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11.1. Introduction
Partial derivatives of value functions appear in first-order conditions of Markov decision problems and

measure marginal valuations. Since controls depend on partial derivatives of value functions, they also

feature prominently in max-min formulations of robust control problems. They are also revealing as

measures of losses from suboptimal choices and directions of improvements, They are pertinent for both

individual decision problems and social evaluations. Marginal valuations are prominent in both public and

environmental economics. Robust control theories have been used by [Hansen et al., 1999] to assess

impacts of uncertainty on investment and equilibrium prices and quantities, by [Alvarez and Jermann, 2004]

to evaluate the welfare consequences of uncertainty, extending [Lucas, 1987]. There is an extensive

literature measuring the social cost of carbon with different approaches. See for instance, [Cai et al., 2017],

[Nordhaus, 2017], and [Rennert et al., 2022], and [Barnett et al., 2020][1].

This chapter imports insights about stochastic nonlinear impulse response functions that come from asset

pricing methods for valuing uncertain cash flows. We apply a formalization derived in [Hansen and

Souganidis, 2025]. Our analysis relies on decompositions of partial derivatives that allow researchers to

partition quantitative findings into contributing forces. This approach contributes to a broader agenda that

aims to improve uncertainty quantification methods. Dynamic stochastic equilibrium models often involve

several moving parts. Decomposing sources of implications from such models “opens black boxes” and

helps provide plausible explanations of model outcomes. Our asset-pricing perspective allows us to think in

terms of state-dependent discounting and stochastic flows reminiscent of stochastic payoffs to be valued.
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Moreover, this perspective allows us to relate stochastic flow to forcing functions that drive outcomes a

dynamic stochastic equilibrium model.

11.2. Discrete time
We start with Markov process

(11.1)

with  components of  a scalar, and  is  dimensional. We also want to study the associated

variational processes

(11.2)

We use stochastic impulse responses to provide an “asset pricing” representation of partial derivatives of a

value function with respect to one of the components of . Consider a value function that satisfies:

(11.3)

The additive contribution in  is present in part because of our presumption that the dynamical economic

system evolves along a balanced-growth path. We capture the stochastic growth by the  dynamics where

the state vector process  is appropriately scaled to induce (asymptotically) stationary dynamics. In

particular, suppose that there is a single consumption good  that can be represented as:

(11.4)

We also impose a unitary elasticity of substitution by letting this same expression be the current-period

contribution to utility. In this case  and  agree. Later we discuss relaxations of this simplifying assumption

on preferences. The state dynamics and resulting value function might measure outcomes from using some

arbitrary collection of decision rules, not necessarily socially optimal ones. To do a local policy analysis, we’ll

want to compute marginal valuations for such a value function.

Differentiate both sides of this (11.3) with respect to  and  and form dot products with appropriate

variational counterparts:

Xt+1 = ψ(Xt,Wt+1)

Yt+1 − Yt = κ(Xt,Wt+1),

n X, Y W k

Λt+1 =
∂ψ

∂x′
(Xt,Wt+1)Λt

Δt+1 − Δt =
∂κ

∂x
(Xt,Wt+1) ⋅ Λt.

X0

V (Xt) + Yt =exp(−δ)E [V (Xt+1) + Yt+1 ∣ Xt]

+ [1 − exp(−δ)] [U(Xt) + Yt].

Yt

Y

X

Ct

logCt = ϕ(Xt) + Yt.

U ϕ

Xt Yt



(11.5)

View equation (11.5) as a stochastic difference equation and solve it forward for 

(11.6)

Initialize  where  is a coordinate vector with a one in position  and  This lets us

represent the partial derivative of the value function as:

(11.7)

To obtain an ``asset pricing’’ formula, observe that the marginal utility of consumption is the reciprocal of

consumption and write:

where we use the logarithmic utility function and formula (11.4). The first term on the right side of the

equality is the marginal utility of consumption at date , and the second two terms collective capture the

stochastic response for consumption over horizon . Thus formula (11.7) once we divide  by

consumption in the initial period to convert the marginal valuation into units of date zero consumption and

view

as a stochastic flow process.

Sometimes it is convenient to apply summation by parts:

∂V

∂x
(Xt) ⋅ Λt + Δt =exp(−δ)E [

∂V

∂x
(Xt+1) ⋅ Λt+1 + Δt+1 ∣ Xt, Λt, Δt]

+ [1 − exp(−δ)] [
∂U

∂x
(Xt) ⋅ Λt + Δt]

∂V
∂x (Xt) ⋅ Λt + Δt :

∂V

∂x
(Xt) ⋅ Λt + Δt =

[1 − exp(−δ)]
∞

∑
τ=0

E(exp(−τδ) [
∂U

∂x
(Xt+τ) ⋅ Λt+τ + Δt+τ] ∣ Xt, Λt, Δt)

Λ0 = ei, ei i Δ0 = 0.

∂V

∂xi
(x) =

[1 − exp(−δ)]
∞

∑
t=0

exp(−tδ)E [
∂U

∂x
(Xt) ⋅ Λt + Δt ∣ X0 = x, Λ0 = ei, Δ0 = 0].

∂U

∂x
(Xt) ⋅ Λt + Δt = (

1

Ct
)exp [ϕ(Xt) + Yt] [

∂ϕ

∂x
(Xt) ⋅ Λt + Δt]

t

t ∂V
∂xi

(x)

δexp [ϕ(Xt) + Yt] [
∂ϕ

∂x
(Xt) ⋅ Λt + Δt]

Remark 11.1



Substituting into (11.6) gives:

11.3. Continuous time
A continuous-time formulation allows us to distinguish small shocks (Brownian increments) from large

shocks (Poisson jumps). Let’s consider a continuous-time specification with Brown motion shocks, i.e.,

diffusion dynamics. We can treat jumps as terminal conditions for which we impose continuation values

conditioned on a jump taking place. The possibility of a jump contributes to the value function. After

developing this approach, we shall extend it to we include valuations that reflect concerns about model

misspecifications, i.e., “robust valuations.”

11.3.1. Diffusion dynamics

We start with a Markov diffusion that governs state dynamics

that need not be the outcome of an optimization problem.

Using the variational process construction in the previous chapter, recall that

[1 − exp(−δ)]
∞

∑
τ=0

E (exp(−τδ)Δt+τ ∣ Xt, Λt, Δt)

=
∞

∑
τ=1

E [exp(−τδ) (Δt+τ − Δt+τ−1) ∣ Xt, Λt, Δt] + Δt

=
∞

∑
τ=1

E [exp(−τδ)
∂κ

∂x
(Xt+τ−1,Wt+τ) ⋅ Λt+τ ∣ Xt, Λt, ] + Δt.

∂V

∂x
(Xt) ⋅ Λt + Δt =

[1 − exp(−δ)]
∞

∑
τ=0

E [exp(−τδ)
∂U

∂x
(Xt+τ) ⋅ Λt+τ ∣ Xt, Λt, ]

+
∞

∑
τ=1

E [exp(−τδ)
∂κ

∂x
(Xt+τ−1,Wt+τ) ⋅ Λt+τ ∣ Xt, Λt, ] + Δt.

dXt = μ(Xt)dt + σ(Xt)dWt

dYt = ν(Xt)dt + ς(Xt) ⋅ dWt.



With the appropriate stacking, the drift for the composite process  is:

(11.8)

and the composite matrix coefficient on  is given by

(11.9)

Similarly,  is the scalar variational process associated with  with evolution

11.3.2. An initial representation of a partial derivative

Consider the evaluation of discounted utility where the instantaneous contribution is  where  is the

realization of a state vector . The function  satisfies a Feynman-Kac (FK) equation:

(11.10)

As in the discrete-time example, we want to represent

as an expected discounted value of a marginal impulse response of future  to a marginal change of the

 coordinate of 

dΛi
t = (Λt)

′ ∂μi

∂x
(Xt)dt + (Λt)

′ ∂σi

∂x
(Xt)dWt.

(X, Λ)

μa(x,λ)
def
= ,

⎡⎢⎣ μ(x)

λ′ ∂μi

∂x
(x)

. . .

λ′ ∂μn

∂x
(x)

⎤⎥⎦dWt

σa(x,λ)
def
= .

⎡⎢⎣ σ(x)

λ′ ∂σ1

∂x
(x)

. . .

λ′ ∂σn

∂x
(x)

⎤⎥⎦Δ Y

dΔt = Λt ⋅
∂ν

∂x
(Xt)dt + Λt

′ ∂ς

∂x′
dWt

U(x) x

Xt U

0 =δ [U(x) + y] − δ [V (x) + y] + μ(x) ⋅
∂V

∂x
(x) + ν(x)

+
1

2
trace [σ(x)′ ∂ 2V

∂x∂x′
(x)σ(x)].

Vxi
(x) =

∂V

∂xi
(x)

Xt

ith x.



By differentiating Feynman-Kac equation (11.10) with respect to each coordinate, we obtain a vector of

equations, one for each state variable. We then form the dot product of this vector system with respect to 

to obtain a scalar equation system that is of particular interest. The resulting equation is a Feynman-Kac

equation for the scalar function:

as established in the Appendix. Given that the equation to be solved involves both  and , this equation

uses the diffusion dynamics for the joint process .

The solution to this Feynman-Kac equation takes the form of a discounted expected value:

(11.11)

By initializing the state vector  to be a coordinate vector of zeros in all entries except  and , we

obtain the formula we want, which gives the partial derivative as a discounted present value using  as the

discount rate. The contribution,  is the marginal response of the date  state vector to marginal change in

the  component of the state vector at date zero. The marginal change in the date  state vector induces

marginal reward at date :

which provides us with a useful interpretation as an asset price. The process  gives a vector counterpart to

a stochastic discount factor process and  gives the counterpart to a cash flow to be

valued.

One application of representation (11.11) uses the discounted expected impulse response:

for  and for  along with

m

λ ⋅
∂V

∂x

λ x

(X, Λ)

∂V

∂x
(X0) ⋅ Λ0 + Δ0

= δ∫
∞

0

exp(−δt)E [
∂U

∂x
(Xt) ⋅ Λt + Δt ∣ X0, Λ0, Δ0]dt.

Λ0 i Λ0 = 0

δ

Λt, t

ith t

t

δ [
∂U

∂x
(Xt) ⋅ Λt + Δt]

Λ

δ [ ∂U
∂x (Xt) + Δt]

δ exp(−δt)E [
∂U

∂x
(Xt) ⋅ Λt ∣ X0, Λ0, Δ0].

t ≥ 0 j = 1, 2, . . . ,n

δ exp(−δt)E [Δt ∣ X0, Λ0, Δ0]

Decomposition I



for  to form an additive decomposition of the marginal valuation of one of the state variables

(as determined by an initialization of ) into contributions of each of the future state variables.

Write:

Then

for  provides  different contributions to the marginal valuation. 

contributed by each of the state variables. This decomposition reveals the importance of state

variable interactions in the valuation of any of the state variables.

Representations similar to (11.9) appear in the sensitivity analyses of options prices. See [Fournie

et al., 1999].

11.3.3. Allowing IES to differ from unity

We briefly sketch an extension allowing for an intertemporal elasticity substitution to be different from unity

for a recursive utility specification.

Let  be the inverse of the intertemporal elasticity of substitution and consider the utility recursion:

where  is the local mean of  with the robust adjustment discussed previous subsection.

Compute:

t ≥ 0

Λ0.

∂U

∂x
(Xt) ⋅ Λt =

n

∑
j=1

∂U

∂xj

(Xt)Λj,t.

∂V

∂x
(X0) ⋅ Λ0

=
n

∑
j=1

δ∫
∞

0

exp(−δt)E [
∂U

∂xj

(Xt) ⋅ Λj,t ∣ X0, Λ0, Δ0 = 0]dt.

j = 1, 2, . . . ,n n ∂V
∂x (X0) ⋅ Λ0

ρ

(
δ

1 − ρ
) (exp [(1 − ρ) (U(Xt) + Yt − V (Xt) − Yt)] − 1)

+ μv,t = 0.

μv,t V (X) + Y

Remark 11.2
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With this calculation, we modify the previous formulas by replacing the subjective discount factor,

 with

Thus the instantaneous discount rate is now state dependent and depends on the both how the current

utility compares to the continuation value and on whether  is greater or less than one. When the current

utility exceeds the continuation value, the discount rate is scaled up when  exceeds one, and it is scaled

down when  is less than one.

We replace the instantaneous contribution to the flow term,  with:

Combining these contributions gives:

For notational simplicity, we will focus in the special case in which  in what follows.

11.3.4. Robustness
We next consider a general class of drift distortions that can help us study model misspecification concerns.

We initially explore the consequences of exogenously-specified drift distortions. After that, we show how

such a distortion can emerge endogenously as a decision-maker’s response to concerns about model

misspecifications.

For diffusions, we entertain modifications to the Brownian increment. Instead of  being a multivariate

Brownian motion, we allow it to have a drift  under a change in the probability distribution. We index the

alternative probability specifications with their corresponding drift processes . Locally,

∂

∂x
(

δ

1 − ρ
) (exp [(1 − ρ) [U(x) − V (x)]] − 1)

= δ exp [(1 − ρ) [U(x) − V (x)]] [
∂U

∂x
(x) −

∂V

∂x
(x)].

exp(−δt),

Dist
def
= exp(−∫

t

0

δ exp [(1 − ρ) [U (Xτ) − V (Xτ)]]dτ).

ρ

ρ

ρ

δ ∂U
∂x (Xt),

δ exp [(1 − ρ) [U(Xt) − V (Xt)]]
∂U

∂x
(Xt)

∂V

∂x
(X0) + Δ0 =

δẼ(∫
∞

0

Dist exp [(1 − ρ) [U (Xt) − V (Xt)]]

×(
∂U

∂x
(Xt) ⋅ Λt + Δt)dt ∣ X0, Λ0, Δ0).

ρ = 1

W

H

H



where  is a Brownian motion under the  probability. Given that both the distribution parameterized by

 and the baseline distribution for the increment are normals with an identity matrix as the local covariance

matrix, the local measure of relative entropy is given by the quadratic term:

See [James, 1992], [Anderson et al., 2003], and [Hansen et al., 2006] for further discussions of this

continuous-time formulation. [Cerreia-Vioglio et al., 2025] provide an axiomatic foundation for

misspecification aversion.

Again we suppose any decision or policy rules are embedded in the baseline state dynamics. To make a

robustness adjustment, we introduce a minimizing or adversarial decision maker who minimizes the

discounted expected utility by choice of the drift distortion. Consider a value function,  that solves:

(11.12)

The minimizing  in (11.12) expressed as a function of  satisfies:

(11.13)

We use this solution to provide an alternative perspective on the implications of robustness.

Define the drift distortion:

We alter the stochastic dynamics for the original state vector to be:

where  satisfies:

dWt = Htdt + dW H
t

W H H

H

1

2
Ht ⋅ Ht.

V ,

0 = min
h

δ [U(x) + y] − δ [V (x) + y] +
ξ

2
|h|2

+ [μ(x) + σ(x)h]Vx(x) + ν(x) + ς(x) ⋅ h

+
1

2
trace [σ(x)′Vxx(x)σ(x)].

h x

h∗(x) = −
1

ξ
[σ′(x)Vx(x) + ς(x)].

H ∗
t

def
= h∗ (Xt).
–

dXt = μ(Xt)dt + σ(Xt)h
∗ (Xt)dt + σ(Xt)dW

H ∗

t

–

X
–

( ) ( )
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and

for the initialization . Given this initial condition, by design  for  We use the

constructed process  for the sole purpose of representing the minimizing drift distortion.

The value function of interest is now:

(11.14)

By design:

for  that satisfies (11.12). Note that the HJB equation, as posed, allows for . Importantly, there is no

contribution from differentiating  with respect to  since  only depends on the  process. Confronted

with the value function , suppose a minimizing decision maker solves: [ \min_{{\bar x}} {\overline

V}_{\bar x}(x, {\bar x}). ] Given the original minimization problem, the solution is necessarily:  implying

that

As a consequence:

HJB equation (11.12) implies a corresponding Feynman-Kac equation:

dXt = μ̄(Xt)dt + σ̄(Xt)dW H ∗

t

–––

μ̄(Xt)
def
=μ(Xt) + σ̄(Xt)h∗ (Xt)

σ̄(Xt) =σ(Xt)

––––

––

X0 = X0
–

Xt = Xt
–

t ≥ 0.

{Xt : t ≥ 0}
–

0 = δ [U(x) + y] − δ [V (x, x̄) + y] +
ξ

2
|h∗(x̄)|2

+ V x(x, x̄) ⋅ [μ(x) + σ(x)h∗(x̄)]

+ ν(x) + ς(x) ⋅ h∗(x̄) + V x̄(x, x̄) ⋅ μ̄(x̄)

+
1

2
trace [ ] [ ] [ ].

–

–

–

σ(x)′ σ̄(x̄)′
Vxx′(x, x̄) Vxx̄′(x, x̄)

Vx̄x′(x, x̄′) Vx̄x̄′(x, x̄)

σ(x)

σ̄(x̄)

V (x,x) = V (x)
–

V x̄ ≠ x

H x H X̄t

V (x, x̄)
–

x̄ = x

V x̄(x,x) = 0.
–

V x(x,x) = Vx(x)

V xx′(x,x) + V xx̄′(x,x) = Vxx′(x)

–

––



Differentiate this equation with respect to :

where  denotes a matrix formed by stacking the column arguments. This expression uses the first-order

conditions for  and an “Envelope Theorem” to cancel some terms. In this way, we can represent the partial

derivative vector of the value function as:

We use the  notation because we are using impulse responses computed under the uncertainty adjusted-

state evolution implied by imposing . Armed with change of probability measure, we may

apply Decomposition I.

Robust control theory goes further by exploring ramification for the decision rule itself. The

construction that we described for valuation can be extended for the control framework as well.

We explore both a recursive representation of a two player game, and we pose the decision

problem as a Stackelberg game solved from a date zero perspective. The maximizing decision

maker takes as given, a drift distortion process,  when optimizing by choice of a

decision process  with realizations in . The minimizing decision maker then

optimizes by choice . This solution is posed in the space of stochastic processes.

We analyze this problem following on insights in [Fleming and Souganidis, 1989].

Consider first a recursive formulation in which we find a value function,  that solves:

0 = δ [U [x, d∗(x)] + y] − δ [V (x) + y] +
ξ

2
|h∗(x)|2

+ [μ[x, d∗(x)] + σ[x, d∗(x)]h∗(x)]Vx(x) + ν(x) + ς(x) ⋅ h ∗ (x)

+
1

2
trace (σ[x, d∗(x)]′Vxx(x)σ[x, d∗(x)]).

x

0 = − δVx + δUx + Vxx (μ + σh∗) + (μx)′Vx + mat{(
∂σi

∂x
)h∗}

′

Vx

+
∂ν

∂x
+

∂ς ′

∂x
h∗

+
∂

∂x
[

1

2
trace (σ′Vxxσ)]

mat

h∗

∂V

∂x
(X0) ⋅ Λ0 + Δ0

= δ∫
∞

0

exp(−δt)Ẽ(
∂

∂x
U (Xt) ⋅ Λt + Δt ∣ X0, Λ0, Δ0).

Ẽ

{H ∗
t : t ≥ 0}

{Ht : t ≥ 0},

{Dt : t ≥ 0} D

H

V ,

Remark 11.3
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(11.15)

Notice that this value function is constructed by solving a recursive version of the zero-sum game.

One of the conditions that [Fleming and Souganidis, 1989] impose is called the Bellman-Isaacs

equation, which requires that exchanging orders of  and  does not alter the value function

for the recursive game. In effect, [Fleming and Souganidis, 1989] show that coupled dynamic

programs characterize the two-player, zero-sum game that interests us, as well as some other

two-player, zero-sum games. Following [Hansen et al., 2006], this approach gives us the

analogous recipe for constructing a minimizing drift distortion process  as we used

for robust valuation. The minimizing  in (11.15) expressed now as a function of  as well as the

corresponding maximizing  express in terms of  results in  dynamics with

for the initialization . As was true previously, given this initial condition, by design

 for 

The maximizing decision maker takes  as exogenous when optimizing. We write the

stochastic dynamics for the original state vector as:

The HJB equation for the maximizing decision maker (taking the minimizing solution as given) is:

(11.16)

Again we find that:

0 = max
d∈D

min
h

δ [U(x, d) + y] − δ [V (x) + y] +
ξ

2
|h|2

+ [μ(x, d) + σ(x, d)h]Vx(x) + ν(x) + ς(x, d) ⋅ h

+
1

2
trace [σ(x, d)′Vxx(x)σ(x, d)].

min max

{Ht : t ≥ 0}

h∗ x̄

d∗ x̄ X
–

μ̄(Xt)
def
=μ [Xt, d

∗ (Xt)] + σ̄(Xt)h∗ (Xt)

σ̄(Xt)
def
=σ [Xt, d

∗ (Xt)]

–––––

–––

X0 = X0
–

Xt = Xt
–

t ≥ 0.

{Xt : t ≥ 0}
–

dXt = μ(Xt,Dt)dt + σ(Xt,Dt)h
∗ (Xt)dt + σ(Xt, dt)dW

H ∗

t .
–

0 = max
d∈D

δ [U(x, d) + y] − δ [V (x, x̄) + y] +
ξ

2
|h∗(x̄)|2

+ V x(x, x̄) ⋅ [μ(x, d) + σ(x, d)h∗(x̄)]

+ ν(x) + ς(x) ⋅ h∗(x̄)  + V x̄(x, x̄) ⋅ μ̄(x̄)

+
1

2
trace [ ] [ ] [ ].

––

–

–

σ(x, d)′ σ̄(x̄)′
Vxx′(x, x̄) Vxx̄′(x, x̄)

Vx̄x′(x, x̄′) Vx̄x̄′(x, x̄)

σ(x, d)

σ̄(x̄)
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Moreover the solution  to HJB equation (11.16) satisfies:

from the recursive control solution. This findings support again the application of Decomposition I

under our computation of an uncertainty adjusted probability measure.

While we demonstrated that we can treat a drift distortion as exogenous to the original state

dynamics, for some applications we will want to view it as a change in the endogenous dynamics

that are reflected (11.13).

11.3.5. Jumps

We study a pre-jump functional equation in which jump serves as a continuation value. We allow multiple

types of jumps, each with its own state-dependent intensity. We denote the intensity of a jump of type  by

; a corresponding continuation value after a jump of type  has occurred is . In

applications, we’ll compute post-jump continuation value , as components of a complete model solution.

To simplify the notation, we impose that  but it is straightforward to incorporate the  extension

we discussed in the previous subsection.

As in [Anderson et al., 2003], an HJB equation that adds concerns about robustness to misspecifications of

jump intensities includes a robust adjustment to the intensities. The minimizing objective and constraints are

separable across jumps. Thus we solve:

for , where  alters the intensity of type  and the term

measures the relative entropy of jump intensity specifications.

The minimizing  is

V x(x,x) = Vx(x)

V xx′(x,x) + V xx̄′(x,x) = Vxx′(x).

–

––

d̄

d̄(x,x) = d∗(x).

ℓ

J ℓ(x) ℓ V ℓ(x) + y

V ℓ

ρ = 1, ρ ≠ 1

min
gℓ

J
ℓ [gℓ (V ℓ − V )) + ξ (1 − gℓ + gℓ log gℓ)]

ℓ = 1, 2, . . . ,L gℓ ≥ 0 ℓ,

J
ℓ [1 − gℓ + gℓ log gℓ]

gℓ

Remark 11.4

file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id23
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id23
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id23


with a minimized objective given by

(11.17)

is increasing and concave in the value function difference: . A gradient inequality for a concave

function implies that

The deduce the formula for relative entropy and jumps, consider a discrete-time approximation

whereby the probability of a jump of type  over an interval of time  is (approximately )  and

probability of not jumping  where  at the baseline probability specification. The

approximation becomes good when  declines to zero. The corresponding (approximate) relative

entropy is

Differentiate this expression with respect to  to obtain:

In what follows we will also be interested in the partial derivative of the minimized function given in (11.17)

with respect to the state vector:

gℓ∗ = exp [−
1

ξ
(V ℓ − V )]

.

exp [−
1

ξ
(V ℓ − V )] (V ℓ − V )) + ξ − ξ exp [−

1

ξ
(V ℓ − V ))]

− (V ℓ − V ) exp [−
1

ξ
(V ℓ − V ))]

= ξ(1 − exp [−
1

ξ
(V ℓ − V )])

V ℓ − V

ξ(1 − exp [−
1

ξ
(V ℓ − V )]) ≤ V ℓ − V .

ℓ ϵ ϵJ ℓgℓ

1 − ϵJ ℓgℓ gℓ = 1

ϵ

(log ϵ + logJ ℓ + log gℓ − log ϵ − logJ ℓ)ϵJ ℓgℓ

+ [log (1 − ϵJ ℓgℓ) − log (1 − ϵJ ℓ)] (1 − ϵgℓ
J

ℓ)

ϵ

log gℓ
J

ℓgℓ − J
ℓgℓ + J

ℓ = J
ℓ (gℓ log gℓ − gℓ + 1).

Remark 11.5



where  is the minimizer used to alter the jump intensity.

When constructing the HJB equation, we continue to include the diffusion dynamics and now incorporate

the  possible jumps. The usual term:

is replaced by

as an adjustment for robustness in the jump intensities.

The resulting HJB equation is:

We again construct a Feynman-Kac equation by substituting in . Applying an Envelope Theorem to

first-order conditions for minimization tells us that  should not contribute to the derivatives of the

value function. This leads us to focus on:

(11.18)

gℓ∗ (
∂V ℓ

∂x
−

∂V

∂x
)

gℓ∗

L

L

∑
ℓ=1

J
ℓ (V ℓ − V ).

ξ

L

∑
ℓ=1

J
ℓ (1 − exp [−

1

ξ
(V ℓ − V )])

0 = min
h

− δV + δU +
ξ

2
|h|2 + [μ + σh] ⋅

∂V

∂x
+ ν + ς ⋅ h

+
1

2
trace [σ′ ∂ 2V

∂x∂x′
σ]

+ ξ
L

∑
ℓ=1

J
ℓ (1 − exp [−

1

ξ
(V ℓ − V )])

h∗(x)

h∗(x)



It is revealing to rewrite equation (11.18) as:

Notice how distorted intensities act like endogenous discount factors in this equation. The last two terms

add flow contributions to pertinent Feynman-Kac equations via dot products with respect to . It is

significant that these terms do not include derivatives of  with respect to .

We may simulate our asset pricing representation of the partial derivatives of the value function by allowing

the discounting term to adjust for the jump probabilities and hence becomes state dependent:

In addition, three flow terms are discounted:

0 = − δ
∂V

∂x
+ δ

∂U

∂x
+

∂ 2V

∂x∂x′
(μ + σh∗)

+ (
∂μ′

∂x
)

∂V

∂x
+ mat{(

∂σi

∂x
)h∗}

′ ∂V

∂x

+
∂

∂x
[

1

2
trace(σ′ ∂ 2V

∂x∂x′
σ)]

+ ξ
L

∑
ℓ=1

∂J ℓ

∂x
(1 − exp [−

1

ξ
(V ℓ − V )])

+
L

∑
ℓ=1

J
ℓgℓ∗ (

∂V ℓ

∂x
−

∂V

∂x
).

0 = −(δ +
L

∑
ℓ=1

J
ℓgℓ∗)

∂V

∂x
+ δ

∂U

∂x

+
∂ 2V

∂x∂x′
(μ + σh∗) + (

∂μ′

∂x
)

′
∂V

∂x
+ mat{(

∂σi

∂x
)h∗}

′
∂V

∂x

+
∂

∂x
[

1

2
trace(σ′ ∂ 2V

∂x∂x′
σ)]

+ ξ
L

∑
ℓ=1

∂J ℓ

∂x
(1 − exp [−

1

ξ
(V ℓ − V )])

+
L

∑
ℓ=1

J
ℓgℓ∗ ∂V ℓ

∂x

m

gℓ∗ x

Dt

def
= exp(−∫

t

0

[δ +
L

∑
ℓ=1

J
ℓ(Xu)gℓ∗(Xu)]du),



(11.19)

Its revealing to think of right side as providing three different sources of the marginal values. The

contributions of  and  are to be expected because they help to quantify the consequences of

potential jumps. We may further decompose terms ii) and iii) by the jump type  to assess which jumps are

the most important contributors to the marginal valuations. Analogous representations can be derived for

the ’s conditioned on each of the jumps occurring.

Notice that term ii) of formula (11.19) includes derivatives of the jump intensity with respect to the state of

interest. In some examples, the jump intensities are constant or depend only on an exogenous state. In such

cases the second term drops out and only the first and third terms remain. In some models of interesting,

including the example that follows, the intensities depend on endogenous state variables, making term ii) of

particular interest.

Since term iii) features the post jump marginal valuations, we may view this contribution as itself being

forward looking, conditioned on the respective jump.

The three terms  (direct marginal utility contribution),  (marginal impact of a jump), and

$\Phi_t^3 (marginal value should a jump take place contribute three marginal flows term to the

marginal valuation giving rise to a decomposition:

where each are constructed analogously as the initial marginal valuation but with the stochastic

flows  and  respectively. Simulation-based methods can be used to compute these

value contributions. They should be conducted under implied worst-case diffusion dynamics. With

multiple jump components, we may further decompose these contributions based on the jump

types .

Φ1
t

def
=δΛt ⋅

∂U

∂x
(Xt) i)

Φ2
t

def
= + ξΛt ⋅

L

∑
ℓ=1

∂J ℓ

∂x
(Xt)(1 − exp [−

1

ξ
[V ℓ(Xt) − V (Xt)]]) ii)

Φ3
t

def
= + Λt ⋅

L

∑
ℓ=1

J
ℓ(Xt)g

ℓ∗(Xt)
∂V ℓ

∂x
(Xt) iii)

V ℓ − V ∂V ℓ

∂x

ℓ

∂V ℓ

∂x

Φ1
t Φ2

t

∂V

∂x
(X0) ⋅ Λ0 + Δ0 = V 1(X0) + V 2(X0) + V 3(X0)

Φ1, Φ2, Φ3

ℓ

Decomposition II



11.3.6. Climate change example

[Barnett et al., 2024] use representations (11.19) to decompose their model-based measure of the social

cost of climate change and the social value of research and development. In their analysis, there are two

types of Poisson jumps. One is the discovery of a new technology and the other is the recognization of how

curved the damage function is for more extreme changes in temperature. They allow for twenty possible

damage curves, corresponding to twenty different jump outcomes.) The magnitude of damage curvature is

revealed by a jump triggered by a temperature anomaly between 1.5 and 2.5 degrees celsius. While there

are twenty one possible jump types, we group them into damage jumps (one through twenty) and a

technology jump (twenty one). [Barnett et al., 2024] display the quantitative importance of a technology

jump and a damage jump in contributing to the social value of research and development. The intensities for

each of the twenty potential damage curve realizations and depend on a temperature anomaly state

variable. Global warming increases the intensity. Temperature is an endogenous state variable as it depends

on the cumulative emissions. The jump intensity for the technology discovery depends on an endogenous

knowledge stock variable. Instantaneous investment in research and development enhance this stock in

accordance to a production relation. The marginal valuations of two endogenous state variables are of

particular interest. In what follows, we report analogous findings for the social value of research and

development and the social cost of climate change. The latter is measured as the negative of the marginal

value of temperature. We take the negative of the marginal value of climate change because warming

induces a social cost (a negative benefit).

[Barnett et al., 2024] entertain misspecification possibilities for both the diffusion and jump risks. We report

the implied drift distortions for the broadly-based capital stock evolution and the stock of knowledge

evolution for two different values of  in Table 1. These distortions are reported per unit of standard deviation

of the corresponding Brownian increment. Smaller values of  correspond to higher degrees of aversion,

inducing larger in magnitude drift distortions.

Table 1: Drift distortions for capital stock evolution and the knowledge stock evolution at the initial time

period.

Figure 1 shows the uncertainty-adjusted jump time probability densities for a technology jump for a

simplified version of the model in [Barnett et al., 2024]. This figure shows that the uncertainty adjustments

shifts the probabilities towards delayed success as we make the fictitious planner more averse to

uncertainty.

ξ

ξ

capital knowledge stock

more aversion ( ) -0.184 -0.008

less aversion ( ) -0.096 -0.003

ξ = .05

ξ = .1
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Figure 1: Densities for the time of the technology jump for different values of . For “neutrality”, ); for

“less aversion”, ; and “more aversion”, .

Table 2 shows results using Decomposition I applied to the marginal valuation of the knowledge stock

variable (social value of research and development, SVRD) along with the associated investments. While the

largest valuation contribution from knowledge stock state channel, the broadly based capital stock channel

is also important contributor in contrast the temperature state channel. The magnitudes all increase under

more aversion to misspecification as does the investment in R&D. Table 3 shows the analogous results for

the social cost of climate change (SCCC) along with the emissions in the initial time period. The two capital

channels contribute in opposite ways with the R&D channel decreasing the SCCC, as is to be expected.

Again, magnitudes increase with the aversion to misspecification and emissions are modestly reduced.

Table 2: Decomposition I of the Social Value of R&D. Each flow contribution has been divided by the

marginal utility of (damaged) consumption. Both investments are expressed as a fraction of output.

Table 3: Decomposition I of the Social Cost of Climate Change. Each flow contribution has been divided by

the marginal utility of (damaged) consumption.

ξ ξ = ∞

ξ = .1 ξ = .05

capital temperature RD sum R&D investment capital investment

14.2 -1.5 33.3 46.0 .008 .77

.10 24.6 -3.6 45.9 66.9 .015 .76

.05 35.9 -7.7 66.8 95.0 .028 .75

ξ

∞

capital temperature RD sum emissions

30.2 48.6 -22.4 56.4 9.28

.10 64.5 73.0 -49.3 88.2 9.02

.05 116.5 110.3 -87.3 139.4 8.66

ξ

∞
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Table 4 shows the result of Decomposition II applied to the SVRD along with the associated investments.

Notice that flow term ii) (marginal impact of a technology jump) is the dominant contributor and that

increases in the aversion make the R & D investment all the more attractive. There are two forces in play.

While this aversion delays the prospect of success, the value consequence of the success are enhanced

when the planner is more averse. The second force dominates in the results reported in this table. Table 5

shows that for values of  that are sufficiently low (misspecification aversion sufficiently high), the first force

will dominate. Table 6 gives the comparable calculations for the SCCC. In this case there is a monotone

relationship, with enhanced aversion leading inducing a large values for the SCCC and reductions in

emissions.

Table 4: Decomposition 2 of the Social Value of R&D. Three flow contributions to the SVRD for simplified

model with only the jump technology. Each flow contribution has been divided by the marginal utility of

(damaged) consumption. Both investments are expressed as a fraction of output.

Table 5: Social value of R&D (technology jump only) as a function of the robustness parameter, . The

reported R&D investment is relative to output.

ξ

flow i flow ii flow iii sum

R & D

investment

capital 

investment

4.7 (10 %) 31.1 (68 %) 10.1 (22 %) 46.0 .008 .77

.10 9.1 (14 %) 41.9 (63 %) 15.9 (23 %) 66.9 .015 .76

.05 15.5 (16 %) 60.6 (64 %) 19.0 (20 %) 95.0 .028 .75

ξ

∞

SVRD R&D investment

44.6 .008

.10 63.4 .015

.05 87.9 .028

.01 88.3 .030

.009 82.6 .026

.008 75.0 .021

.007 66.4 .017

.006 56.2 .012

.005 44.4 .007

ξ

∞

ξ



[1]

Table 6: Social Cost of Climate Change (technology jump only) as a function of the robustness parameter, 

.

11.3.7. Footnote –>

[Cai et al., 2017]’s measurements are based on solutions to a planner’s problem that include explicit risk

considerations. [Rennert et al., 2022] use a more modular approach to incorporate a wide variety of

alternative sources of risk. [Barnett et al., 2025] more recent paper extends the analysis of [Barnett et

al., 2020] to include social value of research and development.

SCCC emissions

59.3 9.28

.10 92.8 9.02

.05 151.1 8.66

.01 413.6 7.30

.009 421.9 7.23

.008 430.3 7.16

.007 438.2 7.07

.006 445.4 6.98

.005 451.1 6.87

ξ

∞

ξ
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