiIya+zoRkREREREZRIWFoapU6eKy76+vliwYIHJ6kNERERERGQojHeIiIiIiKiyeprjHXZ0IyIiIiLS0+LFi1G3bl3Y2dmhVatWiIqK0po+OTkZw4cPR6NGjWBhYSEJHp4GkZGRUCgUuH//vmT9X3/9hU8//dQ0lSIiIiIiIqNgvPME4x0iIiIiosqH8c4TT3O8w45uRERERER62LhxI6ZOnYoPP/wQZ86cQadOndCrVy8kJiZqzPP48WN4eHjgww8/RPPmzSuwtsbl7u4OZ2dnU1eDiIiIiIgMhPHOfxjvEBERERFVLox3/vM0xzvs6EZEREREpIdvv/0W48ePx4QJE+Dv748FCxagdu3aWLJkicY8vr6+WLhwIUaPHg1XV1fZ29qxYwcaNmwIe3t7hIeHY/Xq1ZInb2bNmoWgoCBJngULFsDX11dcPnHiBLp164Zq1arB1dUVoaGhOH36tCSPQqHAzz//jIEDB8LBwQENGjTA1q1bAQAJCQkIDw8HAFSpUgUKhQJjxowBoDq0dWlZWVmYOHEiPD094eLigi5duuDs2bOy95+IiIiIiCoW4x3GO0RERERElRXjncoR77CjGxERERGZBUEQ8DD/oUn+BEGQVcf8/HycOnUK3bt3l6zv3r07jhw5YtD3IykpCYMGDULv3r0RExODCRMmYMaMGXqXk5OTg5dffhlRUVE4duwYGjRogN69eyMnJ0eSbvbs2RgyZAjOnTuH3r17Y8SIEcjIyEDt2rWxadMmAMDly5eRnJyMhQsX6tyuIAjo06cPUlJSsGPHDpw6dQotW7ZE165dkZGRofd+EBERERE9zRjvSDHeISIiIiKqPBjvSDHeMS4rU1eAiIiIiAgAcgty4fSFk0m2/eCDB3C0cdSZLj09HUVFRfDy8pKs9/LyQkpKikHrtGTJEtSrVw/fffcdFAoFGjVqhNjYWHz11Vd6ldOlSxfJ8rJly1ClShUcOHAAffv2FdePGTMGL730EgBg7ty5+P777xEdHY2ePXvC3d0dAODp6Qk3NzdZ242IiEBsbCxSU1Nha2sLAJg/fz42b96MP//8ExMnTtRrP4iIiIiInmaMd6QY7xARERERVR6Md6QY7xgXO7oREREREelJoVBIlgVBUFlXXnFxcWjfvr2k3ODgYL3LSU1NxSeffIJ///0Xd+/eRVFREXJzc5GYmChJFxgYKP7v6OgIZ2dnpKamlrn+p06dwoMHD1C1alXJ+ry8PFy/fr3M5RIRERERkXEx3tGN8Q4RERER0dOJ8Y5u5h7vsKMbEREREZkFB2sHPPjggcm2LUe1atVgaWmp8nRPamqqylNA5SVnuG0LCwuVdAUFBZLlMWPGIC0tDQsWLICPjw9sbW0RHByM/Px8STpra2vJskKhQHFxcRlrDxQXF8Pb2xuRkZEqr8l9aoiIiIiIqLJgvCPFeIeIiIiIqPJgvCPFeMe42NGNiIiIiMyCQqGQNby0KdnY2KBVq1bYu3cvBg4cKK7fu3cvBgwYYNBtBQQEYPPmzZJ1x44dkyx7eHggJSVF8sRRTEyMJE1UVBQWL16M3r17AwCSkpKQnp6uV11sbGwAAEVFRbLztGzZEikpKbCysoKvr69e2yMiIiIiqmwY70gx3iEiIiIiqjwY70gx3jEuC1NXgIiIiIjoafLOO+/g559/xsqVKxEXF4e3334biYmJmDRpkpjmgw8+wOjRoyX5YmJiEBMTgwcPHiAtLQ0xMTG4ePGixu1MmjQJ169fxzvvvIPLly9j/fr1WL16tSRNWFgY0tLS8PXXX+P69ev48ccfsXPnTkkaPz8/rF27FnFxcTh+/DhGjBgBe3t7vfbZx8cHCoUC27dvR1paGh480P1k1nPPPYfg4GA8//zz2L17NxISEnDkyBF89NFHOHnypF7bJyIiIiKiisF4h/EOEREREVFlxXincsQ77OhGRERERKSHoUOHYsGCBZgzZw6CgoJw8OBB7NixAz4+PmKa5ORkJCYmSvK1aNECLVq0wKlTp7B+/Xq0aNFCfApHnTp16mDTpk3Ytm0bmjdvjqVLl2Lu3LmSNP7+/li8eDF+/PFHNG/eHNHR0Zg2bZokzcqVK5GZmYkWLVpg1KhRmDJlCjw9PfXa55o1a2L27NmYMWMGvLy88MYbb+jMo1AosGPHDnTu3Bnjxo1Dw4YNMWzYMCQkJBh8GHAiIiIiIjIMxjuMd4iIiIiIKivGO5Uj3lEIciaHrUSys7Ph6uqKrKwsuLi4mLo6RERERM+kR48eIT4+HnXr1oWdnZ2pq/PUiIyMRHh4ODIzM+Hm5mbq6hicpvOC9/D64ftFREREZHqMefT3rMY7AO/h9cH3ioiIiMj0GO/oj/GO4e7hOaIbERERERERERERERERERERERERmTV2dCMiIiIiIiIiIiIiIiIiIiIiIiKzZmXqChARERERkTxhYWEQBMHU1SAiIiIiIjI4xjtERERERFRZMd4xHI7oRkRERERERERERERERERERERERGaNHd2IiIiIiIiIiIiIiIiIiIiIiIjIrLGjGxEREREREREREREREREREREREZk1dnQjIiIiIiIiIiIiIiIiIiIiIiIis8aObkRERERERERERERERERERERERGTW2NGNiIiIiIiIiIiIiIiIiIiIiIiIzBo7uhERERERUZmEhYVh6tSp4rKvry8WLFhgsvoQEREREREZCuMdIiIiIiKqrJ7meIcd3YiIiIiI9LR48WLUrVsXdnZ2aNWqFaKiorSmj4yMhEKhUPm7dOlSBdW4fErqf//+fcn6v/76C59++qlpKkVEREREREbBeOcJxjtERERERJUP450nnuZ4x8rUFSAiIiIiepps3LgRU6dOxeLFi9GxY0csW7YMvXr1wsWLF1GnTh2teS9fvgwXFxdx2cPDw9jVNSp3d3dTV4GIiIiIiAyI8c5/GO8QEREREVUujHf+8zTHOxzRjYiIiIhID99++y3Gjx+PCRMmwN/fHwsWLEDt2rWxZMkSnXk9PT1RvXp18c/S0lJr+h07dqBhw4awt7dHeHg4Vq9eLXnyZtasWQgKCpLkWbBgAXx9fcXlEydOoFu3bqhWrRpcXV0RGhqK06dPS/IoFAr8/PPPGDhwIBwcHNCgQQNs3boVAJCQkIDw8HAAQJUqVaBQKDBmzBgAqkNbl5aVlYWJEyfC09MTLi4u6NKlC86ePavzfSIiIiIiItNgvMN4h4iIiIiosmK8UzniHXZ0IyIiIiLzIAjAw4em+RMEWVXMz8/HqVOn0L17d8n67t2748iRIzrzt2jRAt7e3ujatSsiIiK0pk1KSsKgQYPQu3dvxMTEYMKECZgxY4aseirLycnByy+/jKioKBw7dgwNGjRA7969kZOTI0k3e/ZsDBkyBOfOnUPv3r0xYsQIZGRkoHbt2ti0aROAJ08sJScnY+HChTq3KwgC+vTpg5SUFOzYsQOnTp1Cy5Yt0bVrV2RkZOi9H0RERERETzXGOxKMd4iIiIiIKhHGOxKMd4yLU5cSERERkXnIzQWcnEyz7QcPAEdHncnS09NRVFQELy8vyXovLy+kpKRozOft7Y3ly5ejVatWePz4MdauXYuuXbsiMjISnTt3VptnyZIlqFevHr777jsoFAo0atQIsbGx+Oqrr/TatS5dukiWly1bhipVquDAgQPo27evuH7MmDF46aWXAABz587F999/j+joaPTs2VMcwtrT0xNubm6ythsREYHY2FikpqbC1tYWADB//nxs3rwZf/75JyZOnKjXfhARERERPdUY70gw3iEiIiIiqkQY70gw3jEudnQjIiIiItKTQqGQLAuCoLJOWaNGjdCoUSNxOTg4GElJSZg/f77GQCguLg7t27eXlBscHKx3XVNTU/HJJ5/g33//xd27d1FUVITc3FwkJiZK0gUGBor/Ozo6wtnZGampqXpvr8SpU6fw4MEDVK1aVbI+Ly8P169fL3O5RERERERkXIx3dGO8Q0RERET0dGK8o5u5xzvs6EZERERE5sHB4cmTN6batgzVqlWDpaWlytM9qampKk8B6dK+fXv8+uuvGl8XZAy3bWFhoZKuoKBAsjxmzBikpaVhwYIF8PHxga2tLYKDg5Gfny9JZ21tLVlWKBQoLi7WWQdNiouL4e3tjcjISJXX5D41RERERERUaTDekWC8Q0RERERUiTDekWC8Y1zs6EZERERE5kGhkDW8tCnZ2NigVatW2Lt3LwYOHCiu37t3LwYMGKBXWWfOnIG3t7fG1wMCArB582bJumPHjkmWPTw8kJKSInniKCYmRpImKioKixcvRu/evQEASUlJSE9P16uuNjY2AICioiLZeVq2bImUlBRYWVnB19dXr+0REREREVU6jHckGO8QEREREVUijHckGO8Yl4WpK0BERERE9DR555138PPPP2PlypWIi4vD22+/jcTEREyaNElM88EHH2D06NHi8oIFC7B582ZcvXoVFy5cwAcffIBNmzbhjTfe0LidSZMm4fr163jnnXdw+fJlrF+/HqtXr5akCQsLQ1paGr7++mtcv34dP/74I3bu3ClJ4+fnh7Vr1yIuLg7Hjx/HiBEjYG9vr9c++/j4QKFQYPv27UhLS8MDGU9mPffccwgODsbzzz+P3bt3IyEhAUeOHMFHH32EkydP6rV9IiIiIiKqGIx3GO8QEREREVVWjHcqR7zDjm5ERERERHoYOnQoFixYgDlz5iAoKAgHDx7Ejh074OPjI6ZJTk5GYmKiuJyfn49p06YhMDAQnTp1wqFDh/DPP/9g0KBBGrdTp04dbNq0Cdu2bUPz5s2xdOlSzJ07V5LG398fixcvxo8//ojmzZsjOjoa06ZNk6RZuXIlMjMz0aJFC4waNQpTpkyBp6enXvtcs2ZNzJ49GzNmzICXl5fWAK6EQqHAjh070LlzZ4wbNw4NGzbEsGHDkJCQoPcw4EREREREVDEY7zDeISIiIiKqrBjvVI54RyHImRy2EsnOzoarqyuysrLg4uJi6uoQERERPZMePXqE+Ph41K1bF3Z2dqauzlMjMjIS4eHhyMzMhJubm6mrY3Cazov/s3f3UZLV9Z34P7eqnxu6ZwaYERXGkTAGoqCMURGJ+DSrGI/o7yQQjciiQYwGcbIn6xyzUTEHNA+KcRkCuqC40RDU9ay7ZHX2oAYlWeLwoIlsTFxkPDjDDDPYPY/9UHV/f1RXd1V3dXfVdHXXrZrX65zvud/7vd9777eL9uR+Mu++5Rm+MT4vAIDWU/M07nitdyI8wzfCZwUA0Hrqncapd5r3DO+NbgAAAAAAAAAAAGSaoBsAAAAAAAAAAACZ1tXqBQAAAPW56KKLIk3TVi8DAACg6dQ7AABAp1LvNI83ugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAABwTC666KK49tprp/ef9axnxY033tiy9QAAADSLegcAAOhU7VzvCLoBAECDtm3bFhs2bIi+vr7YtGlT3HvvvYuec9NNN8VZZ50V/f398ZznPCfuuOOOFVhpc3z729+OJEniF7/4RdX4V7/61fjoRz/amkUBAADLQr1Tot4BAIDOo94paed6p6vVCwAAgHZy5513xrXXXhvbtm2LCy64IG655ZZ43eteFz/60Y/i9NNPr3nOzTffHFu3bo3PfOYz8au/+qtx//33x+/8zu/E6tWr4w1veMMK/wTNs2bNmlYvAQAAaCL1zgz1DgAAdBb1zox2rne80Q0AABrwiU98It7xjnfEO9/5zjjrrLPixhtvjNNOOy1uvvnmec/5whe+EO9617vi0ksvjWc/+9lx2WWXxTve8Y74+Mc/vuC97r777ti4cWP09/fHK17xivjc5z5X9Zc3H/7wh+P5z39+1Tk33nhjPOtZz5re/8d//Md4zWteEyeffHIMDw/Hy1/+8njggQeqzkmSJD772c/Gm970phgYGIgzzzwz/vt//+8REfHTn/40XvGKV0RExOrVqyNJkrjiiisiYu6rrWcbGRmJq666KtauXRtDQ0Pxyle+Mh5++OEFf2YAAKB11DvqHQAA6FTqnc6odwTdAADIhDSNOHSoNS1N61vj+Ph47NixIzZv3lw1vnnz5rjvvvvmPW9sbCz6+vqqxvr7++P++++PiYmJmuf87Gc/ize/+c1x8cUXx0MPPRTvfOc74wMf+EB9C61w4MCBePvb3x733ntv/MM//EOceeaZcfHFF8eBAweq5n3kIx+J3/zN34wf/OAHcfHFF8db3/rW2L9/f5x22mnxla98JSIi/uVf/iV27doVn/rUpxa9b5qm8frXvz52794dd999d+zYsSPOO++8eNWrXhX79+9v+OcAAIB2pt6ppt4BAIDOod6ppt5ZXr66FACATDh8OOKEE1pz74MHIwYHF5/35JNPRqFQiHXr1lWNr1u3Lnbv3j3vef/u3/27+OxnPxuXXHJJnHfeebFjx4647bbbYmJiIp588sk49dRT55xz8803x7Of/ez45Cc/GUmSxHOe85z44Q9/uOhfCc32yle+smr/lltuidWrV8d3vvOd+PVf//Xp8SuuuCJ+67d+KyIirr/++vj0pz8d999/f7z2ta+dfoX12rVrY9WqVXXd91vf+lb88Ic/jD179kRvb29ERPzZn/1ZfO1rX4svf/nLcdVVVzX0cwAAQDtT71RT7wAAQOdQ71RT7ywvQTcAAGhQkiRV+2mazhmr9J/+03+K3bt3x0te8pJI0zTWrVsXV1xxRfzJn/xJ5PP5muc88sgj8ZKXvKTquueff37Da92zZ0/80R/9Udxzzz3xxBNPRKFQiMOHD8fOnTur5p1zzjnT/cHBwTjxxBNjz549Dd+vbMeOHXHw4ME46aSTqsaPHDkSP/nJT475ugAAwPJS7yxOvQMAAO1JvbO4rNc7gm4AAGTCwEDpL29ade96nHzyyZHP5+f8dc+ePXvm/BVQpf7+/rjtttvilltuiSeeeCJOPfXUuPXWW+PEE0+Mk08+ueY5aR3v287lcnPmzX5V9hVXXBF79+6NG2+8MdavXx+9vb1x/vnnx/j4eNW87u7uqv0kSaJYLC66hvkUi8U49dRT49vf/vacY/X+1RAAAHQK9U419Q4AAHQO9U419c7yEnQDACATkqS+10u3Uk9PT2zatCm2b98eb3rTm6bHt2/fHm984xsXPb+7uzue+cxnRkTEX//1X8ev//qvRy6Xqzn37LPPjq997WtVY//wD/9QtX/KKafE7t27q/7i6KGHHqqac++998a2bdvi4osvjoiIn/3sZ/Hkk08uutZKPT09ERFRKBTqPue8886L3bt3R1dXVzzrWc9q6H4AANBp1DvV1DsAANA51DvV1DvLq/anDgAA1LRly5b47Gc/G7fddls88sgj8f73vz927twZV1999fScrVu3xuWXXz69/+Mf/zj+63/9r/Gv//qvcf/998dll10W//RP/xTXX3/9vPe5+uqr4yc/+Uls2bIl/uVf/iW++MUvxuc+97mqORdddFHs3bs3/uRP/iR+8pOfxE033RR/+7d/WzXnl37pl+ILX/hCPPLII/F//s//ibe+9a3R39/f0M+8fv36SJIk/sf/+B+xd+/eOFjHn2a9+tWvjvPPPz8uueSS+MY3vhE//elP47777os//MM/jO9///sN3R8AAFgZ6h31DgAAdCr1TmfUO4JuAADQgEsvvTRuvPHGuO666+L5z39+/N3f/V3cfffdsX79+uk5u3btip07d07vFwqF+PM///M499xz4zWveU0cPXo07rvvvgX/Eub000+Pr3zlK/H1r389zj333PjLv/zLOYXTWWedFdu2bYubbropzj333Lj//vvjP/yH/1A157bbbounnnoqXvCCF8Tb3va2uOaaa2Lt2rUN/czPeMYz4iMf+Uh84AMfiHXr1sV73/veRc9JkiTuvvvu+LVf+7W48sorY+PGjXHZZZfFT3/60wVfAw4AALSOeke9AwAAnUq90xn1TpLW8+WwHWR0dDSGh4djZGQkhoaGWr0cAIDj0tGjR+PRRx+NDRs2RF9fX6uX0za+/e1vxyte8Yp46qmnYtWqVa1eTtPN93vhGb4xPi8AgNZT8zTueK13IjzDN8JnBQDQeuqdxql3mvcM741uAAAAAAAAAAAAZJqgGwAAAAAAAAAAAJnW1eoFAAAA9bnooosiTdNWLwMAAKDp1DsAAECnUu80jze6AQAAAAAAAAAAkGmCbgAAtIy/XqGS3wcAADqNZ1zK/C4AANBpPONStpK/C4JuAACsuO7u7oiIOHz4cItXQpaUfx/Kvx8AANCu8vl8RESMj4+3eCVkhXoHAIBO4d94mG0l652uZb8DAADMks/nY9WqVbFnz56IiBgYGIgkSVq8KlolTdM4fPhw7NmzJ1atWjX9j4IAANCuurq6YmBgIPbu3Rvd3d2Ry/mb8+OVegcAgE7j33goa0W9I+gGAEBLPO1pT4uImC6EYNWqVdO/FwAA0M6SJIlTTz01Hn300XjsscdavRwyQL0DAEAn8W88VFrJekfQDQCAlij/w8/atWtjYmKi1cuhxbq7u73ZAACAjtLT0xNnnnmmry9FvQMAQMfxbzyUrXS9I+gGAEBL5fN5/w9/AACgI+Vyuejr62v1MgAAAJaFf+NhpeVavQAAAAAAAAAAAABYiKAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmdbyoNu2bdtiw4YN0dfXF5s2bYp77723rvO+973vRVdXVzz/+c9f3gUCAAAsgZoHAADoVOodAABgJbU06HbnnXfGtddeGx/84AfjwQcfjAsvvDBe97rXxc6dOxc8b2RkJC6//PJ41atetUIrBQAAaJyaBwAA6FTqHQAAYKUlaZqmrbr5i1/84jjvvPPi5ptvnh4766yz4pJLLokbbrhh3vMuu+yyOPPMMyOfz8fXvva1eOihh+q+5+joaAwPD8fIyEgMDQ0tZfkAAMAKaOdneDUPAACwmHZ9hlfvAAAAi2n2M3zL3ug2Pj4eO3bsiM2bN1eNb968Oe677755z7v99tvjJz/5SXzoQx9a7iUCAAAcMzUPAADQqdQ7AABAK3S16sZPPvlkFAqFWLduXdX4unXrYvfu3TXP+dd//df4wAc+EPfee290ddW39LGxsRgbG5veHx0dPfZFAwAA1EnNAwAAdCr1DgAA0Aote6NbWZIkVftpms4Zi4goFArxlre8JT7ykY/Exo0b677+DTfcEMPDw9PttNNOW/KaAQAA6qXmAQAAOpV6BwAAWElJmqZpK248Pj4eAwMDcdddd8Wb3vSm6fH3ve998dBDD8V3vvOdqvm/+MUvYvXq1ZHP56fHisVipGka+Xw+vvnNb8YrX/nKOfep9dc+p512WtO++xUAANpNmkYUi6VtZZs91sic4eGIwcHlWe/o6GgMDw+33TO8mgcAAKhHO9Y86h0AAKAeza53WvbVpT09PbFp06bYvn17VRG0ffv2eOMb3zhn/tDQUPzwhz+sGtu2bVvcc8898eUvfzk2bNhQ8z69vb3R29vb3MUDALRAOVRUKJS29fZr7c9uix0/lvPK612J8eXsz94udGwp23r6jcydr79cbrkl4qqrlu/67UjNAwAAdCr1DgAA0AotC7pFRGzZsiXe9ra3xQtf+MI4//zz49Zbb42dO3fG1VdfHRERW7dujccffzzuuOOOyOVy8dznPrfq/LVr10ZfX9+ccQBgZZUDT4VCxORk7e3sNt/4Uo6VW+V6mnW8MtQ1e858x4517nx9yJokqW7MpeYBAAA6lXoHAABYaS0Nul166aWxb9++uO6662LXrl3x3Oc+N+6+++5Yv359RETs2rUrdu7c2colAsCCym9JmpyMmJgobcutcn++/mLHZrdy0Gux1ui8pW5b80XozCdJInK5iHy+tK1stcbqObZQqzwvSWb2y+uo1RY61ui5lfvN7Nc6ttDYsWwXG2vkeL39WvvHOofFqXkAAIBOpd4BAABWWpKmx9c/TTf7u18BaFyazoS6JiYixseb36+8/kJjjY7XCqaxsHy+duvqav6xciuHr+oZP5a5822XMmf28VrBs/mOzZ4ngESn8QzfGJ8XAAC0F8/w9fNZAQBAe2n2M3xL3+gGQPNNTkaMjZVCX7W28x1bqVYOjHW6JIno7i6Fsrq6Gu/P3i8HvBZr9c6rnLucW6ErAAAAAAAAAJpB0A1gCcpvJjt6dCZE1mi/3nn1BtaKxVZ/Kscml4vo6SmFu7q7Z/q1xuY7XrlfDoqV2+z9ZsxZKKyWy7X6EwUAAAAAAACAziHoBnSEiYmII0fmtqNH57b5xhc6ttA5WQ+W9fbOtJ6exbe1WjlAdqytHAzr7Z0/qCYYBgAAAAAAAADMR9ANWBZpWgqBHT480w4dqt6vFUxbqC10TqHQ6p+4pKurFObq65sJlzWrXw6jLRRUmz3W1eVrIwEAAAAAAACA9ifoBsep8fGIgwdL4bNarTKQVqvVM6dV+voi+vtnWl/fTJu9v9Tx2WG0fL51PzcAAAAAAAAAQKcSdIMMKxZLgbEDB0qhtPJ2dihtocDafMcmJ1fu5+jtjRgYqG6VQbRym2+8kdbX5w1mAAAAAAAAAACdRtANmiRNS29Jmx1KK29rjS127NCh5V93T0/E4OBMO+GEUuBscHBuOK3eVnluf7+3nAEAAAAAAAAAsDSCbhz3CoVSqGx0tNQq+7X2F5ozMbE8a0ySiBNPLIXQTjhhbjCtcr+RscHBiO7u5VkzAAAAAAAAAAA0i6Abbe3o0YiRkYhf/KK0Xag/MlI7oLYcb03r758JpZUDarO3jRzr7/d1nAAAAAAAAAAAHL8E3WiZYrEUPnvqqfrDarP74+PNW093d8TwcMTQUClcNjRU3WaP1ZpTDql1+V8WAAAAAAAAAAA0jTgOS1IZVlus7d9fvT8yEpGmS19DkpRCZsPDM23Vqtr9hQJsvb1LXwsAAAAAAAAAANB8gm5EROnNaPv2Vbf9+2e284XXmhFWGxiYP5hW2Z/v2IknRuRyS/4IAAAAAAAAAACAjBJ06zBpWgqfzQ6tVQbXarWDB5d234GBiNWr629r1pS2q1Z5kxoAAAAAAAAAALAwQbeMO3QoYu/e+VutMFuhcGz3yuVK4bOTTpppa9bMhNJmh9TKTVgNAAAAAAAAAABYToJuKyhNI0ZHFw6uzW5HjhzbvQYGqgNrs9uaNXPHVq3yFaAAAAAAAAAAAED2CLot0fh4xJ49EU88EbF7d2lbbnv2VIfWnnyyNL9Rvb0Rp5xSu80XZOvra/7PCgAAAAAAAAAA0AqCbjVMTNQOr5X7lWP79zd+/YGB6rDa2rXzB9lOOSXihBMikqT5PycAAAAAAAAAAEA7OG6Dbn/1V6WvEa0VZNu3r7Fr5fMR69bNtKc9rRRemy/ANjCwPD8TAAAAAAAAAABAJzpug26/+7sLH8/nS0G1yvDafP01ayJyuZVZNwAAAAAAAAAAwPHmuA26vfKVEc985vzhtZNOEl4DAAAAAAAAAADIguM26Pbf/lvE0FCrVwEAAAAAAAAAAMBivLMMAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMg0QTcAAAAAAAAAAAAyTdANAAAAAAAAAACATBN0AwAAAAAAAAAAINME3QAAAAAAAAAAAMi0lgfdtm3bFhs2bIi+vr7YtGlT3HvvvfPO/e53vxsXXHBBnHTSSdHf3x+//Mu/HJ/85CdXcLUAAACNUfMAAACdSr0DAACspK5W3vzOO++Ma6+9NrZt2xYXXHBB3HLLLfG6170ufvSjH8Xpp58+Z/7g4GC8973vjXPOOScGBwfju9/9brzrXe+KwcHBuOqqq1rwEwAAAMxPzQMAAHQq9Q4AALDSkjRN01bd/MUvfnGcd955cfPNN0+PnXXWWXHJJZfEDTfcUNc13vzmN8fg4GB84QtfqGv+6OhoDA8Px8jISAwNDR3TugEAgJXTzs/wah4AAGAx7foMr94BAAAW0+xn+JZ9den4+Hjs2LEjNm/eXDW+efPmuO++++q6xoMPPhj33XdfvPzlL1+OJQIAABwzNQ8AANCp1DsAAEArtOyrS5988skoFAqxbt26qvF169bF7t27Fzz3mc98ZuzduzcmJyfjwx/+cLzzne+cd+7Y2FiMjY1N74+Oji5t4QAAAHVQ8wAAAJ1KvQMAALRCy97oVpYkSdV+mqZzxma799574/vf/3785V/+Zdx4443xpS99ad65N9xwQwwPD0+30047rSnrBgAAqIeaBwAA6FTqHQAAYCW17I1uJ598cuTz+Tl/2bNnz545fwE024YNGyIi4nnPe1488cQT8eEPfzh+67d+q+bcrVu3xpYtW6b3R0dHFUIAAMCyU/MAAACdSr0DAAC0Qsve6NbT0xObNm2K7du3V41v3749XvrSl9Z9nTRNq15bPVtvb28MDQ1VNQAAgOWm5gEAADqVegcAAGiFlr3RLSJiy5Yt8ba3vS1e+MIXxvnnnx+33npr7Ny5M66++uqIKP2lzuOPPx533HFHRETcdNNNcfrpp8cv//IvR0TEd7/73fizP/uz+L3f+72W/QwAAADzUfMAAACdSr0DAACstJYG3S699NLYt29fXHfddbFr16547nOfG3fffXesX78+IiJ27doVO3funJ5fLBZj69at8eijj0ZXV1ecccYZ8bGPfSze9a53tepHAAAAmJeaBwAA6FTqHQAAYKUlaZqmrV7EShodHY3h4eEYGRnximsAAGgDnuEb4/MCAID24hm+fj4rAABoL81+hs81YU0AAAAAAAAAAACwbATdAAAAAAAAAAAAyDRBNwAAAAAAAAAAADJN0A0AAAAAAAAAAIBME3QDAAAAAAAAAAAg0wTdAAAAAAAAAAAAyDRBNwAAAAAAAAAAADJN0A0AAAAAAAAAAIBMazjo9uEPfzgee+yx5VgLAABAS6l3AACATqbmAQAA2lnDQbevf/3rccYZZ8SrXvWq+OIXvxhHjx5djnUBAACsOPUOAADQydQ8AABAO2s46LZjx4544IEH4pxzzon3v//9ceqpp8a73/3u+Md//MflWB8AAMCKUe8AAACdTM0DAAC0s4aDbhER55xzTnzyk5+Mxx9/PG677bZ4/PHH44ILLojnPe958alPfSpGRkaavU4AAIAVod4BAAA6mZoHAABoV8cUdCsrFosxPj4eY2NjkaZprFmzJm6++eY47bTT4s4772zWGgEAAFacegcAAOhkah4AAKDdHFPQbceOHfHe9743Tj311Hj/+98fL3jBC+KRRx6J73znO/F//+//jQ996ENxzTXXNHutAAAAy069AwAAdDI1DwAA0K6SNE3TRk4455xz4pFHHonNmzfH7/zO78Qb3vCGyOfzVXP27t0b69ati2Kx2NTFNsPo6GgMDw/HyMhIDA0NtXo5AADAIlbyGb7d650INQ8AALQbNU/91DsAANBemv0M39XoCb/xG78RV155ZTzjGc+Yd84pp5ySyQIIAABgIeodAACgk6l5AACAdtbwV5emaRqrV6+eM37kyJG47rrrmrIoAACAVlDvAAAAnUzNAwAAtLOGv7o0n8/Hrl27Yu3atVXj+/bti7Vr10ahUGjqApvNa60BAKC9rOQzfLvXOxFqHgAAaDdqnvqpdwAAoL00+xn+mN7oliTJnPGHH3441qxZs+QFAQAAtIp6BwAA6GRqHgAAoJ111Ttx9erVkSRJJEkSGzdurCqECoVCHDx4MK6++uplWSQAAMByUu8AAACdTM0DAAB0grqDbjfeeGOkaRpXXnllfOQjH4nh4eHpYz09PfGsZz0rzj///GVZJAAAwHJS7wAAAJ1MzQMAAHSCuoNub3/72yMiYsOGDfHSl740uru7l21RAAAAK0m9AwAAdDI1DwAA0AnqCrqNjo7G0NBQRES84AUviCNHjsSRI0dqzi3PAwAAaAfqHQAAoJOpeQAAgE5RV9Bt9erVsWvXrli7dm2sWrUqkiSZMydN00iSJAqFQtMXCQAAsFzUOwAAQCdT8wAAAJ2irqDbPffcE2vWrJnu1yqCAAAA2pF6BwAA6GRqHgAAoFMkaZqmrV7EShodHY3h4eEYGRnxCm4AAGgDnuEb4/MCAID24hm+fj4rAABoL81+hs81esLtt98ed91115zxu+66Kz7/+c8veUEAAACtot4BAAA6mZoHAABoZw0H3T72sY/FySefPGd87dq1cf311zdlUQAAAK2g3gEAADqZmgcAAGhnDQfdHnvssdiwYcOc8fXr18fOnTubsigAAIBWUO8AAACdTM0DAAC0s4aDbmvXro0f/OAHc8YffvjhOOmkk5qyKAAAgFZQ7wAAAJ1MzQMAALSzhoNul112WVxzzTXxrW99KwqFQhQKhbjnnnvife97X1x22WXLsUYAAIAVod4BAAA6mZoHAABoZ12NnvDHf/zH8dhjj8WrXvWq6OoqnV4sFuPyyy+P66+/vukLBAAAWCnqHQAAoJOpeQAAgHaWpGmaHsuJP/7xj+Phhx+O/v7+eN7znhfr169v9tqWxejoaAwPD8fIyEgMDQ21ejkAAMAiWvEM3671ToSaBwAA2o2ap37qHQAAaC/NfoZv+I1uZRs3boyNGzcueQEAAABZo94BAAA6mZoHAABoR3UF3bZs2RIf/ehHY3BwMLZs2bLg3E984hNNWRgAAMBKUO8AAACdTM0DAAB0irqCbg8++GBMTExM9wEAADqFegcAAOhkah4AAKBTJGmapq1exEpq9ne/AgAAy8szfGN8XgAA0F48w9fPZwUAAO2l2c/wuUZPuPLKK+PAgQNzxg8dOhRXXnnlkhcEAADQKuodAACgk6l5AACAdtZw0O3zn/98HDlyZM74kSNH4o477mjKogAAAFpBvQMAAHQyNQ8AANDOuuqdODo6GmmaRpqmceDAgejr65s+VigU4u677461a9cuyyIBAACWk3oHAADoZGoeAACgE9QddFu1alUkSRJJksTGjRvnHE+SJD7ykY80dXEAAAArQb0DAAB0MjUPAADQCeoOun3rW9+KNE3jla98ZXzlK1+JNWvWTB/r6emJ9evXx9Of/vRlWSQAAByX0rTUisXq7VL7tfaXOmfDhog2/ut/9Q4AANDJ1DwAAEAnqDvo9vKXvzwiIh599NE4/fTTI0mSZVsUAMBxoVgstUKhertQv955C51Tqy12/FjOK4egVmJ8OfuztwsdW8q2VoisndxyS8RVV7V6FcdMvQMAAHQyNQ8AANAJ6g66lT3yyCPxs5/9LF72spdFRMRNN90Un/nMZ+Lss8+Om266KVavXt30RQIALVYsRkxOlkJNx7qd3eYbX8qxcisHsJp5vFYgbbFji82FlZAkEblcaVtus/ebMefEE1v9kzaFegcAAOhkah4AAKCdJWna2Ksinve858XHP/7xuPjii+OHP/xhvPCFL4zf//3fj3vuuSfOOuusuP3225drrU0xOjoaw8PDMTIyEkNDQ61eDgDtIk0jJiZKIavydqF+M+bVauWg12Kt0XmLbWmtXK7U8vlj7y80Vs+xhVrleUkys18OQtVqCx1r9NzK/Wb2ax1baOxYtouNNXJ8vnBaB1jJZ/h2r3ci1DwAANBu1Dz1U+8AAEB7afYzfMNvdHv00Ufj7LPPjoiIr3zlK/GGN7whrr/++njggQfi4osvXvKCAOgw5YDY+HipTUzM7C9nvxwaq2y1xuodLxRa/UlmV1dXqeXzc7ez+5VtvvGlHCu3cviqnvFjmTvfdilzZh8v73dIUAnahXoHAADoZGoeAACgnTUcdOvp6YnDhw9HRMT//t//Oy6//PKIiFizZk2Mjo42d3UALCxNS+GusbGZbWW/kbFGW2V4bbF5nayrK6K7eybs1az+7P1ywGuxVu+8+YJpjW5zuVb/FwBoKvUOAADQydQ8AABAO2s46Payl70stmzZEhdccEHcf//9ceedd0ZExI9//ON45jOf2fQFAmROoVAKhx09GnHkyEy/HB6rp38s59QKqLVriKyrK6KnpxTkKm/n6zdyvHK/HBQrt9n7zZhT/opAADqGegcAAOhkah4AAKCdNRx0+8//+T/H7/7u78aXv/zluPnmm+MZz3hGRET87d/+bbz2ta9t+gIBaiq/yezIkYXb0aNz21LHsxwuKwfIenvnbmuN1drWauUA2bG2cjCst7e0RuEwADJKvQMAAHQyNQ8AANDOkjRN01YvYiWNjo7G8PBwjIyMxNDQUKuXA50lTUtvGTt8uHY7dKh6f7GQ2uxWec7RoxHFYqt/4tJXN/b1lQJc5e1y9RcLrPX0lNYDAB3GM3xjfF4AANBePMPXz2cFAADtpdnP8A2/0a3SkSNHYmLWm40UFpBhhcJM4OzgwdJ2vjZfWG2+0Fq5tSI7myQR/f3zt76+mTZ7fynj5beTAQAdSb0DAAB0MjUPAADQbhpOaBw6dCj+43/8j/E3f/M3sW/fvjnHC4VCUxYGx7XJyYgDB0phtIMHZ/rl7exQ2kKhtcpjR4+u3M/Q0xMxMDB/qxVIm298sdbT46swAYCmUO8AAACdTM0DAAC0s4aDbn/wB38Q3/rWt2Lbtm1x+eWXx0033RSPP/543HLLLfGxj31sOdYI2ZampQDZ6GgpiDY7lLZQYG2+Y2Njy7vmJIkYHIw44YTStrKdcEIpcDY4uHBQbb42OFgKn3nTGQDQhtQ7AABAJ1PzAAAA7azhJMrXv/71uOOOO+Kiiy6KK6+8Mi688ML4pV/6pVi/fn381V/9Vbz1rW9djnVC85XfmjY6Wt1mj9UzZ7n+yq2npxQ8O+GEiBNPnOnPDqbVCqstNNbX5w1oAAA1qHcAAIBOpuYBAADaWcNBt/3798eGDRsiImJoaCj2798fEREve9nL4t3vfndzVwfzGRuLGBmZab/4xeL9kZHqgNqRI81dU5JUB9Jmb49lrKenuWsEAGBB6h0AAKCTqXkAAIB21nDQ7dnPfnb89Kc/jfXr18fZZ58df/M3fxMvetGL4utf/3qsWrVqGZZIx0nTiEOHIp56aqbVG1Yr948ebd56+voihoZK4bKhoepWa2y+8YGBiFyueesCAGDFqXcAAIBOpuYBAADaWcNBt3//7/99PPzww/Hyl788tm7dGq9//evj05/+dExOTsYnPvGJ5VgjWVQrrLZQ279/pv+LX0RMTDRnHSeeGDE8HLFqVWlbbpX7lf3ZIbUTT/TWNAAApql3AACATqbmAQAA2lmSpmm6lAvs3Lkzvv/978cZZ5wR5557brPWtWxGR0djeHg4RkZGYmhoqNXLab00Lb0hbd++uW3//pltrfDa5OTS7t3dHbF6danNF0xbKMA2NBSRzy/9MwAAINNa+QzfbvVOhJoHAADajZqnfuodAABoL81+hm/4jW6znX766XH66acveSE0wdhY7cDa7ODa7LFC4djvWRlWa6StWVP6qs8kad7PDwAATabeAQAAOpmaBwAAaCd1Bd3+4i/+ou4LXnPNNce8GCoUi6W3pu3du3CrDK0dOnTs9xsYiDjppLltzZpSmx1SK/eF1QAAaHPqHQAAoJOpeQAAgE5R11eXbtiwob6LJUn8v//3/5a8qOXUstdaT06WwmiLBdcqA2zH8qa1XK4URKsVWpsdYKvc7+tr/s8MAABNsNzP8J1U70T4Kh8AAGg3ap76qXcAAKC9tOSrSx999NEl36gjHT4csXt3xBNPlFpl/4knIvbsmQmuPfVUxOKZwrmGhyNOOWX+NjvANjxcCrsBAAB1Ue8AAACdTM0DAAB0irqCbrWMj4/Ho48+GmeccUZ0dR3zZbLnyJHq0Np8QbbduyMOHmzs2klSepPaQsG1ynbyyRE9PcvzcwIAAPPq2HoHAAAg1DwAAEB7arh6OXz4cPze7/1efP7zn4+IiB//+Mfx7Gc/O6655pp4+tOfHh/4wAeavshl8fGPR4yMzA2vHTjQ2HX6+yPWrYt42tNK23J/7dpSm/32tXx+eX4eAABgyTqm3gEAAKhBzQMAALSzhoNuW7dujYcffji+/e1vx2tf+9rp8Ve/+tXxoQ99qH2KoOuvn/9YX1/t8Fqt/oknlt7UBgAAtL2OqXcAAABqUPMAAADtrOGg29e+9rW488474yUveUkkFQGvs88+O37yk580dXHL6vLLI04/vXZ4bWhIeA0AAI5DHVPvAAAA1KDmAQAA2lnDQbe9e/fG2rVr54wfOnSoqijKvE9/uhRoAwAAmNIx9Q4AAEANah4AAKCd5Ro94Vd/9Vfjf/7P/zm9Xy58PvOZz8T555/fvJUBAACsMPUOAADQydQ8AABAO2v4jW433HBDvPa1r40f/ehHMTk5GZ/61Kfin//5n+Pv//7v4zvf+c5yrBEAAGBFqHcAAIBOpuYBAADaWcNvdHvpS18a3/ve9+Lw4cNxxhlnxDe/+c1Yt25d/P3f/31s2rRpOdYIAACwItQ7AABAJ1PzAAAA7SxJ0zRt9SJW0ujoaAwPD8fIyEgMDQ21ejkAAMAiPMM3xucFAADtxTN8/XxWAADQXpr9DN/wG90AAAAAAAAAAABgJQm6AQAAAAAAAAAAkGmCbgAAAAAAAAAAAGSaoBsAAAAAAAAAAACZdsxBt3/7t3+Lb3zjG3HkyJGIiEjTtGmLAgAAaCX1DgAA0MnUPAAAQDtqOOi2b9++ePWrXx0bN26Miy++OHbt2hUREe985zvj93//95u+QAAAgJWi3gEAADqZmgcAAGhnDQfd3v/+90dXV1fs3LkzBgYGpscvvfTS+F//6381dXEAAAArSb0DAAB0MjUPAADQzroaPeGb3/xmfOMb34hnPvOZVeNnnnlmPPbYY01bGAAAwEpT7wAAAJ1MzQMAALSzht/odujQoaq/8il78skno7e3tymLAgAAaAX1DgAA0MnUPAAAQDtrOOj2a7/2a3HHHXdM7ydJEsViMf70T/80XvGKVzR1cQAAACtJvQMAAHQyNQ8AANDOGv7q0j/90z+Niy66KL7//e/H+Ph4/MEf/EH88z//c+zfvz++973vLccaAQAAVoR6BwAA6GRqHgAAoJ01/Ea3s88+O37wgx/Ei170onjNa14Thw4dije/+c3x4IMPxhlnnLEcawQAAFgR6h0AAKCTqXkAAIB2lqRpmrZ6EStpdHQ0hoeHY2RkJIaGhlq9HAAAYBGe4Rvj8wIAgPbiGb5+PisAAGgvzX6Gb/iNbrfffnvcddddc8bvuuuu+PznP7/kBQEAALSKegcAAOhkah4AAKCdNRx0+9jHPhYnn3zynPG1a9fG9ddf35RFAQAAtIJ6BwAA6GRqHgAAoJ01HHR77LHHYsOGDXPG169fHzt37mzKogAAAFpBvQMAAHQyNQ8AANDOGg66rV27Nn7wgx/MGX/44YfjpJNOasqiAAAAWkG9AwAAdDI1DwAA0M4aDrpddtllcc0118S3vvWtKBQKUSgU4p577on3ve99cdllly3HGgEAAFaEegcAAOhkah4AAKCddTV6wh//8R/HY489Fq961auiq6t0erFYjMsvvzyuv/76pi8QAABgpah3AACATqbmAQAA2lmSpml6LCf++Mc/jocffjj6+/vjec97Xqxfv77Za1sWo6OjMTw8HCMjIzE0NNTq5QAAAItoxTN8u9Y7EWoeAABoN2qe+ql3AACgvTT7Gb7hN7qVbdy4MTZu3LjkBQAAAGSNegcAAOhkah4AAKAd1RV027JlS3z0ox+NwcHB2LJly4JzP/GJTzRlYQAAACtBvQMAAHQyNQ8AANAp6gq6PfjggzExMREREQ888EAkSVJz3nzjAAAAWaXeAQAAOpmaBwAA6BRJmqZpqxexkpr93a8AAMDy8gzfGJ8XAAC0F8/w9fNZAQBAe2n2M3yukcmTk5PR1dUV//RP/7TkGwMAAGSJegcAAOhkah4AAKDdNRR06+rqivXr10ehUFiu9QAAALSEegcAAOhkah4AAKDdNRR0i4j4wz/8w9i6dWvs379/OdYDAADQMuodAACgk6l5AACAdtbV6Al/8Rd/Ef/2b/8WT3/602P9+vUxODhYdfyBBx5o2uIAAABWknoHAADoZGoeAACgnTUcdHvjG98YSZIsx1oAAABaSr0DAAB0MjUPAADQzpI0TdNWL2IljY6OxvDwcIyMjMTQ0FCrlwMAACzCM3xjfF4AANBePMPXz2cFAADtpdnP8Ll6Jx4+fDje8573xDOe8YxYu3ZtvOUtb4knn3xyyQsAAABoNfUOAADQydQ8AABAJ6g76PahD30oPve5z8XrX//6uOyyy2L79u3x7ne/eznXBgAAsCLUOwAAQCdT8wAAAJ2gq96JX/3qV+O//Jf/EpdddllERPz2b/92XHDBBVEoFCKfzy/bAgEAAJabegcAAOhkah4AAKAT1P1Gt5/97Gdx4YUXTu+/6EUviq6urvj5z3++LAsDAABYKeodAACgk6l5AACATlB30K1QKERPT0/VWFdXV0xOTjZ9UQAAACtJvQMAAHQyNQ8AANAJ6v7q0jRN44orroje3t7psaNHj8bVV18dg4OD02Nf/epXm7tCAACAZabeAQAAOpmaBwAA6AR1B93e/va3zxn77d/+7aYuBgAAoBXUOwAAQCdT8wAAAJ2g7qDb7bffvpzrAAAAaBn1DgAA0MnUPAAAQCfItXoBAAAAAAAAAAAAsBBBNwAAAAAAAAAAADJN0A0AAAAAAAAAAIBME3QDAAAAAAAAAAAg0wTdAAAAAAAAAAAAyDRBNwAAAAAAAAAAADJN0A0AAAAAAAAAAIBME3QDAAAAAAAAAAAg01oedNu2bVts2LAh+vr6YtOmTXHvvffOO/erX/1qvOY1r4lTTjklhoaG4vzzz49vfOMbK7haAACAxqh5AACATqXeAQAAVlJLg2533nlnXHvttfHBD34wHnzwwbjwwgvjda97XezcubPm/L/7u7+L17zmNXH33XfHjh074hWveEW84Q1viAcffHCFVw4AALA4NQ8AANCp1DsAAMBKS9I0TVt18xe/+MVx3nnnxc033zw9dtZZZ8Ull1wSN9xwQ13X+JVf+ZW49NJL44/+6I/qmj86OhrDw8MxMjISQ0NDx7RuAABg5bTzM7yaBwAAWEy7PsOrdwAAgMU0+xm+ZW90Gx8fjx07dsTmzZurxjdv3hz33XdfXdcoFotx4MCBWLNmzbxzxsbGYnR0tKoBAAAsNzUPAADQqdQ7AABAK7Qs6Pbkk09GoVCIdevWVY2vW7cudu/eXdc1/vzP/zwOHToUv/mbvznvnBtuuCGGh4en22mnnbakdQMAANRDzQMAAHQq9Q4AANAKLQu6lSVJUrWfpumcsVq+9KUvxYc//OG48847Y+3atfPO27p1a4yMjEy3n/3sZ0teMwAAQL3UPAAAQKdS7wAAACupq1U3PvnkkyOfz8/5y549e/bM+Qug2e688854xzveEXfddVe8+tWvXnBub29v9Pb2Lnm9AAAAjVDzAAAAnUq9AwAAtELL3ujW09MTmzZtiu3bt1eNb9++PV760pfOe96XvvSluOKKK+KLX/xivP71r1/uZQIAABwTNQ8AANCp1DsAAEArtOyNbhERW7Zsibe97W3xwhe+MM4///y49dZbY+fOnXH11VdHROmV1I8//njccccdEVEqgC6//PL41Kc+FS95yUum/1Kov78/hoeHW/ZzAAAA1KLmAQAAOpV6BwAAWGktDbpdeumlsW/fvrjuuuti165d8dznPjfuvvvuWL9+fURE7Nq1K3bu3Dk9/5ZbbonJycl4z3veE+95z3umx9/+9rfH5z73uZVePgAAwILUPAAAQKdS7wAAACstSdM0bfUiVtLo6GgMDw/HyMhIDA0NtXo5AADAIjzDN8bnBQAA7cUzfP18VgAA0F6a/Qyfa8KaAAAAAAAAAAAAYNkIugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpXa1eAAAAdIo0TaOYFiONqW0D+/X0y+cstT/7+vONzT5noeucd+p58ezVz271fwIAAAAAAAA6lKAbAECTlEM/xbQYhbRQ2hYL0/uV/dnHKvcrx2aPL3Ss3nNqtdnz620LXbfy8yjGPOOV82Oe8TrmV85p9vjsoNl8gbU00lb/CrbULb9+S1y16apWLwMAAAAAAIAOJegGAMe5cmBnsjgZhbRQ2hYLTd8vB73K2/LxJR+rMa8c3JrvGpXBs3rPny+YVtk/3oNOLE0SSSRJEkkkkUtyc/q5JDc9Zyn92defb2z2OYtd52knPK3VHyEAAAAAAAAdTNANACqkaRoTxYmYKEzEZHFyuj97bLI4WeoXKvoV4wsdqxxf7NhkOlm1Xw56LdbKAbNF500FtVhZ+SQfuSQX+Vx+ul9rvzxWtT9r/nzHZh/PJ/lIkmTOnIXulYva8xY6L4lker8chKrVyqGpeY83cG7l3MpjSx2vNW+hsWPZr+wDAAAAAAAA8xN0A6Bp0jSNyeJkjBfG523lwFjT+sXx6SDaeGGmXw6NVQbVao3NDrQJfVUrB6S6cl2Rz01tG9if3a/clufOObbAOYsdqwyK1TpW/nkWG5vvGpWhrtnnzw6qzTdPoAkAAAAAAACgcYJuAG2kUCzEWGEsxgvjMTY5tS2Mzdsvz1vsnIWCaYuF1maPdaIkkujOd0d3rju6cl1V/fL+dL+R8WT+ObPPLwe8FmvlAFldc+sIrAllAQAAAAAAAJAFgm4Ai0jTNMYL43F08uicdmTySIxNjsXRyaPT4bF6+mOFxs8ZL4y35dvGevI90Z3rju58d/Tme6dDYj35nujOd1cdr9Wv6/jUNSvHKwNp5cBYuT/f2OxzymP5XL7VHyMAAAAAAAAAHNcE3YC2kabpdLjsyMSRurY1w2kTR+JoYZ7xGvOPTh6NNNJW//g19eR7ojffW9p29Vb1FzyWqz2nJ99Ts5UDZY22rlyXN4IBAAAAAAAAAEsm6AYsSfltZ4cnDtdshyYOzXtsOpTWQHAtC/q6+qK/qz/6uvqit6u3tM33Tu/X7Od7q+YeS78cSiv3u3PdQmQAAAAAAAAAwHFB0A06XPktaIcmDsXB8YNxaPxQHJo4NL2tNXZofCqcNlk7oDa7FdPiiv9c+SQf/d390d/Vv+i2r6tvus3enx7vnmd81vyefI9wGQAAAAAAAADAChN0g4xI0zTGCmNxYOxAHBw/GAfGS9uD4wfnjFUG0g5O1A6qHRw/OP02tZUKouWTfAz2DMZg92AMdA8s2GoF0ga6B+oOr3Xnu1fkZwIAAAAAAAAAoPUE3eAYpWkahycOx+jYaBwYP1Dajh2YDqPVDKwtdGzsQBTSwrKuua+rLwa7B6fDaCf0nDDdrxwb6B6oK6w2uwmfAQAAAAAAAACwHATdOO5MFCZidGy0KqBW2Q6MVY/VnDM1tlxvShvoHogTek6IE3tOjBN6Tij1e2f6g90z4bTp/Z6Fxwa7ByOfyy/LegEAAAAAAAAAYDkJutFWJgoTMTI2EiNHR+IXR3+xcH9sqn90ZPrYgfEDcXTyaFPXlEtyMdQ7FEO9Q1XhtHIwrSqsNutYrTGBNAAAAAAAAAAAqCboxooamxyLp44+FU8deapqOyesNjYTUKsMqx2eONy0tfR39U8H1IZ6h+LE3hNn9ntqjFXO7ZkZH+geiCRJmrYuAAAAAAAAAACgmqAbDZsvrDZnO2ts/5H9cWTySFPWMNg9GKv6VsVw33AM9w5X9WfvV/bL4bUTe06M7nx3U9YCAAAAAAAAAAAsL0G349jY5FjsO7Iv9h3eV3O7/8j+6W1lYG2pYbUkkhjuG441/Wtidd/qWN2/uhRGWySkNtxX2h/qHYqunF9dAAAAAAAAAAA4XkgLdYBiWoyRoyMLhtamg2sV44cmDh3zPZNIYlXfqljdv3o6rLa6b1Z/nu1w33DkklwTPwEAAAAAAAAAAKCTCbpl0HhhPPYe2ht7D++dfzvVLwfYimnxmO6VS3Kxpn9NnNR/Upw0cFL1tv+kWNO/pvTmtYqw2pr+NTHUOySsBgAAAAAAAAAArAhBtxVweOJw3cG1vYf3xujY6DHdZ7B7sGZYbc7YwEnT4TZvVwMAAAAAAAAAALJO0O0YpGkaI2Mj8cTBJ2L3wd3xxKEnqvtT+3sO7Ym9h/fG4YnDDd8jn+Tj5IGT45TBU+KUgVNmtpX9wVOqAmy9Xb3L8NMCAAAAAAAAAAC0lqDblDRNY3RsNJ44NBVYO/hE7f5UiG2sMNbQ9XvyPXNCarWCa+Xtqr5V3rQGAAAAAAAAAAAQx3HQ7Zq/vSaeSp+qCrIdnTza0DWGe4dj3QnrYt3gunjaCU+LdYPrYt0Jpf7awbWxdnDtdHDtxJ4TI0mSZfppAAAAAAAAAAAAOtdxG3T7/EOfj+ibO35iz4ml0NoJFeG1cpCtItS2dnBt9Hf3r/zCAQAAAAAAAAAAjjPHbdBt64Vb41nrnlX1FrZ1g+uE1wAAAAAAAAAAADLmuA26feBlH4ihoaFWLwMAAAAAAAAAAIBF5Fq9AAAAAAAAAAAAAFiIoBsAAAAAAAAAAACZJugGAAAAAAAAAABApgm6AQAAAAAAAAAAkGktD7pt27YtNmzYEH19fbFp06a499575527a9eueMtb3hLPec5zIpfLxbXXXrtyCwUAADgGah4AAKBTqXcAAICV1NKg25133hnXXnttfPCDH4wHH3wwLrzwwnjd614XO3furDl/bGwsTjnllPjgBz8Y55577gqvFgAAoDFqHgAAoFOpdwAAgJWWpGmaturmL37xi+O8886Lm2++eXrsrLPOiksuuSRuuOGGBc+96KKL4vnPf37ceOONDd1zdHQ0hoeHY2RkJIaGho5l2QAAwApq52d4NQ8AALCYdn2GV+8AAACLafYzfMve6DY+Ph47duyIzZs3V41v3rw57rvvvqbdZ2xsLEZHR6saAADAclPzAAAAnUq9AwAAtELLgm5PPvlkFAqFWLduXdX4unXrYvfu3U27zw033BDDw8PT7bTTTmvatQEAAOaj5gEAADqVegcAAGiFrlYvIEmSqv00TeeMLcXWrVtjy5Yt0/ujo6MKIQAAYMW0quY5dCgin2/abQAA4Lg2MBDRxMf4juHfeAAAgJXUsqDbySefHPl8fs5f9uzZs2fOXwAtRW9vb/T29jbtegAAAPVodc3z9Kc37RYAAHDcO3gwYnCw1avIjlbXOwAAwPGpZV9d2tPTE5s2bYrt27dXjW/fvj1e+tKXtmhVAAAAzaHmAQAAOpV6BwAAaIWWfnXpli1b4m1ve1u88IUvjPPPPz9uvfXW2LlzZ1x99dURUXol9eOPPx533HHH9DkPPfRQREQcPHgw9u7dGw899FD09PTE2Wef3YofAQAAYF6trHl+/vOIoaGm/SgAAHBcGxho9Qqyx7/xAAAAK62lQbdLL7009u3bF9ddd13s2rUrnvvc58bdd98d69evj4iIXbt2xc6dO6vOecELXjDd37FjR3zxi1+M9evXx09/+tOVXDoAAMCiWlnzDA76aiUAAGD5+DceAABgpSVpmqatXsRKGh0djeHh4RgZGYkhrzcAAIDM8wzfGJ8XAAC0F8/w9fNZAQBAe2n2M3yuCWsCAAAAAAAAAACAZSPoBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmdbV6gUAAACwDA4disjnW70KAADoDAMDEUnS6lUAAAAc1wTdAAAAOtHTn97qFQAAQOc4eDBicLDVqwAAADiu+epSAAAAAAAAAAAAMs0b3QAAADrRz38eMTTU6lUAAEBnGBho9QoAAACOe4JuAAAAnWhw0FcrAQAAAAAAHUPQDQAAAAAAgLbxkpMfiK5kMHJJMSLSyEUxIonIRTGSSCOJYiRJ5XaqJXOPl8+LSGeulxQjlxQjSQpT/ULF/lQ/V4x8UihdMylELlcs3T83czyXFErzcoWIqTlJUpzaFiKXn5qfK0YuX4hcvhBJvhi53GQkXaV5ua7SNUrH0sh1FSLyU9foLm/T0nldxUjyxUjzSUQuF8VcaZvmc5FWbnO5iHw+ilP7kUumxyrnRi5fY6w0L/L50jldpX6S5CKX5CJJktI2krr2GzlnvvOaOV7reNV4jbnHMr98TpIkLf5fEwBAexF0AwAAAAAAoG08MnFeRAy1ehmZlYtCdMXkdOuOieltZX+hsUaP5WMi8slEdCWlfi43GbmYiHxuInJJ6Vhuqp/LlVqSTESSm4xcMhFJrnaLfGle5CcizRejkEQUchHjuZjuTzahP5kr7S93v/LexSRKQct5gnD1hukWPW+BsN2xtmNdSzOuudjPs9h1mhVWbMb82XNnBzABgLkE3QAAAAAAAGgbN1x1V/R0DUQaEWkxIk3L2ySK0/tJRBoV+1F6l9us44U0ItKk4nipXywmUSgkUSyUxgrF0rZYqOiXxwu5KKZJFIu5imO5mCzmoljMlealuenxcr9QzEehmIvJYj4KaW5mP82X+ml+6thUf2p8cmq/MM8/8xUjH+ORj/HoXdH/LqX/INOLaLokilUhu2a1vgWO1Xu/Y5mXj2JMJhGTuWIUcsW6wnHHGsybfZ1mzh2fZ97s7bEeq7UthwQ73bEG5BYaX+rcZR2r8VbHRt8SudB+rWP19Gudfyz92ddvZO5C5y10/XqOzXetxY4t5RyApRB0AwAAAAAAoG387p/+RgwNeaNbmkYUChGTk7XbxMTc7WJj8x6fSGNivBgT4xGT48WYGE+nxqbadD9icjItnTc+c/7E9DWTqX4SE+X+ZBIThVzpWCGJiclcTBRyc3/eyMVE9MRE9LTg026+JIrRnU5Ed2Eiugpzg3LzhefqHV/sTXw9TXirX+W2sp9fjqTjLIUkophLZrWIwlS/fLyQi4r9iEJSHqsM0CVRTNIoTM0r5NLqcF0SUUjSUgiw3J/alkKBacX4TH8ySWMiSaOYVIf06u8Xp/qFuuYX69yfqHG8nmscLwFDVkajAbqV2EZEQ+cs9nPMd735zmtk/uyxWufOHlvsnIWOz+nXOKfZ/QXvP6t/LNdarnnN2p997Fiu18g5v/ErvxE9+fZ4xhJ0AwAAAAAAgDaTJBFdXaW2AneLiPxUP7/QxKYoh/img3J1tMpg3nK3+u9VCv0VCnPTQWnkYjx6V/7NeysgiWJ0JaWv0O1OJqMrCtGVVIbjJqOrMiiXTkZ3jEdXWhrvTservn53dpCuKyZLcwtTbb45C7SZUF5hzrGeGmPzzZ093uk5sDRJIs0lkeZykeaSiCSJYj4XUR5PclHMJ9P7xal56fR+UnGNJIrJ1H5+pl/MJZHmYubYdH8q3FjRT5PSseL0sZgam9mfM17Vkqr9tCLglyYRxUijWA76xVRAMtI51ymdk0YxSiHH6flTocjyddIonV+eU4i0dM+p44VIq8ZmrpVW7U9Gcea88vGkNKfcL99/MoozaynPS8shyjSK6VRAM4qzrlP9uUy9CHV6f6m/7GmkkaZpeQdosddvfL2gGwAAAAAAAECjKkN8/f2tXs1SlJIgaTp/QG72WDPmNPomv2M5Vt4v1nh5Wxq5mEhzMRHdceQ4C7DkkmJ05YqRn9p2JYW5/cptFKa2xehKJmfGohD5qbDg9H45WJeWg3UTkY9CaT+diHz5WDoR+XTqvHQ88mkh8mkpUJgvTh1LJ0vzpva70vHStWLmnrP75XvlC1MtGm2T0T3rmrkodnw4sJOlSRKRKwUda28j0sr9SCKmwo4z86b2k6n9ynOSiDSZCVKWxqb6UTlWnlc+t/R15DP3Skr7SdTeT8priFIIc+pYeXz62NR90qlf2pl7xazzy+dG1X3S8jWjfK2p/xuRS6qvUXF87liUfvaKsaprVowVK8arrlG1vpnrzjketY9HkkSx3I+p0GLMrK0Uikyn71Gam5bWHTNvh0zL5ybJ9DVK1546t+K6VWuJmesXK7cVx4vTayspJjPzqr5lPamYm06tJamcM3Xe9Ppn1jRnnRX3mr0fSRLFtGKNScX9psKtaVqxxnTmvuXrzLl+WnH/ZOZb48v7EVH7nrM/v6lrdyXL/4cMzSLoBgAAAAAAALBMkiSip6fUOk2xWPsrc2sF5RYbm328/Fa/+b6ed7771juvfI/5vgJ4ofFaAb+IiGKai/EaX73L/HK5NPIVLZdU7+eTYvX41P70eJT7pYBhPint55Ly/kzLxdx+LoqRr+oXKo6VQoil/ULk0tI2H1P98twolOamhcilhZm5U8dzaSnol0un+ulkxXhhZiydul65Xx4vTs6MF0utfF4uLUwfnx4vTkYunbpf5fyp/vQ56dS6y+usaFNxrwUl5ddvLjSneb8qwHL6/wrRLi+ZFXQDAAAAAAAAoGG5XOeG+BZSLFYH4eYLxVUem72td2yx+eX9yjZ7bKH9RubO1xaaU/52yvk/yySKxSQmVuY/HQ1IkjRyuZjbKseTUlixarw8Nmtbepla5Xh1P4nK8dKxpKJfHp8Zm2lJlN6oWD1WCkJO95PqfvW2GLmYunZUzi9GktaYF5XHZsZK9yzOHI+K65XHZ2+TNJK0OGe81C9M3yNJZx8r96fun866blooHU+L1XPTudef3Z8+pzy38trpVEtinnkV90hnjuXSQvW8imvMO2/WNarmTp0faVq7RY1js8eWc7/Zx5gm6AYAAAAAAAAAdSqHfLq7W72S7Cu/9KuegFw5QNjoWL3nlcfLxyrnzB47ljm1tvX0G5k7u1/Z6hlvJC+Tpsn0z17Ne9rIlspvw12Wtsi1y2uoty1tfjozNmt8el7MN1br3NLYX+e74oSV+I/VBIJuAAAAAAAAAEDTJUlEV1ep0Xrll0TVG46rnNusNvv+lfu17rfUsfI95rtPrf6xHK9n28xj9fQbmTu7X2t/qWPL+Xu9yLfodpD5gqZLC6BOttHn5/+cAAAAAAAAAAB0uPLbn3K5Vq+E49F83zI6XzBuueY0sy32cy3H8eUY6+9f3v/2zSToBgAAAAAAAAAALJvKr+KEYyWnCwAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkmqAbAAAAAAAAAAAAmSboBgAAAAAAAAAAQKYJugEAAAAAAAAAAJBpgm4AAAAAAAAAAABkWlerFwAAAEDzHRo/FPnxfKuXAQAAHWGgeyCSJGn1MgAAAI5rgm4AAAAd6Ol//vSIvlavAgAAOsPBrQdjsGew1csAAAA4rvnqUgAAAAAAAAAAADLNG90AAAA60M9//+cxNDTU6mUAAEBHGOgeaPUSAAAAjnuCbgAAAB1osGfQVysBAAAAAAAdw1eXAgAAAAAAAAAAkGmCbgAAAAAAAAAAAGSaoBsAAAAAAAAAAACZJugGAAAAAAAAAABApgm6AQAAAAAAAAAAkGmCbgAAAAAAAAAAAGSaoBsAAAAAAAAAAACZJugGAAAAAAAAAABApgm6AQAAAAAAAAAAkGmCbgAAAAAAAAAAAGSaoBsAAAAAAAAAAACZJugGAAAAAAAAAABApgm6AQAAAAAAAAAAkGmCbgAAAAAAAAAAAGSaoBsAAAAAAAAAAACZJugGAAAAAAAAAABApgm6AQAAAAAAAAAAkGmCbgAAAAAAAAAAAGSaoBsAAAAAAAAAAACZJugGAAAAAAAAAABApgm6AQAAAAAAAAAAkGmCbgAAAAAAAAAAAGSaoBsAAAAAAAAAAACZJugGAAAAAAAAAADA/9/evYdWWf9xAP+cSqddHJnmNtKxyq6a0OyyyIqi1YJQ6w8jqEkQDK3QEVQGaREZQUHRje4Fhf7RnawcaKuoIMtKRKLIWn84hkJqRrPs+f3xwwNry3nZznN2vq8XHNh5znPcZ374PDxv+OysrFl0AwAAAAAAAAAAoKxZdAMAAAAAAAAAAKCsWXQDAAAAAAAAAACgrFl0AwAAAAAAAAAAoKxZdAMAAAAAAAAAAKCsWXQDAAAAAAAAAACgrOW+6Pbkk09GQ0NDjBkzJhobG+OTTz7Z5/mdnZ3R2NgYY8aMiRNPPDGefvrpElUKAABw4GQeAACgUsk7AABAKeW66LZy5cpYtGhR3H333bF+/fqYNWtWtLS0RFdX14Dnb968Oa666qqYNWtWrF+/PpYsWRK33XZbvP766yWuHAAAYHAyDwAAUKnkHQAAoNQKWZZleX3z8847L84+++x46qmnisdOP/30mDNnTixfvrzf+XfccUe88847sWnTpuKxtra2+Pbbb+Pzzz/fr++5Y8eOqK6uju3bt8e4ceMO/YcAAACG1Ui+h5d5AACAwYzUe3h5BwAAGMxQ38Pn9oluu3fvjq+++iqam5v7HG9ubo7PPvtswPd8/vnn/c6/4oorYt26dfHXX38NW60AAAAHSuYBAAAqlbwDAADk4Yi8vvHWrVtjz549MWnSpD7HJ02aFN3d3QO+p7u7e8Dz//7779i6dWvU1tb2e09vb2/09vYWn2/fvj0i/r8xCAAAlL+99+45fhj1QZF5AACA/TESM4+8AwAA7I+hzju5LbrtVSgU+jzPsqzfscHOH+j4XsuXL49777233/HJkycfaKkAAECOtm3bFtXV1XmXccBkHgAAYH+MxMwj7wAAAPtjqPJObotuEyZMiMMPP7zfb/b09PT0+42evWpqagY8/4gjjojjjjtuwPfcdddd0d7eXnz+22+/RX19fXR1dY24wMjB27FjR0yePDl+/fXXIfmbv5Q/PU+TvqdHz9Ok7+nZvn17TJkyJcaPH593KQdE5qFUXBfTpO/p0fM06Xt69DxNIzHzyDuUkmtjevQ8TfqeHj1Pk76nZ6jzTm6LbqNHj47Gxsbo6OiIuXPnFo93dHTE7NmzB3xPU1NTvPvuu32OrV69OmbOnBmjRo0a8D1VVVVRVVXV73h1dbWhSdC4ceP0PTF6niZ9T4+ep0nf03PYYYflXcIBkXkoNdfFNOl7evQ8TfqeHj1P00jKPPIOeXBtTI+ep0nf06PnadL39AxV3sk1NbW3t8dzzz0XL7zwQmzatCkWL14cXV1d0dbWFhH//02dG2+8sXh+W1tb/PLLL9He3h6bNm2KF154IZ5//vm4/fbb8/oRAAAA/pPMAwAAVCp5BwAAKLXcPtEtImLevHmxbdu2uO+++2LLli0xbdq0WLVqVdTX10dExJYtW6Krq6t4fkNDQ6xatSoWL14cTzzxRNTV1cVjjz0W1157bV4/AgAAwH+SeQAAgEol7wAAAKWW66JbRMSCBQtiwYIFA7720ksv9Tt28cUXx9dff33Q36+qqiqWLl064EddU7n0PT16niZ9T4+ep0nf0zPSey7zMNz0PE36nh49T5O+p0fP0zSS+y7vUAr6nh49T5O+p0fP06Tv6RnqnheyLMuG5F8CAAAAAAAAAACAYXBY3gUAAAAAAAAAAADAvlh0AwAAAAAAAAAAoKxZdAMAAAAAAAAAAKCsJbfo9uSTT0ZDQ0OMGTMmGhsb45NPPsm7JIbRsmXLolAo9HnU1NTkXRZD6OOPP46rr7466urqolAoxFtvvdXn9SzLYtmyZVFXVxdjx46NSy65JDZu3JhPsQyZwfo+f/78frN//vnn51MsQ2L58uVxzjnnxDHHHBPHH398zJkzJ77//vs+55j3yrI/PTfrleepp56Ks846K8aNGxfjxo2LpqameP/994uvm/PByTtpkXcqn7yTJnknPfJOeuSdNMk7Q0PmSYe8kwaZJz3yTnrknTTJPOkpZd5JatFt5cqVsWjRorj77rtj/fr1MWvWrGhpaYmurq68S2MYnXnmmbFly5biY8OGDXmXxBDatWtXzJgxIx5//PEBX3/ooYfikUceiccffzy+/PLLqKmpicsvvzx27txZ4koZSoP1PSLiyiuv7DP7q1atKmGFDLXOzs5YuHBhfPHFF9HR0RF///13NDc3x65du4rnmPfKsj89jzDrleaEE06IBx98MNatWxfr1q2LSy+9NGbPnl0MO+Z83+SdNMk7lU3eSZO8kx55Jz3yTprknUMn86RH3ql8Mk965J30yDtpknnSU9K8kyXk3HPPzdra2vocO+2007I777wzp4oYbkuXLs1mzJiRdxmUSERkb775ZvH5P//8k9XU1GQPPvhg8diff/6ZVVdXZ08//XQOFTIc/t33LMuy1tbWbPbs2bnUQ2n09PRkEZF1dnZmWWbeU/DvnmeZWU/Fsccemz333HPmfD/IO+mRd9Ii76RJ3kmTvJMeeSdd8s6BkXnSIu+kR+ZJj7yTJnknTTJPmoYr7yTziW67d++Or776Kpqbm/scb25ujs8++yynqiiFH374Ierq6qKhoSGuu+66+Omnn/IuiRLZvHlzdHd395n7qqqquPjii819Aj766KM4/vjj45RTTombb745enp68i6JIbR9+/aIiBg/fnxEmPcU/Lvne5n1yrVnz55YsWJF7Nq1K5qamsz5IOSddMk76XJdTJt7oMom76RH3kmPvHPgZJ40yTtpc21Ml3ugyibvpEnmSctw551kFt22bt0ae/bsiUmTJvU5PmnSpOju7s6pKobbeeedF6+88kp8+OGH8eyzz0Z3d3dccMEFsW3btrxLowT2zra5T09LS0u8+uqrsWbNmnj44Yfjyy+/jEsvvTR6e3vzLo0hkGVZtLe3x4UXXhjTpk2LCPNe6QbqeYRZr1QbNmyIo48+OqqqqqKtrS3efPPNOOOMM8z5IOSdNMk7aXNdTJd7oMom76RH3kmLvHPwZJ70yDu4NqbJPVBlk3fSJPOko1R554ghqXYEKRQKfZ5nWdbvGJWjpaWl+PX06dOjqakpTjrppHj55Zejvb09x8ooJXOfnnnz5hW/njZtWsycOTPq6+vjvffei2uuuSbHyhgKt9xyS3z33Xfx6aef9nvNvFem/+q5Wa9Mp556anzzzTfx22+/xeuvvx6tra3R2dlZfN2c75v/n7TIO0SY+xS5B6ps8k565J20yDuHzv9ROuQd9jL3aXEPVNnknTTJPOkoVd5J5hPdJkyYEIcffni/bcCenp5+W4NUrqOOOiqmT58eP/zwQ96lUAI1NTUREeaeqK2tjfr6erNfAW699dZ45513Yu3atXHCCScUj5v3yvVfPR+IWa8Mo0ePjpNPPjlmzpwZy5cvjxkzZsSjjz5qzgch7xAh76TGdZG93ANVDnknPfJOeuSdgyfzIO+kx7WRCPdAlUTeSZPMk5ZS5Z1kFt1Gjx4djY2N0dHR0ed4R0dHXHDBBTlVRan19vbGpk2bora2Nu9SKIGGhoaoqanpM/e7d++Ozs5Oc5+Ybdu2xa+//mr2R7Asy+KWW26JN954I9asWRMNDQ19XjfvlWewng/ErFemLMuit7fXnA9C3iFC3kmN6yJ7uQca+eSd9Mg77CXv7D+ZB3knPa6NRLgHqgTyTppkHiKGL+8k9adL29vb44YbboiZM2dGU1NTPPPMM9HV1RVtbW15l8Ywuf322+Pqq6+OKVOmRE9PT9x///2xY8eOaG1tzbs0hsjvv/8eP/74Y/H55s2b45tvvonx48fHlClTYtGiRfHAAw/E1KlTY+rUqfHAAw/EkUceGddff32OVXOo9tX38ePHx7Jly+Laa6+N2tra+Pnnn2PJkiUxYcKEmDt3bo5VcygWLlwYr732Wrz99ttxzDHHFDf+q6urY+zYsVEoFMx7hRms57///rtZr0BLliyJlpaWmDx5cuzcuTNWrFgRH330UXzwwQfmfD/IO+mRdyqfvJMmeSc98k565J00yTuHTuZJi7yTBpknPfJOeuSdNMk86Slp3skS88QTT2T19fXZ6NGjs7PPPjvr7OzMuySG0bx587La2tps1KhRWV1dXXbNNddkGzduzLsshtDatWuziOj3aG1tzbIsy/75559s6dKlWU1NTVZVVZVddNFF2YYNG/ItmkO2r77/8ccfWXNzczZx4sRs1KhR2ZQpU7LW1tasq6sr77I5BAP1OyKyF198sXiOea8sg/XcrFemm266qXivPnHixOyyyy7LVq9eXXzdnA9O3kmLvFP55J00yTvpkXfSI++kSd4ZGjJPOuSdNMg86ZF30iPvpEnmSU8p804hy7LswNfjAAAAAAAAAAAAoDQOy7sAAAAAAAAAAAAA2BeLbgAAAAAAAAAAAJQ1i24AAAAAAAAAAACUNYtuAAAAAAAAAAAAlDWLbgAAAAAAAAAAAJQ1i24AAAAAAAAAAACUNYtuAAAAAAAAAAAAlDWLbgAAAAAAAAAAAJQ1i24AAAAAAAAAAACUNYtuAIxohUJhn4/58+fnXSIAAMBBkXcAAIBKJe8AcDCOyLsAADgUW7ZsKX69cuXKuOeee+L7778vHhs7dmweZQEAABwyeQcAAKhU8g4AB8OiGwAjWk1NTfHr6urqKBQKfY4BAACMVPIOAABQqeQdAA6GP10KAAAAAAAAAABAWbPoBgAAAAAAAAAAQFmz6AYAAAAAAAAAAEBZs+gGAAAAAAAAAABAWbPoBgAAAAAAAAAAQFmz6AYAAAAAAAAAAEBZs+gGAAAAAAAAAABAWStkWZblXQQAAAAAAAAAAAD8F5/oBgAAAAAAAAAAQFmz6AYAAAAAAAAAAEBZs+gGAAAAAAAAAABAWbPoBgAAAAAAAAAAQFmz6AYAAAAAAAAAAEBZs+gGAAAAAAAAAABAWbPoBgAAAAAAAAAAQFmz6AYAAAAAAAAAAEBZs+gGAAAAAAAAAABAWbPoBgAAAAAAAAAAQFmz6AYAAAAAAAAAAEBZs+gGAAAAAAAAAABAWfsfwqk/I7vrTBgAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"## Plot the price elasticity for consumption growth for only ρ = 2/3 (rho 006)\n",
"fig, axes = plt.subplots(1, 3, figsize=(25, 8)) # 1 row, 3 columns for each shock\n",
"\n",
"# Create DataFrames for each shock type with quantiles at ρ = 2/3\n",
"price_elas_shock_0_df = pd.DataFrame({\n",
" 'T': np.arange(T),\n",
" '0.1 quantile': price_elas_shock_0[0].flatten(),\n",
" '0.5 quantile': price_elas_shock_0[1].flatten(),\n",
" '0.9 quantile': price_elas_shock_0[2].flatten()\n",
"})\n",
"\n",
"price_elas_shock_1_df = pd.DataFrame({\n",
" 'T': np.arange(T),\n",
" '0.1 quantile': price_elas_shock_1[0].flatten(),\n",
" '0.5 quantile': price_elas_shock_1[1].flatten(),\n",
" '0.9 quantile': price_elas_shock_1[2].flatten()\n",
"})\n",
"\n",
"price_elas_shock_2_df = pd.DataFrame({\n",
" 'T': np.arange(T),\n",
" '0.1 quantile': -price_elas_shock_2[0].flatten(),\n",
" '0.5 quantile': -price_elas_shock_2[1].flatten(),\n",
" '0.9 quantile': -price_elas_shock_2[2].flatten()\n",
"})\n",
"\n",
"# List of data and names for each shock\n",
"plot_elas = [price_elas_shock_1_df, price_elas_shock_0_df,price_elas_shock_2_df]\n",
"shock_name = ['growth shock', 'consumption shock', 'volatility shock']\n",
"quantiles = ['0.1 quantile', '0.5 quantile', '0.9 quantile']\n",
"colors = ['green', 'red', 'blue']\n",
"\n",
"# Loop over each shock to plot on its respective axis\n",
"for k, ax in enumerate(axes):\n",
" for qtl, color in zip(quantiles, colors):\n",
" sns.lineplot(data=plot_elas[k], x='T', y=qtl, ax=ax, color=color, label=qtl)\n",
" ax.set_xlabel('T')\n",
" ax.set_ylabel('Price elasticity')\n",
" ax.set_title(f'With respect to the {shock_name[k]}', fontsize=25)\n",
"\n",
"axes[0].set_ylim([0,0.5])\n",
"axes[1].set_ylim([0,0.5])\n",
"axes[2].set_ylim([0,0.5])\n",
"axes[0].set_xlim([0,30])\n",
"axes[1].set_xlim([0,30])\n",
"axes[2].set_xlim([0,30])\n",
"\n",
"fig.suptitle('Price elasticity for the consumption growth', fontsize=30)\n",
"fig.tight_layout()\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "938eefcd",
"metadata": {},
"source": [
"## 2.3 Additional Features\n",
"In general, you will not have to input the approximations of the state and consumption growth variables manually. Instead, these will be the outputs of our solution code. We have included some sample solutions of the long-run risk model with different parameters of $\\rho$ below. "
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "4b5ef9c8",
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"pd.options.display.float_format = '{:.3g}'.format\n",
"sns.set(font_scale = 1.5)\n",
"\n",
"\"\"\"\n",
"load the long-run risk model solutions when ρ = 2/3, 1, 1.5, 10\n",
"\"\"\"\n",
"\n",
"with open(workdir + '/data/res_006.pkl', 'rb') as f:\n",
" res_006 = pickle.load(f)\n",
"with open(workdir + '/data/res_010.pkl', 'rb') as f:\n",
" res_010 = pickle.load(f)\n",
"with open(workdir + '/data/res_015.pkl', 'rb') as f:\n",
" res_015 = pickle.load(f)\n",
"with open(workdir + '/data/res_100.pkl', 'rb') as f:\n",
" res_100 = pickle.load(f)\n"
]
},
{
"cell_type": "markdown",
"id": "6c78dbf2",
"metadata": {},
"source": [
"Then we can access the approximations without inputting them manually, for example:"
]
},
{
"cell_type": "markdown",
"id": "857854bf",
"metadata": {},
"source": [
"Below is a brief UI to select parameters shown in the long-run risk model. The stochastic volatility process has been normalized with its mean equal to 1. By changing the inputs of parameters, we can see how shock elasticities vary with respect to these parameters."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "6d4e2287",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5a850e6483eb434f889f155e913a4429",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"interactive(children=(Dropdown(description='γ', index=1, options=(('5', 5), ('10', 10), ('15', 15), ('20', 20)…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from ipywidgets import interact\n",
"from BY_example_sol import solve_BY_elas\n",
"\n",
"interact(solve_BY_elas, γ=[('5',5), ('10',10),('15',15),('20',20)],\\\n",
" β=[('0.995',0.995),('0.998',0.998), ('0.999',0.999)],\\\n",
" ρ=[('2/3', 2./3),('1', 1.0001),('1.5', 1.5),('10', 10)],\\\n",
" α=[('0.969',0.969),('0.979',0.979),('0.989',0.989)],\\\n",
" ϕ_e=[('0.0002',0.0002),('0.0003432',0.0003432),('0.0004',0.0004)],\\\n",
" ν_1=[('0.977',0.977),('0.987',0.987),('0.997',0.997)],\\\n",
" σ_w=[('0.03',0.03),('0.0378',0.0378),('0.04',0.04)],\\\n",
" μ=[('0.0005', 0.0005),('0.0015', 0.0015),('0.003',0.003)],\\\n",
" ϕ_c=[('0.002',0.002),('0.0078',0.0078),('0.01',0.01)]);"
]
},
{
"cell_type": "markdown",
"id": "8c47c53a",
"metadata": {},
"source": [
" \n",
" "
]
},
{
"cell_type": "markdown",
"id": "07daabf6",
"metadata": {},
"source": [
"\n",
"\n",
"# 3. Shock Elasticity Appendix\n",
"## 3.1 Analytical framework\n",
"Shock elasticities are used to quantify the date $t$ impact on values of exposure to the shock $\n",
"(\\alpha_0 + \\alpha_1 X_0) \\cdot W_1$ at date one. It has the form shown in equation 3: \n",
"\n",
"$$\n",
"\\varepsilon( x, t)= \\frac{(\\alpha_0 + \\alpha_1 x) \\cdot {\\mathbb E}\\left[\\left( \\frac {M_t}{M_0}\\right) W_1 \\mid X_0 = x\\right]}{{\\mathbb E} \\left(\\frac {M_t}{M_0} \\mid X_0 = x\\right)}\\tag{3}\n",
"$$\n",
"\n",
"Using the linear-quadratic dynamics of section 1, the computer software recursively computes the logarithm of the denominator of formula (3): \n",
"\n",
"$$\n",
"\\log {\\mathbb E}\\left(\\frac {M_t}{M_1} \\mid X_1 =x\\right) = \\Phi_{0, t}^*+\\Phi_{1, t}^* x_1 +\\Phi_{2, t}^*x_2 +\n",
"{\\frac 1 2} (x_1)' \\Phi_{3, t}^*x_1 \\tag{4}\n",
"$$\n",
"\n",
"Form \n",
"\n",
"$$\n",
"\\begin{align*}\n",
"&{\\mathbb M} \\left[ \\Phi_{0} +\\Phi_1 x_1+\\Phi_2 x_2 + {\\frac 1 2} (x_1)'\\Phi_3 x_1\\right] \\\\ &\\equiv\n",
"\\log {\\mathbb E} \\left[\\left( \\frac {M_2}{M_1}\\right)\\exp\\left[\\Phi_{0} +\\Phi_1 x_1+\\Phi_2 x_2 + {\\frac 1 2} (x_1)'\\Phi_3 x_1\\right] \\mid X_0 = x \\right] \n",
"\\end{align*}\n",
"$$ \n",
"\n",
"Conveniently, we can express the outcomes as: \n",
"\n",
"$$\n",
"{\\mathbb M} \\left[ \\Phi_{0} +\\Phi_1 x_1+\\Phi_2 x_2 + {\\frac 1 2} (x_1)'\\Phi_3 x_1\\right] =\n",
"{\\widetilde \\Phi}_{0} + {\\widetilde \\Phi}_1 x_1+ {\\widetilde \\Phi}_2 x_2 + {\\frac 1 2} (x_1)'{\\widetilde \\Phi}_3 x_1\n",
"$$ \n",
"\n",
"for some specification of ${\\widetilde \\Phi}_i$, $i=0,1,2,3$. In words, the ${\\mathbb M}$ operator maps linear-quadratic functions into linear-quadratic functions. The code uses this mapping repeatedly. \n",
"\n",
"By a direct application of the Law of Iterated Expectations we have that \n",
"\n",
"$$\n",
"\\log {\\mathbb E}\\left(\\frac {M_t}{M_1} \\mid X_1 =x\\right) = {\\mathbb M}^{t-1}[1]\n",
"$$ \n",
"\n",
"where ${\\mathbb M}^{t-1}[1]$ means to apply the operator ${\\mathbb M}$ $t-1$ times in succession to a function that is identically one. Observe that ${\\mathbb M}^{t-1}[1]$ is a function of $x$. \n",
"\n",
"The function *_Φ_star* defined below calculates the linear-quadratic dynamic coefficients in $\\mathbb{M}$ mappings and iterations.\n",
"\n",
"To complete the calculation of the elasticity, \n",
"note that \n",
"\n",
"$$\n",
"\\frac{{\\mathbb E}\\left[\\left(\\frac { M_t}{M_0}\\right) W_1 \\mid X_0=x\\right]}{{\\mathbb E}\\left[\\left(\\frac {M_t}{M_0}\\right) \\mid X_0=x\\right]}=\n",
"\\frac{{\\mathbb E}\\left[ \\left(\\frac {M_1}{M_0}\\right) {\\mathbb E}\\left(\\frac{M_t}{M_1} \\mid X_1\\right) W_1 \\mid X_0=x\\right]}{{\\mathbb E}\\left[\\left(\\frac {M_1}{M_0}\\right) E\\left(\\frac{M_t}{M_1} \\mid X_1\\right) \\mid X_0=x\\right]} .\n",
"$$ \n",
"\n",
"This leads us to construct the nonegative random variable: \n",
"\n",
"$$\n",
"L_{t}\\equiv\\frac{\\left(\\frac {M_1}{M_0}\\right) \\exp\\left[ {\\mathbb M}^{t-1}[1](X_1) \\right]}{{\\mathbb E}\\left[\\left(\\frac {M_1}{M_0}\\right) \\exp\\left[ {\\mathbb M}^{t-1}[1](X_1) \\right]\n",
" \\mid X_0=x\\right]} \n",
"$$ \n",
"\n",
"Notice that $L_{t}$ depends only date one information and has expectation one conditioned on date zero information. Multiplying this positive random\n",
"variable by $W_1$ and taking expectations is equivalent to changing the conditional probability distribution and evaluating the conditional expectation of $W_1$ under this change of measure. Since $W_1$ is normally distributed, the exponential quadratic construction of $L_{t}$ implies that $W_1$ remains normally distributed but with a different mean and covariance matrix. The computer codes use this observation to evaluate formula (5) by taking an altered conditional expectation of $W_1$.\n",
" \n",
"\n",
"For the purposes of the code, denote the conditional mean induced by $L_{t}$ as $\\mu_{t}^0 + \\mu_{t}^1 x_1$ and the conditional covariance matrix ${\\widetilde \\Sigma}_t$.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b7b56ed6",
"metadata": {},
"outputs": [],
"source": [
"def _Φ_star(log_M_growth, X1_tp1, X2_tp1, T):\n",
" r\"\"\"\n",
" Computes :math:`\\Phi^*_{0,t-1}`, :math:`\\Phi^*_{1,t-1}`, :math:`\\Phi^*_{2,t-1}`, :math:`\\Phi^*_{3,t-1}` in equation (4).\n",
"\n",
" Parameters\n",
" ----------\n",
" log_M_growth : LinQuadVar\n",
" Log growth of multiplicative functional M.\n",
" e.g. log consumption growth, :math:`\\log \\frac{C_{t+1}}{C_t}`\n",
" X1_tp1 : LinQuadVar\n",
" Stores the coefficients of laws of motion for X1.\n",
" X2_tp2 : LinQuadVar or None\n",
" Stores the coefficients of laws of motion for X2.\n",
" T : int\n",
" Time horizon.\n",
"\n",
" Returns\n",
" -------\n",
" Φ_star_1tm1_all : (T, 1, n_X) ndarray\n",
" Φ_star_2tm1_all : (T, 1, n_X) ndarray\n",
" Φ_star_3tm1_all : (T, 1, n_X**2) ndarray\n",
"\n",
" \"\"\"\n",
" _, n_X, _ = X1_tp1.shape\n",
" \n",
" Φ_star_1tm1_all = np.zeros((T, 1, n_X))\n",
" Φ_star_2tm1_all = np.zeros((T, 1, n_X))\n",
" Φ_star_3tm1_all = np.zeros((T, 1, n_X**2))\n",
" log_M_growth_distort = log_E_exp(log_M_growth)\n",
" X1X1 = kron_prod(X1_tp1, X1_tp1)\n",
"\n",
" for i in range(1, T):\n",
" Φ_star_1tm1_all[i] = log_M_growth_distort['x']\n",
" Φ_star_2tm1_all[i] = log_M_growth_distort['x2']\n",
" Φ_star_3tm1_all[i] = log_M_growth_distort['xx']\n",
" temp = next_period(log_M_growth_distort, X1_tp1, X2_tp1, X1X1)\n",
" log_M_growth_distort = log_E_exp(log_M_growth + temp)\n",
"\n",
" return Φ_star_1tm1_all, Φ_star_2tm1_all, Φ_star_3tm1_all"
]
},
{
"cell_type": "markdown",
"id": "8eb1562c",
"metadata": {},
"source": [
"The function `_elasticity_coeff` defined below calculates the conditional mean induced by $L_{t}$ as $\\mu_{0,t} + \\mu_{1,t} x_1$ and the covariance matrix as ${\\widetilde \\Sigma}_{t}.$"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4d82edc",
"metadata": {},
"outputs": [],
"source": [
"def _elasticity_coeff(log_M_growth, X1_tp1, X2_tp1, T):\n",
" r\"\"\"\n",
" Computes :math:`\\mu_{t,0}`, :math:`\\mu_{t,1}`, :math:`\\tilde{\\Sigma}_t`. Corresponding formulas can be found in [3], Jaroslav and Hansen (2014), Appendix B.\n",
"\n",
" Parameters\n",
" ----------\n",
" log_M_growth : LinQuadVar\n",
" Log difference of multiplicative functional.\n",
" e.g. log consumption growth, :math:`\\log \\frac{C_{t+1}}{C_t}`\n",
" X1_tp1 : LinQuadVar\n",
" Stores the coefficients of laws of motion for X1.\n",
" X2_tp2 : LinQuadVar or None\n",
" Stores the coefficients of laws of motion for X2. \n",
" T : int\n",
" Time horizon.\n",
"\n",
" Returns\n",
" -------\n",
" Σ_tilde_t_all : (T, n_W, n_W) ndarray\n",
" μ_t0_all : (T, n_W, 1) ndarray\n",
" μ_t1_all : (T, n_W, n_X) ndarray\n",
"\n",
" \"\"\"\n",
" _, n_X, n_W = log_M_growth.shape\n",
" \n",
" Φ_star_1tm1_all, Φ_star_2tm1_all, Φ_star_3tm1_all = _Φ_star(log_M_growth, X1_tp1, X2_tp1, T)\n",
" Ψ_0 = log_M_growth['w']\n",
" Ψ_1 = log_M_growth['xw']\n",
" Ψ_2 = log_M_growth['ww']\n",
" Λ_10 = X1_tp1['w']\n",
" if log_M_growth.second_order:\n",
" Λ_20 = X2_tp1['w']\n",
" Λ_21 = X2_tp1['xw']\n",
" Λ_22 = X2_tp1['ww']\n",
" else:\n",
" Λ_20 = np.zeros((n_X,n_W))\n",
" Λ_21 = np.zeros((n_X,n_X*n_W))\n",
" Λ_22 = np.zeros((n_X,n_W**2))\n",
" Θ_10 = X1_tp1['c']\n",
" Θ_11 = X1_tp1['x']\n",
" \n",
" Σ_tilde_t_all, μ_t0_all, μ_t1_all \\\n",
" = _elasticity_coeff_inner_loop(Φ_star_1tm1_all, Φ_star_2tm1_all, Φ_star_3tm1_all, Ψ_0, Ψ_1, Ψ_2, Λ_10, Λ_20, Λ_21, Λ_22, Θ_10, Θ_11, n_X, n_W, T) \n",
" \n",
" return Σ_tilde_t_all, μ_t0_all, μ_t1_all\n",
"\n",
"@njit\n",
"def _elasticity_coeff_inner_loop(Φ_star_1tm1_all, Φ_star_2tm1_all, Φ_star_3tm1_all, Ψ_0, Ψ_1, Ψ_2, Λ_10, Λ_20, Λ_21, Λ_22, Θ_10, Θ_11, n_X, n_W, T):\n",
" \n",
" Σ_tilde_t_all = np.zeros((T, n_W, n_W))\n",
" μ_t0_all = np.zeros((T, n_W, 1))\n",
" μ_t1_all = np.zeros((T, n_W, n_X)) \n",
"\n",
" kron_Λ_10_Λ_10 = np.kron(Λ_10,Λ_10)\n",
" kron_Θ_10_Λ_10_sum = np.kron(Θ_10,Λ_10) + np.kron(Λ_10,Θ_10)\n",
"\n",
" temp = np.kron(Λ_10, Θ_11[:, 0:1].copy())\n",
" for j in range(1, n_X):\n",
" temp = np.hstack((temp, np.kron(Λ_10, Θ_11[:, j:j+1].copy())))\n",
"\n",
" kron_Θ_11_Λ_10_term = np.kron(Θ_11, Λ_10) + temp\n",
"\n",
" for t in prange(T):\n",
" Φ_star_1tm1 = Φ_star_1tm1_all[t]\n",
" Φ_star_2tm1 = Φ_star_2tm1_all[t]\n",
" Φ_star_3tm1 = Φ_star_3tm1_all[t]\n",
"\n",
" Σ_tilde_t_inv = np.eye(n_W)- 2 * sym(mat(Ψ_2 + Φ_star_2tm1@Λ_22 + Φ_star_3tm1@kron_Λ_10_Λ_10, (n_W, n_W)))\n",
" μ_t0 = (Ψ_0 + Φ_star_1tm1@Λ_10 + Φ_star_2tm1@Λ_20 + Φ_star_3tm1 @ kron_Θ_10_Λ_10_sum).T\n",
" μ_t1 = mat(Ψ_1 + Φ_star_2tm1 @ Λ_21 + Φ_star_3tm1 @ kron_Θ_11_Λ_10_term,(n_W, n_X))\n",
" Σ_tilde_t_all[t] = np.linalg.inv(Σ_tilde_t_inv)\n",
" μ_t0_all[t] = μ_t0\n",
" μ_t1_all[t] = μ_t1\n",
" \n",
" return Σ_tilde_t_all, μ_t0_all, μ_t1_all"
]
},
{
"cell_type": "markdown",
"id": "05e31659",
"metadata": {},
"source": [
"## 3.2 Exposure and Price Elasticities\n",
" \n",
"Then we use the functions above to compute our shock elasticities. Since the shock elasticity function depends on $x_1$, the code computes percentiles of the shock elasticity based on the stationary distribution of $x_1$. This is done by the internal function *\\_compute\\_percentile* in *exposure\\_elasticity* and *price\\_elasticity*. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8bf1f9e",
"metadata": {},
"outputs": [],
"source": [
"def exposure_elasticity(log_M_growth, X1_tp1, X2_tp1, T=400, shock=0, percentile=0.5):\n",
" r\"\"\"\n",
" Computes exposure elasticity for M.\n",
"\n",
" Parameters\n",
" ----------\n",
" log_M_growth : LinQuadVar\n",
" Log growth of multiplicative functional M.\n",
" e.g. log consumption growth, :math:`\\log \\frac{C_{t+1}}{C_t}`\n",
" X1_tp1 : LinQuadVar\n",
" Stores the coefficients of laws of motion for X1.\n",
" X2_tp1 : LinQuadVar\n",
" Stores the coefficients of laws of motion for X2. \n",
" T : int\n",
" Time horizon.\n",
" shock : int\n",
" Position of the initial shock, starting from 0.\n",
" percentile : float\n",
" Specifies the percentile of the elasticities.\n",
"\n",
" Returns\n",
" -------\n",
" elasticities : (T, n_Y) ndarray\n",
" Exposure elasticities.\n",
"\n",
" Reference\n",
" ---------\n",
" Borovicka, Hansen (2014). See http://larspeterhansen.org/.\n",
"\n",
" \"\"\"\n",
" n_Y, n_X, n_W = log_M_growth.shape\n",
" if n_Y != 1:\n",
" raise ValueError(\"The dimension of input should be 1.\")\n",
"\n",
" α = np.zeros(n_W)\n",
" α[shock] = 1 \n",
" p = norm.ppf(percentile)\n",
"\n",
" Σ_tilde_t, μ_t0, μ_t1 = _elasticity_coeff(log_M_growth, X1_tp1, X2_tp1, T)\n",
"\n",
" kron_product = np.kron(X1_tp1['x'], X1_tp1['x'])\n",
" x_mean = np.linalg.solve(np.eye(n_X)-X1_tp1['x'],X1_tp1['c'])\n",
" x_cov = mat(np.linalg.solve(np.eye(n_X**2)-kron_product,\n",
" vec(X1_tp1['w']@X1_tp1['w'].T)), (n_X, n_X))\n",
"\n",
" elasticities = _exposure_elasticity_loop(T, n_Y, α, Σ_tilde_t, μ_t0,\n",
" μ_t1, percentile, x_mean, x_cov, p)\n",
"\n",
" return elasticities\n",
"\n",
"@njit(parallel=True)\n",
"def _exposure_elasticity_loop(T, n_Y, α, Σ_tilde_t, μ_t0, μ_t1, percentile, x_mean, x_cov, p):\n",
" elasticities = np.zeros((T, n_Y))\n",
" if percentile == 0.5:\n",
" for t in prange(T):\n",
" elasticity = (α@Σ_tilde_t[t]@μ_t0[t])[0] +(α@Σ_tilde_t[t]@μ_t1[t]@x_mean)[0]\n",
" elasticities[t] = elasticity\n",
" else:\n",
" for t in prange(T):\n",
" elasticity = (α@Σ_tilde_t[t]@μ_t0[t])[0] +(α@Σ_tilde_t[t]@μ_t1[t]@x_mean)[0]\n",
" A = α@Σ_tilde_t[t]@μ_t1[t]\n",
" elasticity = _compute_percentile(A, elasticity, x_cov, p)\n",
" elasticities[t] = elasticity\n",
" return elasticities"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9a98e511",
"metadata": {},
"outputs": [],
"source": [
"def price_elasticity(log_G_growth, log_S_growth, X1_tp1, X2_tp1, T=400, shock=0, percentile=0.5):\n",
" r\"\"\"\n",
" Computes price elasticity.\n",
"\n",
" Parameters\n",
" ----------\n",
" log_G_growth : LinQuadVar\n",
" Log growth of multiplicative functional G.\n",
" e.g. log consumption growth, :math:`\\log \\frac{C_{t+1}}{C_t}`\n",
" log_S_growth : LinQuadVar\n",
" Log growth of multiplicative functional S.\n",
" e.g. log stochastic discount factor, :math:`\\log \\frac{S_{t+1}}{S_t}`\n",
" X1_tp1 : LinQuadVar\n",
" Stores the coefficients of laws of motion for X1.\n",
" X2_tp2 : LinQuadVar or None\n",
" Stores the coefficients of laws of motion for X2. \n",
" T : int\n",
" Time horizon.\n",
" shock : int\n",
" Position of the initial shock, starting from 0.\n",
" percentile : float\n",
" Specifies the percentile of the elasticities.\n",
"\n",
" Returns\n",
" -------\n",
" elasticities : (T, dim) ndarray\n",
" Price elasticities.\n",
"\n",
" Reference\n",
" ---------\n",
" Borovicka, Hansen (2014). See http://larspeterhansen.org/.\n",
"\n",
" \"\"\"\n",
" if log_G_growth.shape != log_S_growth.shape:\n",
" raise ValueError(\"The dimensions of G and S do not match.\")\n",
" else:\n",
" n_Y, n_X, n_W = log_G_growth.shape\n",
" if n_Y != 1:\n",
" raise ValueError(\"The dimension of inputs should be (1, n_X, n_W)\")\n",
" α = np.zeros(n_W)\n",
" α[shock] = 1 \n",
"\n",
" p = norm.ppf(percentile)\n",
"\n",
" Σ_tilde_expo_t, μ_expo_t0, μ_expo_t1 \\\n",
" = _elasticity_coeff(log_G_growth, X1_tp1, X2_tp1, T)\n",
" Σ_tilde_value_t, μ_value_t0, μ_value_t1\\\n",
" = _elasticity_coeff(log_G_growth+log_S_growth, X1_tp1, X2_tp1, T)\n",
"\n",
" kron_product = np.kron(X1_tp1['x'], X1_tp1['x'])\n",
" x_mean = np.linalg.solve(np.eye(n_X)-X1_tp1['x'],X1_tp1['c'])\n",
" x_cov = mat(np.linalg.solve(np.eye(n_X**2)-kron_product,\n",
" vec(X1_tp1['w']@X1_tp1['w'].T)), (n_X, n_X))\n",
" \n",
" elasticities = _price_elasticity_loop(T, n_Y, α, Σ_tilde_expo_t, Σ_tilde_value_t, \n",
" μ_expo_t0, μ_value_t0, μ_expo_t1, μ_value_t1,\n",
" percentile, x_mean, x_cov, p)\n",
"\n",
" return elasticities\n",
"\n",
"@njit(parallel=True)\n",
"def _price_elasticity_loop(T, n_Y, α, Σ_tilde_expo_t, Σ_tilde_value_t, \n",
" μ_expo_t0, μ_value_t0, μ_expo_t1, μ_value_t1,\n",
" percentile, x_mean, x_cov, p):\n",
" elasticities = np.zeros((T, n_Y))\n",
" if percentile == 0.5:\n",
" for t in prange(T):\n",
" elasticity = (α @ (Σ_tilde_expo_t[t] @ μ_expo_t0[t] \\\n",
" - Σ_tilde_value_t[t] @ μ_value_t0[t]))[0]\\\n",
" +(α@(Σ_tilde_expo_t[t]@μ_expo_t1[t]@x_mean\\\n",
" - Σ_tilde_value_t[t] @ μ_value_t1[t]@x_mean))[0]\n",
" elasticities[t] = elasticity \n",
" else:\n",
" for t in prange(T):\n",
" elasticity = (α @ (Σ_tilde_expo_t[t] @ μ_expo_t0[t]\\\n",
" - Σ_tilde_value_t[t] @ μ_value_t0[t]))[0]\\\n",
" +(α@(Σ_tilde_expo_t[t]@μ_expo_t1[t]@x_mean\\\n",
" - Σ_tilde_value_t[t] @ μ_value_t1[t]@x_mean))[0]\n",
" A = α @ (Σ_tilde_expo_t[t]@μ_expo_t1[t]\\\n",
" - Σ_tilde_value_t[t]@μ_value_t1[t])\n",
" elasticity = _compute_percentile(A, elasticity, x_cov, p)\n",
" elasticities[t] = elasticity\n",
" return elasticities"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d689b7ed",
"metadata": {},
"outputs": [],
"source": [
"@njit\n",
"def _compute_percentile(A, Ax_mean, x_cov, p):\n",
" r\"\"\"\n",
" Compute percentile of the scalar Ax, where A is vector coefficient and x follows multivariate normal distribution.\n",
" \n",
" Parameters\n",
" ----------\n",
" A : (N, ) ndarray\n",
" Coefficient of Ax.\n",
" Ax_mean : float\n",
" Mean of Ax.\n",
" x_cov : (N, N) ndarray\n",
" Covariance matrix of x.\n",
" p : float\n",
" Percentile of a standard normal distribution.\n",
"\n",
" Returns\n",
" -------\n",
" res : float\n",
" Percentile of Ax.\n",
"\n",
" \"\"\"\n",
" Ax_var = A@x_cov@A.T\n",
" Ax_std = np.sqrt(Ax_var)\n",
" res = Ax_mean + Ax_std * p\n",
" return res"
]
},
{
"cell_type": "markdown",
"id": "3da1b0e7",
"metadata": {},
"source": [
"## 3.3 Limiting Behavior\n",
"\n",
"The operator ${\\mathbb M}$ typically has a solution to the following equation: \n",
"\n",
"$$\n",
"{\\mathbb M} \\left[\\Phi_1^e x_1+\\Phi_2^e x_2 + {\\frac 1 2} (x_1)'\\Phi_3^e x_1\\right] \n",
"= \n",
"\\eta^e + \n",
" \\left[ \\Phi_1^e x_1+\\Phi_2^e x_2 + {\\frac 1 2} (x_1)'\\Phi_3^e x_1\\right] \\tag{6} \n",
"$$\n",
"\n",
"\n",
"The solution of interest when, it exists, can be deduced by iterating on the ${\\mathbb M}$ operator allowing for a constant shift $\\eta^e$. This solution gives a characterization of the limiting elasticity. Construct \n",
"\n",
"$$\n",
"L_{1,\\infty} = \\left(\\frac {M_1}{M_0} \\right)\\left(\\frac{\\exp\\left[\\Phi_1^e X_{1,1} +\\Phi_2^e X_{2,1} + {\\frac 1 2} (X_{1,1})'\\Phi_3^e X_{1,1} \\right]}{ \n",
"\\exp(\\eta) \\exp\\left[ \\Phi_1^e X_{1,0} +\\Phi_2^e X_{2,0} + {\\frac 1 2} (X_{1,0})'\\Phi_3^e X_{1,0}\\right]} \\right) . \n",
"$$ \n",
"\n",
"The elasticities are given by conditional linear combinations of conditional expectations of $W_1$ under this limiting change of measure.\n",
"\n",
"To express the equation of interest differently, consider the operator, ${\\mathbb P}$ that maps $\\Phi_{0} +\\Phi_1 x_1+\\Phi_2 x_2 + {\\frac 1 2} (x_1)'\\Phi_3 x_1$ into $\\exp\\left({\\mathbb M} \\left[ \\Phi_{0} +\\Phi_1^e x_1+\\Phi_2 x_2 + {\\frac 1 2} (x_1)'\\Phi_3 x_1\\right] \\right)$. Rewrite equation (6) as: \n",
"\n",
"$$\n",
"{\\mathbb P} \\left[ \\Phi_1^e x_1+\\Phi_2^e x_2 + {\\frac 1 2} (x_1)'\\Phi_3^e x_1\\right] \n",
"= \n",
"\\exp(\\eta) \n",
" \\left[ \\Phi_1^e x_1+\\Phi_2^e x_2 + {\\frac 1 2} (x_1)'\\Phi_3^e x_1\\right]\n",
"$$ \n",
"\n",
"which is an eigenvalue equation where $\\exp\\left[ \\Phi_1^e x_1+\\Phi_2^e x_2 + {\\frac 1 2} (x_1)'\\Phi_3^e x_1\\right]$ is a postive eigenfunction and $\\exp(\\eta)$ is a positive eigenvalue. [^1] \n",
"\n",
"\n",
"The codes below solve the eigenvalue problem using the *M_mapping*.\n",
"\n",
"[^1]: This eigenvalue problem is the so called Perron-Frobenius problem. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "abe4f3f5",
"metadata": {},
"outputs": [],
"source": [
"def M_mapping(log_M_growth, f, X1_tp1, X2_tp1, second_order = True):\n",
" r'''\n",
" Computes coefficients of a LinQuadVar after one iteration of M mapping\n",
"\n",
" Parameters\n",
" ----------\n",
" log_M_growth : LinQuadVar\n",
" Log difference of multiplicative functional.\n",
" e.g. log consumption growth, :math:`\\log \\frac{C_{t+1}}{C_t}`\n",
" f : LinQuadVar\n",
" The function M Mapping operate on. \n",
" e.g. A function that is identically one, log_f = LinQuadVar({'c': np.zeros((1,1))}, log_M_growth.shape)\n",
" X1_tp1 : LinQuadVar \n",
" Stores the coefficients of laws of motion for X1.\n",
" X2_tp2 : LinQuadVar or None\n",
" Stores the coefficients of laws of motion for X2. \n",
" second_order: boolean\n",
" Whether the second order expansion of the state evoluton equation has been input\n",
" \n",
" Returns\n",
" -------\n",
" LinQuadVar, stores the coefficients of the new LinQuadVar after one iteration of M Mapping\n",
" '''\n",
" if second_order:\n",
" return log_E_exp(log_M_growth + next_period(f, X1_tp1, X2_tp1))\n",
" else:\n",
" if X2_tp1 != None:\n",
" print('The second order expansion for law of motion is not used in the first order expansion.')\n",
" return log_E_exp(log_M_growth + next_period(f, X1_tp1))\n",
" \n",
"def Q_mapping(log_M_growth, f, X1_tp1, X2_tp1, tol = 1e-10, max_iter = 10000, second_order = True):\n",
" r'''\n",
" Computes limiting coefficients of a LinQuadVar by recursively applying the M mapping operator till convergence, returns the eigenvalue and eigenvector.\n",
"\n",
" Parameters\n",
" ----------\n",
" log_M_growth : LinQuadVar\n",
" Log difference of multiplicative functional.\n",
" e.g. log consumption growth, :math:`\\log \\frac{C_{t+1}}{C_t}`\n",
" f : LinQuadVar\n",
" The function M Mapping operate on. \n",
" e.g. A function that is identically one, log_f = LinQuadVar({'c': np.zeros((1,1))}, log_M_growth.shape)\n",
" X1_tp1 : LinQuadVar \n",
" Stores the coefficients of laws of motion for X1.\n",
" X2_tp2 : LinQuadVar or None\n",
" Stores the coefficients of laws of motion for X2. \n",
" tol: float\n",
" tolerance for convergence\n",
" max_iter: int\n",
" maximum iteration\n",
" second_order: boolean\n",
" Whether the second order expansion of the state evoluton equation has been input\n",
"\n",
" Returns\n",
" -------\n",
" Qf_components_log : List of LinQuadVar\n",
" stores the coefficients of the LinQuadVar in each iteration of M Mapping\n",
" f: LinQuadVar\n",
" The function M Mapping operate on. \n",
" e.g. A function that is identically one, log_f = LinQuadVar({'c': np.zeros((1,1))}, log_M_growth.shape)\n",
" η: float\n",
" The eigenvalue\n",
" η_series: list of float\n",
" The convergence path of the eigenvalue \n",
" '''\n",
" η_series = []\n",
" Qf_components_log = []\n",
" for i in range(max_iter):\n",
" Qf_components_log.append(f)\n",
" if second_order:\n",
" f_next = M_mapping(log_M_growth, f, X1_tp1, X2_tp1, second_order = second_order)\n",
" else:\n",
" if X2_tp1 != None:\n",
" print('The second order expansion for law of motion is not used in the first order expansion.')\n",
" f_next = M_mapping(log_M_growth, f, X1_tp1, second_order = second_order)\n",
" η = (f_next['c'] - f['c']).item()\n",
" η_series.append(η)\n",
" \n",
" if distance(f, f_next, ['x', 'xx', 'x2']) < tol:\n",
" break\n",
" f = f_next\n",
" \n",
" if i >= max_iter-1:\n",
" print(\"Warning: Q iteration may not have converged.\")\n",
" Qf_components_log.append(f_next)\n",
" \n",
" return Qf_components_log, f, η, η_series"
]
},
{
"cell_type": "markdown",
"id": "410d59c1",
"metadata": {},
"source": [
"For example, to compute the limiting behaviour of the example above, we can use:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c0c0914",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"