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1.1. Introduction
We shall interpret economic time series as temporally organized data whose source is a single random draw

from a parameterized joint probability distribution. That joint distribution determines intertermporal

probabilistic relationships among components of the data. We imagine a statistician who doesn’t know values

of the parameters that characterize the joint probability distribution and wants to use those data to infer them.

A key ingredient in doing this successfully is somehow to form averages over time of some functions of the

data and hope that they converge to something informative about model parameters. Some laws of large

numbers (LLNs) can help us with this, but others can’t. This chapter describes one that can.

Classic LLNs that are typically studied in entry level probability classes adopt a narrow perspective that is not

applicable to economic time series. To help us appreciate why a plain vanilla LLN won’t help us study time

series, we’ll start with a setting in which such a plain vanilla LLN is all that we need. Here the statistician views
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a data set as a random draw from a particular joint probability distribution that is one among a family of models

that he knows. Once again, from those data, our statistician wants to infer which member of the family is most

plausible. The family could be finite or it could be represented more generally with an unknown parameter

vector indexing alternative models. The parameter vector could be finite or infinite-dimensional. We call each

joint probability distribution associated with a particular parameter vector a statistical model.

A plain vanilla LLN assumes that the data are a sequence of independent draws from the same (i.e.,

identical) probability distribution. This assumption immediately leads to a logical problem when it comes to

thinking about learning which model has generated the data. If the parameter vector that pins down the

probability distribution is known and draws are independent and identically distributed (IID), then past draws

indicate nothing about future draws, meaning that there is nothing to learn. But if the parameters that pin down

data generation are not known, then there is something to learn: a sequence of draws from that unknown

distribution are not IID because past draws indicate something about probabilities of future draws.

Fig. 1.1 Top: a sequence of draws from a fair coin. Bottom: a sequence of draws from a possibly unfair brass

tack.

To illustrate the issue, Fig. 1.1 shows IID draws from two Bernoulli distributions. The top sequence are flips of

fair coins. Here the probability of a heads is one half for every coin. After observing the outcome of  coinN



flips, a statistician would predict that the probability that the next flip will be one half, regardless of earlier

outcomes. In this example, the statistician has no reason to use data to learn the “parameter vector of

interest”, i.e., the probability of a heads on a single draw of one coin, because he knows it. The bottom

sequence is formed from successive tosses of brass tacks. We assume that the statistician does not know the

probability that each brass tack will land on its head. The statistician wants to use this observed outcome of 

tosses to predict outcomes of future tack tosses. A presumption that observations of past tosses of the tack

contain information about future tosses is tantamount to assuming that the sequence is not IID. This is a

context in which it is natural to assume that the way brass tacks are constructed is the same (i.e., identical) for

all of the brass tacks, and thus that the probabilities of tacks landing on their head are the same for each toss.

If we condition on the common probability that a tack lands on its head, it makes sense to view the

hypothetical observations as conditionally IID.

To achieve a theory of statistical learning, we can relax the IID assumption and instead assume a property

called exchangeability. For a sequence of random draws to be exchangeable, it must be true that the joint

probability distribution of any finite segment does not change if we rearrange individuals’ positions in the

sequence. In other words the order of draws does not matter when forming joint probabilities. If prospective

outcomes of tack tosses can plausibly be viewed as being exchangeable, this opens the door to learning about

the probability of a heads as we accumulate more observations. Exchangeable sequences are conditionally IID,

where we interpret conditioning as being on a statistical model.[1] Exchangeable sequences obey a conditional

version of a Law of Large Numbers that we describe later in this chapter.

Because we are interested in economic time series, LLNs based on exchangeabilty are too restrictive because

we are interested in probability models in which the temporal order in which observations arise matters. This

motivates us to replace exchangeability with a notion of stationarity and to use an ergodic decomposition

theorem for stationary processes. This LLN for stationary processes is conditional on what we call the

statistical model. The resulting LLN allows us to study a statistician who considers several alternative statistical

models simultaneously and who understands how long-run averages of some salient statistics depend on

unknown parameters on which the LLN is conditioned.

A LLN can teach us about statistical challenges that we would face us even if we were to have time series of

infinite length. While this is a good starting point, we’ll have to do more. In later chapters, we will describe

additional approaches to statistical inference that can help us to understand how much we can learn about

model parameters from finite histories of data.

1.2. Stochastic Processes
We start with a probability space, namely, a triple , where  is a set of sample points,  is a

collection of subsets of  called events (formally a sigma algebra) and  assigns probabilities to events. We

refer to  as a probability measure. The following definition makes reference to Borel sets. Borel sets include

open sets, closed sets, finite intersections, and countable unions of such sets.

N
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 is an -dimensional random vector if  has the property that for any Borel set  in

is in .

A result from measure theory states that if  is an event in  whenever  is

an open set in , then  is an -dimensional random vector. In what follows, we will often omit the explicit

reference to  when it self evident.

This formal structure facilitates using mathematical analysis to formulate problems in probability theory. A

random vector induces a probability distribution over the collection of Borel sets in which the probability

assigned to set  is given by

By changing the set , we trace out a probability distribution implied by the random vector  that is called the

induced distribution. An induced distribution is what typically interests an applied worker. In practice, an

induced distribution is just specified directly without constructing the foundations under study here. However,

proceeding at a deeper level, as we have, by defining a random vector to be a function that satisfies particular

measurable properties and imposing the probability measure  over the domain of that function has

mathematical payoffs. We will exploit this mathematical formalism in various ways, among them being in

construction of stochastic processes.

An -dimensional stochastic process is an infinite sequence of -dimensional random vectors

.

The measure  assigns probabilities to a rich and interesting collection of events. For example, consider a

stacked random vector

and Borel sets  in . The joint distribution of  induced by  over such Borel sets is

X n X : Ω → Rn b

Rn,

{ω ∈ Ω : X(ω) ∈ b}

F

{X ∈ o}
def
= {ω ∈ Ω : X(ω) ∈ o F o

Rn X n

ω

b

Pr{X ∈ b}

b X

Pr

n n

{Xt : t = 0, 1, . . . }

Pr

X [ℓ](ω)
def
=

⎡⎢⎣X0(ω)
X1(ω)

⋮
Xℓ(ω)

⎤⎥⎦b Rn(ℓ+1) X [ℓ] Pr

Definition 1.1

Definition 1.2



Since the choice of  is arbitrary,  implies a distribution over a an entire sequence of random vectors

.[2].

We may also go the other way. Given a probability distribution over infinite sequences of vectors, we can

construct a probability space and a stochastic process that induce this distribution. Thus, the following way to

construct a probability space is particularly enlightening.

Construction 1.1:

Let  be a collection of infinite sequences in  with a sample point  being a sequence of vectors

, where . Let  be the collection of Borel sets of , and let  be the

smallest sigma-algebra that contains the Borel sets of  for .

For each integer , let  assign probabilities to the Borel sets of . A Borel set in  can

also be viewed as a Borel set in  with  left unrestricted. Specifically, let  be a Borel set in

. Then

is a Borel set in . For probability measures  to be consistent, we require that the

probability assigned by  satisfy

With this restriction, we can extend the probability  to the space  that is itself consistent with the

probability assigned by  for all nonnegative integers .[3]

Finally, we construct the stochastic process  by letting

for  A convenient feature of this construction is that  is the probability induced by the

random vector .

We refer to this construction as canonical. While this is only one among other possible constructions of

probability spaces, it illustrates the flexibility in building sequences of random vectors that induce alternative

probabilities of interest.

The remainder of this chapter is devoted to studying Laws of Large Numbers. What is perhaps the most

familiar Law of Large Numbers presumes that the stochastic process  is IID. Then

Pr{X [ℓ] ∈ b}.

ℓ Pr
{Xt(ω) : t = 0, 1, . . . }

Ω Rn ω ∈ Ω
ω = (r0, r1, . . . ) rt ∈ Rn Bt Rn(t+1) F

Rn(ℓ+1) ℓ = 0, 1, 2.. .

ℓ ≥ 0 Prℓ Rn(ℓ+1) Rn(ℓ+1)

Rn(ℓ+2)
rn(ℓ+1) bℓ

Rn(ℓ+1)

bℓ+1
ℓ = {(r0, r1, . . . , rℓ, rℓ+1) : (r0, r1, . . . , rℓ) ∈ bℓ}

Rn(ℓ+2) {Prℓ : ℓ = 0, 1, . . . }
Prℓ+1

Prℓ (bℓ) = Prℓ+1 (bℓ+1
ℓ )

Pr (Ω, F)
Prℓ ℓ

{Xt : t = 0, 1, . . . }

Xt(ω) = rt

t = 0, 1, 2, . . . . Prℓ

[X0
′,X1

′, . . . ,Xℓ
′]′

{Xt : t = 0, 1, . . . }



for any (Borel measurable) function  for which the expectation is well defined. Convergence holds in several

senses that we state later. Notice that as we vary the function  we can infer the (induced) probability

distribution for . In this sense, the outcome of the Law of Large Numbers under an IID sequence determines

what we will call a statistical model.

For our purposes, an IID version of the Law of Large Numbers is too restrictive. First, we are interested in

economic dynamics in which model outcomes are temporally dependent. Second, we want to put ourselves in

the situation of a statistician who does not know a priori what the underlying data generating process is and

therefore entertains multiple models. We will present a Law of Large Numbers that covers both settings.

1.3. Representing a Stochastic Process
We now generalize the canonical construction 1.1 of a stochastic process in a way that facilitates stating the

Law of Large Numbers that interests us.

Fig. 1.2 The evolution of a sample point  induced by successive applications of the transformation . The

oval shaped region is the collection  of all sample points.

1
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∑
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ϕ(Xt) → Eϕ(X0)

ϕ

ϕ

X0

ω S

Ω



Fig. 1.3 An inverse image  of an event  is itself an event;  implies that .

We use two objects.[4]

The first is a (measurable) transformation  that describes the evolution of a sample point . See

Fig. 1.2. Transformation  has the property that for any event ,

is an event in , as depicted in Fig. 1.3. The second object is an -dimensional vector  that describes

how observations depend on sample point .

We construct a stochastic process  via the formula:

or

where we interpret  as the identity mapping asserting that .

Because a known function  maps a sample point  today into a sample point  tomorrow, the

evolution of sample points is deterministic. For instance,  for all  can be predicted

perfectly if we know  and . But we typically do not observe  at any . Instead, we observe an 

S−1(Λ) Λ ω ∈ S−1(Λ) S(ω) ∈ Λ

S : Ω → Ω ω

S Λ ∈ F

S
−1(Λ) = {ω ∈ Ω : S(ω) ∈ Λ}

F n X(ω)
ω

{Xt : t = 0, 1, . . . }

Xt(ω) = X[St(ω)]

Xt = X ∘ S
t,

S0 ω0 = ω

S ω ∈ Ω S(ω) ∈ Ω
ωt+j = St+j(ω) j ≥ 1

S ωt ωt t (n × 1)



vector  that contains incomplete information about . We assign probabilities  to collections of

sample points  called events, then use the functions  and  to induce a joint probability distribution over

sequences of ’s. The resulting stochastic process  is a sequence of -dimensional

random vectors.

This way of constructing a stochastic process might seem restrictive; but actually, it is more general than the

canonical construction presented above.

Consider again our canonical construction 1.1. Recall that the set of sample points  is the collection

of infinite sequences of elements  so that . For this example,

. This choice of  is called the shift transformation. Notice that the time 

iterate is

Let the measurement function be:  so that

as posited in construction 1.1.

1.4. Stationary Stochastic Processes
We start with a probabilistic notion of invariance. We call a stochastic process stationary if for any finite integer

, the joint probability distribution induced by the composite random vector  is the

same for all .[5] This notion of stationarity can be thought of as a stochastic version of a steady state of a

dynamical system.

We now use the objects  to build a stationary stochastic process by restricting construction 1.1.

Consider the set  and its successors

Evidently, if  for all , then the probability distribution induced by  equals the

probability distribution of  for all . This fact motivates the following definition and proposition.

X(ω) ω Pr
ω S X

X {Xt : t = 0, 1, 2, . . . } n

Ω
rt ∈ Rn ω = (r0, r1, . . . )

S(ω) = (r1, r2, . . . ) S t

S
t(ω) = (rt, rt+1, . . . )

X(ω) = r0

Xt(ω) = X [St(ω)] = rt

ℓ [Xt
′,Xt+1

′, . . . ,Xt+ℓ
′]

′

t ≥ 0

(S,X)

{ω ∈ Ω : X(ω) ∈ b}
def
= Λ

{ω ∈ Ω : X1(ω) ∈ b} = {ω ∈ Ω : X [S(ω)] ∈ b} = S
−1(Λ)

{ω ∈ Ω : Xt(ω) ∈ b} = {ω ∈ Ω : X [St(ω)] ∈ b} = S
−t(Λ).

Pr(Λ) = Pr[S−1(Λ)] Λ ∈ F Xt

X t

Example 1.1

Definition 1.3



The pair  is said to be measure-preserving if

for all .

When  is measure-preserving, probability distributions induced by the random vectors

 are identical for all .

The measure-preserving property restricts the probability measure  for a given transformation . Some

probability measures  used in conjunction with  will be measure-preserving and others not, a fact that will

play an important role at several places below.

Suppose that  is measure-preserving relative to probability measure . Given  and an integer 

, form a vector

We can apply Theorem 1.1 to  to conclude that the joint distribution function of  is

independent of  for . That this property holds for any choice of  implies that the stochastic

process  is stationary. Moreover,  where  is a Borel measurable function from

 into  is also a valid measurement function. Such ’s include indicator functions of interesting events

defined in terms of .

For a given , we now present examples that illustrate how to construct a probability measure  that makes 

measure-preserving and thereby brings stationarity.

Suppose that  contains two points, . Consider a transformation  that maps  into

 and  into :  and . Since  and

, for  to be measure-preserving, we must have

.

(S, Pr)

Pr(Λ) = Pr{S
−1(Λ)}

Λ ∈ F

(S, Pr)

Xt

def
= X[St(ω)] t ≥ 0

Pr S

Pr S

(S, Pr) Pr X ℓ > 1

X [ℓ](ω)
def
= .

⎡⎢⎣X0(ω)
X1(ω)

. . .
Xℓ(ω)

⎤⎥⎦X [ℓ] (Xt,Xt+1, . . . ,Xt+ℓ)
t t = 0, 1, … ℓ

{Xt : t = 1, 2, . . . } f (X [ℓ]) f

Rn(ℓ+1) R f

X [ℓ]

S Pr S

Ω Ω = {ω1,ω2} S ω1

ω2 ω2 ω1 S(ω1) = ω2 S(ω2) = ω1 S−1({ω2}) = {ω1}
S−1({ω1}) = {ω2} S

Pr({ω1}) = Pr({ω2}) = 1/2

Theorem 1.1

Example 1.2

Example 1.3



Suppose that  contains two points,  and that  and . Since

 and ,  is measure-preserving for any  that satisfies

 and .

Suppose that  contains four points, . Moreover, 

 and  Notice that the sample points  and  are

transient. Applying the  transformation does not allow for access to these points as they are not in

image of . As a consequence, the only measure-preserving probability is the same one described in

Example 1.2.

The next example illustrates how to represent an i.i.d. sequence of zeros and ones in terms of an  and an

.

Suppose that  and that  is the uniform measure on . Let

Calculate  and

. So  is statistically

independent of . By extending these calculations, it can be verified that  is a

sequence of independent random variables.[6] We can alter  to obtain other stationary

distributions. For instance, suppose that . Then the process

 alternates in a deterministic fashion between zero and one. This provides a

version of Example 1.2 in which  and .

1.5. Invariant Events and Conditional Expectations
In this section, we present a Law of Large Numbers that asserts that time series averages converge when  is

measure-preserving relative to .

Ω Ω = {ω1,ω2} S(ω1) = ω1 S(ω2) = ω2

S−1({ω2}) = {ω2} S−1({ω1}) = {ω1} S Pr
Pr({ω1}) ≥ 0 Pr({ω2}) = 1 − Pr({ω1})

Ω Ω = {ω1,ω2,ω3,ω4} S(ω1) = ω2,
S(ω2) = ω1, S(ω3) = ω1, S(ω4) = ω2. ω3 ω4

S

S

Ω, Pr
S

Ω = [0, 1) Pr [0, 1)

S(ω) = {

X(ω) = {

2ω  ω ∈ [0, 1/2)
2ω − 1  ω ∈ [1/2, 1),

1  ω ∈ [0, 1/2)
0 ω ∈ [1/2, 1).

Pr {X1 = 1|X0 = 1} = Pr {X1 = 1|X0 = 0} = Pr {X1 = 1} = 1/2
Pr {X1 = 0|X0 = 1} = Pr {X1 = 0|X0 = 0} = Pr {X1 = 0} = 1/2 X1

X0 {Xt : t = 0, 1, . . . }
Pr

Pr{ 1
3 } = Pr{ 2

3 } = .5
{Xt : t = 0, 1, . . . }

ω1 = 1
3 ω2 = 2

3

S

Pr

Example 1.4

Example 1.5



1.5.1. Invariant events

We use the concept of an invariant event to understand how limit points of time series averages relate to a

conditional mathematical expectation.

Fig. 1.4 Two invariant events  and  and an event  that is not invariant.

An event  is invariant if .

Fig. 1.4 illustrates two invariant events in a space . Notice that if  is an invariant event and , then

 for . Thus under the transformation  sample points that are in  remain there.

Furthermore, for each  there exists  such that 

Let  denote the collection of invariant events. The entire space  and the null set  are both invariant events.

Like , the collection of invariant events  is a sigma algebra.

Λ1 Λ2 Λ3

Λ Λ = S−1(Λ)

Ω Λ ω ∈ Λ
St(ω) ∈ Λ t = 0, 1, . . . , ∞ S, Λ

ω ∈ Λ, ω′ ∈ Λ ω = S(ω′).

I Ω ∅

F I

Definition 1.4



1.5.2. Conditional expectation

Fig. 1.5 A conditional expectation  is constant for .

We want to construct a random vector  called the “mathematical expectation of  conditional on the

collection  of invariant events”. We begin with a situation in which a conditional expectation is a discrete

random vector as occurs when invariant events are unions of sets  belonging to a countable partition of 

(together with the empty set). Later we’ll extend the definition beyond this special setting.

A countable partition consists of a countable collection of nonempty events  such that  for

 and such that the union of all  is . Assume that each set  in the partition is itself an invariant

event and has positive probability. Define the mathematical expectation conditioned on event  as

when . To extend the definition of conditional expectation to all of , take

Thus, the conditional expectation  is constant for  but varies across ’s. Fig. 1.5 illustrates

this characterization for a finite partition.

E(X|I) ω ∈ Λj = S−1(Λj)

E(X|I) X

I

Λj Ω

Λj Λj ∩ Λk = ∅

j ≠ k Λj Ω Λj

Λj

∫Λj
XdPr

Pr(Λj)

ω ∈ Λj I

E(X|I)(ω) =
∫Λj

XdPr

Pr(Λj)
  if  ω ∈ Λj.

E(X|I) ω ∈ Λj Λj



1.5.3. Least Squares

Now let  be a random vector with finite second moments . When a

random vector  has finite second moments, a conditional expectation is a least squares projection. Let  be

an -dimensional measurement function that is time-invariant and so satisfies

Let  denote the collection of all such time-invariant random vectors. In the special case in which the invariant

events can be constructed from a finite partition,  can vary across sets  but must remain constant within

.[7] Consider the least squares problem

(1.1)

Denote the minimizer in problem (1.1) by . Necessary conditions for the least squares minimizer

 imply that

for  in  so that each entry of the vector  of regression errors is orthogonal to every vector  in .

A measure-theoretic approach constructs a conditional expectation by extending the orthogonality property of

least squares. Provided that ,  is the essentially unique random vector that, for any

invariant event , satisfies

where  is the indicator function that is equal to one on the set  and zero otherwise.

1.6. Law of Large Numbers
An elementary Law of Large Numbers asserts that the limit of an average over time of a sequence of

independent and identically distributed random vectors equals the unconditional expectation of the random

vector. We want a more general Law of Large Numbers that applies to averages over time of sequences of

observations that are intertemporally dependent. To do this, we use a notion of probabilistic invariance that is

expressed in terms of the measure-preserving restriction and that implies a Law of Large Numbers applicable

to stochastic processes.

X EXX ′ = ∫ X(ω)X(ω)′dPr(ω)
X Z

n

Zt(ω) = Z[St(ω)] = Z(ω).

Z

Z Λj

Λj

min
Z∈Z

E[|X − Z|2].

X̃ = E(X|I)

X̃ ∈ Z

E[(X − X̃)Z ′] = 0

Z Z X − X̃ Z Z

E|X| < ∞ E(X|I)(ω)
Λ

E([X − E(X|I)]1Λ) = 0,

1Λ Λ



The following theorem asserts two senses in which averages of intertemporally dependent processes

converge to mathematical expectations conditioned on invariant events.

(Birkhoff) Suppose that  is measure-preserving relative to the probability space .[8]

1. For any  such that ,

with probability one;

2. For any  such that ,

Part 1) asserts almost-sure convergence; part 2) asserts mean-square convergence.

We have ample flexibility to specify a measurement function  where  is a Borel measurable function

from  into . In particular, an indicator functions for event  can be used as a

measurement function where:

where  is a hypothetical realization of the random vector . The Law of Large Numbers applies to limits of

for alternative ’s, so choosing ’s to be indicator functions shows how the Law of Large Numbers uncovers

event probabilities of interest.

A transformation  that is measure-preserving relative to  is said to be ergodic under probability

measure  if all invariant events have probability zero or one.

S (Ω, F, Pr)

X E|X| < ∞

1
N

N

∑
t=1

Xt(ω) → E(X|I)(ω)

X E|X|2 < ∞

E
1
N

N

∑
t=1

Xt − E(X|I)

2

→ 0.
⎡

⎣∣ ∣ ⎤⎦ϕ (X ℓ), ϕ

Rn(ℓ+1) R Λ = {X ℓ ∈ b}

ϕ(xℓ) = 1b = {
1 if xℓ ∈ b

0 if xℓ ∉ b.

xℓ X ℓ

1
N

N

∑
t=1

ϕ [X ℓ
t ]

ϕ ϕ

S Pr
Pr

Theorem 1.2

Definition 1.5



Thus, when a transformation  is ergodic under measure , the invariant events have either the same

probability measure as the entire sample space  (whose probability measure is one), or the same probability

measure as the empty set  (whose probability measure is zero).

Suppose that the measure-preserving transformation  is ergodic under measure . Then

.

Theorem 1.2 describes conditions for convergence in the general case that  is measure-preserving under ,

but in which  is not necessarily ergodic under . Proposition 1.1 describes a situation in which probabilities

assigned to invariant events are degenerate in the sense that all invariant events have the same probability as

either  (probability one) or the null set (probability zero). When  is ergodic under measure , limit points of

time series averages equal corresponding unconditional expectations, an outcome we can call a standard Law

of Large Numbers. When  is not ergodic under , limit points of time series averages equal expectations

conditioned on invariant events.

The following examples remind us how ergodicity restricts  and .

Consider Example 1.2 again.

 contains two points and  maps  into  and  into :  and .

Suppose that the measurement vector is

Then it follows directly from the specification of  that

for both values of . The limit point is the average across sample points.

Return to Example 1.3.  contains two points,  and that  and

.  so that the sequence is time invariant and equal to its time-series

average. A time-series average of  equals the average across sample points only when 

assigns probability  to either  or .

S Pr
Ω

∅

S Pr
E(X|I) = E(X)

S Pr
S Pr

Ω S Pr

S Pr

S Pr

Ω S ω1 ω2 ω2 ω1 S(ω1) = ω2 S(ω2) = ω1

X(ω) = {
1  if ω = ω1

0  if ω = ω2.

S

1
N

N

∑
t=1

Xt(ω) →
1
2

ω

Ω Ω = {ω1,ω2} S(ω1) = ω1

S(ω2) = ω2 Xt(ω) = X(ω)
Xt(ω) Pr

1 ω1 ω2

Proposition 1.1

Example 1.6

Example 1.7



1.7. Limiting Empirical Measures
Given a triple  and a measure-preserving transformation , we can use Theorem 1.2 to construct

limiting empirical measures on . To start, we will analyze a setting with a countable partition of  consisting

of invariant events , each of which has strictly positive probability under . With the

exception of the null set, we assume that all invariant events are unions of the members of this partitition. We

consider a more general setting later. Given an event  in  and for almost all , define the limiting

empirical measure  as

(1.2)

Thus, when ,  is the fraction of time  in very long samples. If we hold  fixed and

let  be an arbitrary event in , we can treat  as a probability measure on . By doing this for each

, we can construct a countable set of probability measures . These comprise the

set of all measures that can be recovered by applying the Law of Large Numbers. If nature draws an ,

then measure  describes outcomes.

So far, we started with a probability measure  and then constructed the set of possible limiting empirical

measures ’s. We now reverse the direction of the logic by starting with probability measures  and then

finding measures  that are consistent with them. We do this because ’s are the only measures that long

time series can disclose through the Law of Large Numbers: each  defined by (1.2) uses the Law of Large

Numbers to assign probabilities to events . However, because

are conditional probabilities, such ’s are silent about the probabilities  of the underlying invariant

events . There are multiple ways to assign probabilities  that imply identical probabilities conditioned on

invariant events.

Because  is all that can ever be learned by “letting the data speak”, we regard each probability measure

 as a statistical model.[9]

A statistical model is a probability measure that a Law of Large Numbers can disclose.

Probability measure  describes a statistical model associated with invariant set .

(Ω, F, Pr) S

F Ω
{Λj : j = 1, 2, . . . } Pr

Λ F ω ∈ Λj

Qrj

Qrj(Λ)(ω) = lim
N→∞

1
N

N

∑
t=1

1Λ [St(ω)] =
Pr(Λ ∩ Λj)

Pr(Λj)
.

ω ∈ Λj Qrj(Λ) St(ω) ∈ Λ Λj

Λ F Qrj (Ω, F)
Λj, j = 1, 2, … {Qrj}

∞
j=1

ω ∈ Λj

Qrj

Pr
Qrj Qrj

Pr Qrj
Qrj

Λ ∈ F

Qrj(Λ) = Pr(Λ ∣ Λj) =
Pr(Λ ∩ Λj)

Pr(Λj)
 for j = 1, 2, … ,

Qrj Pr(Λj)

Λj Pr

Qrj
Qrj

Qrj Λj

Proposition 1.2



For each ,  is measure-preserving and ergodic on .

The second equality of definition (1.2) assures ergodicity by assigning probability one to the event

.

Relation (1.2) implies that probability  connects to probabilities  by

(1.3)

While decomposition (1.3) follows from definitions of the elementary objects that comprise a stochastic

process and is “just mathematics”, it is interesting because it tells how to construct alternative probability

measures  for which  is measure-preserving. Because long data series disclose probabilities conditioned

on invariant events to be , to respect evidence from long time series we must hold the ’s fixed, but we

can freely assign probabilities  to invariant events . In this way, we can create a family of probability

measures for which  is measure-preserving.

1.8. Ergodic Decomposition
Up to now, we have represented invariant events with a countable partition. Dynkin [1978] deduced a more

general version of decomposition (1.3) without assuming a countable partition. Thus, start with a pair .

Also, assume that there is a metric on  and that  is separable. We also assume that  is the collection of

Borel sets (the smallest sigma algebra containing the open sets). Given , take a (measurable)

transformation  and consider the set  of probability measures  for which  is measure-preserving. For

some of these probability measures,  is ergodic, but for others, it is not. Let  denote the set of probability

measures for which  is ergodic. Under a nondegenerate convex combination of two probability measures in

,  is measure-preserving but not ergodic. Dynkin [1978] constructed limiting empirical measures  on 

and justified the following representation of the set  of probability measures .

For each probability measure  in , there is a unique probability measure  over  such that

(1.4)

for all .[10]

j S (Ω, F, Qrj)

Λj

Pr Qrj

Pr(Λ) = ∑
j

Qrj(Λ)Pr(Λj).

Pr S

Qrj Qrj
Pr Λj

S

(Ω, F)
Ω Ω F

(Ω, F)
S P Pr S

S Q

S

Q S Qr Q

P Pr

P̃r P π Q

P̃r(Λ) = ∫
Q

Qr(Λ)π(dQr)

Λ ∈ F
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Proposition 1.3 generalizes representation (1.3). It asserts a sense in which the set  of probabilities for which

 is measure-preserving is convex. Extremal points of this set are in the smaller set  of probability measures

for which the transformation  is ergodic. Representation (1.4) shows that by forming “mixtures” (i.e., weighted

averages or convex combinations) of probability measures under which  is ergodic, we can represent all

probability specifications for which  is measure-preserving.

To add another perspective, a collection of invariant events  is associated with a transformation . There

exists a common conditional expectation operator  that assigns mathematical expectations to

bounded measurable functions (mapping  into ) conditioned on the set of invariant events . The

conditional expectation operator  characterizes limit points of time series averages of indicator functions of

events of interest as well as other random vectors. Alternative probability measures  assign different

probabilities to the invariant events.

1.9. Risk and Uncertainty
An applied researcher typically does not know which statistical model generated the data. This situation leads

us to specifications of  that are consistent with a family  of probability models under which  is measure-

preserving and a stochastic process is stationary. Representation (1.4) describes uncertainty about statistical

models with a probability distribution  over the set of statistical models .

For a Bayesian,  is a subjective prior probability distribution that pins down a convex combination of

“statistical models.”[11] A Bayesian expresses trust in that convex combination of statistical models used to

construct a complete probability measure over outcomes[12] and uses it to compute expected utility. A

Bayesian decision theory axiomatized by Savage makes no distinction between how decision makers respond

to the probabilities described by the component statistical models and the  probabilities that he uses to mix

them. All that matters to a Bayesian decision maker is the complete probability distribution over outcomes, not

how it is attained as a -mixture of component statistical models.

Some decision and control theorists challenge the complete confidence in a single prior probability assumed in

a Bayesian approach.[13] They want to distinguish ‘ambiguity’, meaning not being able confidently to assign ,

from ‘risk’, meaning prospective outcomes with probabilities reliably described by a statistical model. They

imagine decision makers who want to evaluate decisions under alternative ’s.[14] We explore these ideas in

later chapters.

An important implication of the Law of Large Numbers is that for a given initial , using Bayes’ rule to update

the  probabilities as data arrive will eventually concentrate posterior probability on the statistical model that

generates the data. Even when a decision maker entertains a family of ’s, the updated probabilities

conditioned on the data may still concentrate on the statistical model that generates the data.

P

S Q

S

S

S

I S

J ≡ E(⋅|I)
Ω R I

J

Pr

S P S

π Q

π

π

π

π

π

π

π

π



1.10. Estimating Vector Autoregressions
We now apply the Law of Large Numbers to the estimation of the equations in a vector autoregression

Let  be one of the entries of , and consider the regression equation:

where  is a least squares residual. By choosing  to be alternative entries of  we obtain the

different equations in a VAR system. Our perspective in this discussion is that of an econometrician who fits

such a regression system without taking a stand on the actual dynamic stochastic evolution of the

 To express subjective uncertainty about  we allow it to be random but measurable in

terms of the collection of invariant events . As implied by least squares, we impose that the regression error,

 is orthogonal to the vector  of regressors conditioned on :

Then

(1.5)

which uniquely pins down the regression coefficient  provided that the matrix  is nonsingular

with probability one. Notice that

where convergence is with probability one. Thus, from equation (1.5) it follows that a consistent estimator of 

is a  that satisfies

Solving for  gives the familiar least squares formula:

Yt+1 Xt+1

Yt+1 = β ⋅ Xt + Ut+1,

Ut+1 Yt+1 Xt+1,

{Xt : t = 0, 1, . . . . }. β,
J

Ut+1 Xt J

E (XtUt+1|J) = 0.

E (XtYt+1|J) = E [Xt(Xt)′|J]β,

β E [Xt(Xt)′|J]

1
N

N

∑
t=1

XtYt+1 → E (XtYt+1|J)

1
N

N

∑
t=1

Xt(Xt)′ → E (Xt(Xt)′|J),

β

bN

1
N

N

∑
t=1

XtYt+1 =
1
N

N

∑
t=1

Xt(Xt)′bN .

bN



Note how statements about the consistency of  are conditioned on . This conditioning is necessary when

we do not know ex ante which among a family vector autoregressions generates the data.

1.11. Inventing an Infinite Past
When  is measure-preserving and the process  is stationary, it can be useful to invent

an infinite past. To accomplish this, we reason in terms of the (measurable) transformation  that

describes the evolution of a sample point . Until now we have assumed that  has the property that for any

event ,

is an event in . In Section Stationary Increments, we want more. To prepare the way for that chapter, in this

section we shall also assume that  is one-to-one and has the property that for any event ,

(1.6)

Because

is well defined for negative values of , restrictions (1.6) allow us to construct a ``two-sided’’ process that has

both an infinite past and an infinite future.

Let  be a subsigma algebra of , and let

(1.7)

We assume that  is nondecreasing sequence of subsigma algebras of  The

nondecreasing structure captures the information accumulation over time. If the original measurement

function  is -measurable, then  is -measurable. Furthermore,  is in  for all . The set 

depicts information available at date , including past information. Invariant events in  are contained in  for

all .

We construct the following moving-average representation of a scalar process  in terms of an infinite

history of shocks.

bN = [
N

∑
t=1

Xt(Xt)′]

−1
N

∑
t=1

XtYt+1.

bN J

Pr {Xt : t = 0, 1, . . . }
S : Ω → Ω

ω S

Λ ∈ F

S
−1(Λ) = {ω ∈ Ω : S(ω) ∈ Λ}

F

S Λ ∈ F

S(Λ) = {ω ∈ Ω : S
−1(ω) ∈ Λ} ∈ F.

Xt(ω) = X[St(ω)] = Xt = X ∘ S
t

t

A F

At = {Λt ∈ F : Λt = {ω ∈ Ω : S
t(ω) ∈ Λ} for some Λ ∈ A}.

{At : −∞ < t < +∞} F.

X A Xt At Xt−j At j ≥ 0 At

t I At

t

{Xt}
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(Moving average) Suppose that  is a vector stationary process for which[15]

and that

for all .

Use a sequence of vectors  to construct

(1.8)

where

(1.9)

Restriction (1.9) implies that  is well defined as a mean square limit.  is constructed from the

infinite past . The process  is stationary and is often

called an infinite-order moving average process. The sequence  can depend on

the invariant events.

Slutsky [1927] and Yule [1927] used probability models to analyze economic time series. Their

models implied moving-average representations like the one in Example 1.8. Their idea was to view

economic time series as responding linearly to current and past independent and identically

distributed impulses or shocks. In distinct contributions, they showed how such models generate

recurrent but aperiodic fluctuations that resemble business cycles and longer-term cycles as well.

Yule [1927] and Slutsky [1927] came from different backgrounds and brought different perspectives.

Yule [1927] was an eminent statistician who, among other important contributions, managed

“effectively to invent modern time series analysis” in the words of Stigler [1986]. Yule constructed

and estimated what we would now call a second-order autoregression and applied it to study

sunspots. Yule’s estimates implied  coefficients showed damped oscillations at the same

periodicity as sunspots. In Russia in the 1920s, Slutsky [1927] wrote a seminal paper in Russian

motivated by his interest in business cycles. Later an English version of his paper published in

Econometrica. Even before that, it influenced economists including Ragnar Frisch. Indeed, Frisch was

{Wt : −∞ < t < ∞}

E (Wt+1|At) = 0

E (WtWt
′|I) = I

−∞ < t < +∞
{αj}∞

j=0

Xt =
∞

∑
j=0

αj ⋅ Wt−j

∞

∑
j=0

|αj|2 < ∞.

Xt Xt

{Wt−j : 0 ≤ j < ∞} {Xt : −∞ < t < ∞}
{αj : j = 0, 1, . . . }

αj

Example 1.8

Remark 1.2

file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id424
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id460
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id460
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id424
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id460
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id427
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id424


[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

keenly aware of both Slutsky [1927] and Yule [1927] and generously acknowledged both of them in

his seminal paper Frisch [1933] on the impulse and propagation problem. Building on insights of

Slutsky [1927] and Yule [1927], Frisch [1933] pioneered impulse response functions. He aspired to

provide explicit economic interpretations for how shocks alter economic time series intertemporally.
[16]

1.12. Summary
For a fixed  there are often many possible probabilities  that are measure-preserving. A subset of these are

ergodic. These ergodic probabilities can serve as building blocks for the other measure-preserving

probabilities. Thus, each measure-preserving  can be expressed as a weighted average of the ergodic

probabilities. We call the ergodic probabilities statistical models. The Law of Large Numbers applies to each of

the ergodic building blocks with limit points that are unconditional expectations. As embodied in (1.3) and its

generalization (1.4), this decomposition interests both frequentist and Bayesian statisticians.

[de Finetti, 1937] established an important initial result showing that exchangeable sequences are

conditionally IID, which is a central result in theory of subjective probability.

By construction, probability by  induced is consistent with that induced by  in the formal sense

of what is used in the well known Kolomogorov Extension Theorem.

This essentially follows from the Kolomorov Extension Theorem or from Theorem 2.26 of Breiman [1968].

Breiman [1968] is a good reference for these.

Sometimes this property is called `strict stationarity’ to distinguish it from weaker notions that require only

that some moments of joint distributions be independent of time. What is variously called wide-sense or

second-order or covariance stationarity requires only that first and second moments of joint distributions

are independent of calendar time.

This example is from Breiman [1968][p. 108].

More generally,  must be measurable with respect to .

See Breiman [1968] chapter 6 for extended discussions and proofs.

Marschak [1953], Hurwicz [1962], Lucas [1976], and Sargent [1981] distinguished between structural

econometric models and what we call statistical models. Structural econometric models are designed to

forecast outcomes of hypothetical experiments that freeze some components of an economic

environment and change others. A structural model accepts experiments that alter statistical models.

Krylov and Bogolioubov [1937] provide an early statement of this result. Dynkin [1978] provides a more

general formulation that nests this and other closely related results. His analysis includes a formalization

of integration over the probability measures in . Dynkin [1978] uses the resulting representation to draw

connections between collections of invariant events and sets of sufficient statistics.

S Pr
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[11]

[12]

[13]

[14]

[15]

[16]

This subsection is motivated in part by the intriguing discussions of von Plato [1982] and Cerreia-Vioglio

et al. [2013].

Here ‘complete’ can be taken to be synonymous with ‘not conditioning on invariant events’.

For example, see Hansen and Sargent [2008].

This gives one way to formalize ideas of Knight [1921], who sought to distinguish risk from broader

notions of uncertainty.

An i.i.d.~sequence is just one example of such a  process.

Sims [1980] and others advanced this idea by developing tractable multivariate time series methods and

striving to isolate interpretable shocks in multivariate settings.

{Wt : −∞ < t < ∞}
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