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12.1. Introduction
Generalized method moments (GMM) estimation studies a family of estimators constructed from partially

specified or partially misspecified models. Since direct application of likelihood methods sometimes can be

challenging to construct, GMM methods may be tractable alternatives. It takes a different starting point than

a parameterized likelihood function, but is structured to allow for the simultaneous study of a family of

estimators. By studying an entire family, we are able to make relative accuracy comparisons among the

entire family.

This chapter takes statistical consistency as given. Supporting arguments for this chapter can be obtained

with direct extensions of the Law of Large Numbers as described in Chapter 1 : Laws of Large Numbers and

Stochastic Processes. Such extensions often entail Laws of Large numbers applied to so-called random

functions ( function-valued processes expressed a parameter vector of interest) instead of a random vector.

Throughout this chapter, we will condition on invariant events even though we will suppress this

dependence when we write conditional expectations. Given the partially specified or misspecified nature of

the model, much more than a simple parameter vector is reflected by this conditioning.[1].
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12.2. Formulation
We study a family of GMM estimators of an unknown parameter vector  constructed from theoretical

restrictions on conditional or unconditional moments of functions  that depend on  and on a random

vector  that is observable to an econometrician.

As a starting point, we consider a class of restrictions large enough to include examples of both conditional

and unconditional moment restrictions. Members of this class take the form

(12.1)

for all sequences of selection matrices  where  and where

the vector of functions  is  dimensional.

the unknown parameter vector  is  dimensional and in a parameter space .

 denotes a time  selection matrix for a subset of the valid moment restrictions that is used to

construct a particular statistical estimator  of .

 is a collection of sequences of (possibly random) selection matrices that characterize valid moment

restrictions.

the mathematical expectation is taken with respect to a statistical model that generates the

 process (captured implicitly by conditioning on invariant events).

A sample counterpart of the population moment conditions (12.1) is

(12.2)

Applying a Law of Large Numbers to (12.2) motivates a generalized method of moments estimator  of

the  vector .

Different sequences of selection matrices  and  generally give rise to different

properties for the estimator . An exception is when

for some  nonsingular matrix . In this latter case, the same moment conditions are used for

estimation and hence will give rise to the same GMM estimator .
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We study limiting properties of estimator  conditioned on a statistical model. In many settings, the

parameter vector  only incompletely characterizes the statistical model. In such settings, we are led in

effect to implement a version of what is known as semi-parametric estimation: while  is the finite-

dimensional parameter vector that we want to estimate, we acknowledge that, in addition to , a potentially

infinite-dimensional nuisance parameter vector pins down the complete statistical model on which we

condition when we apply the law of large numbers and other limit theorems.

Unconditional moment restrictions

Suppose that

where . Let  be the set of all constant  matrices  of constants. Rewrite the

restrictions as:

for all  matrices . [Sargan, 1958] and [Hansen, 1982] assumed moment restrictions like

these. For instance,

where  is an  dimensional vector of instrumental variables and  is a scalar

disturbance term in an equation of interest. The vector of instrumental variables are presumed

to be uncorrelated with , which gives rise to vector of moment conditions. When there are more

instrumental variables than parameters, we are led to study a family of estimators rather than a

single one.

“Moment matching” estimators are another special case of Example 12.1, an approach that has or

at least should have close to ties to calibration as is done often in economic dynamics. See

[Hansen and Heckman, 1996] for a discussion of the merits of this link.

Suppose that

bN
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where

The random vector  defines moments to be matched and  are population values

of those moments under a statistical model with parameter vector . Often that statistical model is

a “structural” economic model with nonlinearities and other complications that, for a given, 

make it challenging to compute the moments  analytically. To proceed, the proposal is

to approximate those moments for a given  by computing a sample mean from a long simulation

of the statistical model at parameter vector . By running simulations and computing associated

sample means for many alternative  vectors, we can assemble an approximation to the function

. [Lee and Ingram, 1991] and [Duffie and Singleton, 1993] used versions of this approach.

Notice that in contrast to some other applications of GMM estimation that allow the appearance of

unknown nuisance parameters in the statistical model assumed to generate the data, this

approach assumes that, given , the model completely determines a sample path that we can at

least simulate. This method is used in macroeconomics, corporate finance, and asset pricing,

sometimes formally and sometimes informally.

Conditional moment restrictions

Assume the conditional moment restrictions

for a particular  and . Let  be the set of all  matrices, , of bounded

random variables that are  measurable. Then the preceding conditional moment restrictions

are mathematically equivalent to the unconditional moment restrictions

for all random matrix processes . This formulation is due to [Hansen, 1985].

Also see a closely related analysis of [Chamberlain, 1987] with a formal link to semiparametric

efficiency bounds.

A common way to construct conditional moment conditions in macro-asset pricing is to construct

an  period scalar “stochastic discount factor” as a function of data and an unknown parameter

E [ψ(Xt)] = ψ(β).
–
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file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id325
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id147
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id213
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id103


vector. For instance, see [Hansen and Singleton, 1982] and [Hansen and Richard, 1987] for initial

applications of this formulation, and more extensive discussions, see the books: [Cochrane, 2001]

and [Singleton, 2006]. A stochastic discount factor discounts the future in a state-dependent way

to capture compensations for exposures to uncertainty. Denote this discount factor by 

This stochastic discount factor may be used to represent asset prices:

where  is an -dimensional vector of -period gross returns and  is an  dimensional vector

of ones. Let

Collections  of selection processes for both of these examples satisfy the following “linearity” restriction.

Restriction 12.1. If  and  are both in  and  and  are  matrices of real numbers, then

 is in .

A common practice is to use the approach provided in Example 12.2 while substantially restricting the set of

moment conditions used for parameter estimation. One possibility is to create unconditional moment

restrictions like those in Example 12.1 from a collection of conditional moment restrictions, and thereby

reduce the class of GMM estimators under consideration. For instance, let  and  be two ad hoc

choices of selection matrices. Form

where  now includes variables used to construct  and . We presume that no linear combination of

columns of  duplicate any columns in . Otherwise, we would omit such columns and adjust 

accordingly. Let  denote the remaining non-redundant columns. We use  selection matrices

 to form moment conditions

and study an associated family of GMM estimators. This strategy reduces an infinite number of moment

conditions to a finite number. There are extensions of this approach. For instance, we could use more than

two ’s to construct .

ψ(Xt,β).
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12.3. Central limit approximation
The process

can be verified to have stationary and ergodic increments conditioned on the statistical model. So there

exists a Proposition 3.1 decomposition of the process. Provided that

under the statistical model that generates the data, the trend term in the decomposition of Proposition 3.1 is

zero, implying that the martingale dominates the behavior of sample averages for large . In particular,

Proposition 3.2 gives a central limit approximation for

Let  and suppose that

converges in mean square. Define the one-step-ahead forecast error:

Paralleling the construction of the martingale increment in Proposition 3.2,

where by the approximation sign  we intend to assert that the difference between the right side and left

side converges in mean square to zero as . Consequently, the covariance matrix in the central limit

approximation is

{
N

∑
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At
′ϕ(Xt,β) : N ≥ 1}.

E [At
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N
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Recall Restriction 12.1. For the preceding construction of the martingale increment, it is straightforward to

verify that

follows from the linearity of conditional expectations.

Consider again Example 12.1 in which  for all  and

where

Define the covariance matrix

and note that

In Example 12.2

and hence

E [Gt(A)Gt(A)′].

Gt(A
1
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t )
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′
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E [ϕ(Yt,β) ∣ At−ℓ] = 0

E [At
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Example 12.1 (cont.)

Example 12.2 (cont.)



whenever entries of  are restricted to be  measurable.

Consequently

for  so that the infinite sums used to construct  simplify to finite sums.

12.4. Mean value approximation
Write

where

Since

So long as  is nonsingular,

This approximation underlies an “efficiency bound” for GMM estimation. Notice that the covariance matrix in

a central limit approximation is:
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We want to know how small we can make this matrix by choosing a selection process.

Consider again Example 12.1. In this case  for all  and

where

and

12.5. Approximate inference for testing
Using an entirely analogous approach, derive limit approximations geared to testing any “over-identifying

restrictions.” Let  be an  selection process constructed to test the following vector

of  means.

Restriction 12.2. For any  matrix of real numbers , .

Thus, we can build selection processes for testing equations from the columns of the process .

Suppose that

converges in mean square so that we can apply a central limit approximation.

Construct

cov(A) = [∇(A)′]−1
E [Gt(A)Gt(A)′][∇(A)]−1

At = A t ≥ 0

∇(A) = D
′
A

D
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= E [
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~
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~
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~
k × k K BK ∈ A

B

∞
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Example 12.1 (cont.)



Since Restriction 12.2 is satisfied, notice that

for all  matrices  of real numbers.

By imitating an earlier argument

This formula includes an explicit adjustment for estimation of . Notice that if , then the right side

is zero and the limiting distribution is degenerate. This approximation is used to construct tests that account

for having used GMM to estimate a parameter vector .

Consider again unconditional moment restrictions specified in Example 12.1. Let the selection

process for testing be constant over time so that . Then

Moment-matching is also accompanied by some form of testing. This practice often occurs in the

study of dynamic economic models, but it is also prevalent in other disciplines as the following

quote illustrates:

∇̃(B)
def
= E([

∂ϕ

∂b′
(Xt,β)]

′

Bt).

∇̃(B)K = ∇(BK)

~
k × k K

1

√N

N

∑
t=1

Bt
′ϕ(Xt, bN) ≈

1

√N

N

∑
t=1

Bt
′ϕ(Xt,β) + ∇̃(B)′√N(bN − β)

≈
1

√N

N

∑
t=1

Bt
′ϕ(Xt,β)

− ∇̃(B)′∇(A)−1 1

√N

N

∑
t=1

At
′ϕ(Xt,β)

≈
1

√N

N

∑
t=1

[Bt
′ − ∇̃(B)′[∇(A)′]

−1
At

′]ϕ(Xt,β)

β At = Bt

β

Bt = B

1

√N

N

∑
t=1

Bt
′ϕ(Xt, bN) ≈

1

√N

N

∑
t=1

[B′ − B
′
D(A′

D)−1
A

′]ϕ(Xt,β).

Example 12.1 (cont.)
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The formulas just presented for testing support the second “verification” step. Interestingly, while not

dismissing it, [Oreskes et al., 1994] are quick to remind readers how about the limitations of this form of

verification.

12.6. GMM Efficiency Bound
Recall

We seek a greatest lower bound on the covariance matrix on the right.

1. Suppose that  is nonsingular and impose that

If not, post multiply  by a nonsingular matrix . That leaves the GMM estimator unaltered. Thus, we

have

subject to 

2. Find an  such that for all 

(12.3)

3. Form

Some hydrologists have suggested a two-step calibration scheme in which the available

dependent data set is divided into two parts. In the first step, the independent parameters of

the model are adjusted to reproduce the first part of the data. Then in the second step the

model is run and the results are compared with the second part of the data. In this scheme,

the first step is labeled “calibration,” and the second step is labeled “verification”. [Oreskes et

al., 1994].

cov(A) = [∇(A)′]−1
E [Gt(A)Gt(A)′][∇(A)]−1

[∇(A)′]−1

[∇(A)] = I

A J

 cov(A) = E [Gt(A)Gt(A)′]

[∇(A)] = I

Ad A ∈ A

∇(A) = E [Gt(A
d)Gt(A)′].

A∗
t = Ad

t (E [Gt(A
d)Gt(A

d)′])
−1
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for all , where we think of (12.3) as a set of first-order (necessary and sufficient) conditions for our

constrained optimization. Rather than derive them as such, we essentially use “guess and verify” in what

follows.

and

provided that 

4. Therefore,

Result 12.1. Given a solution to equation (12.3)

(12.4)

In the result 9.1 efficiency bound, we might be tempted to think that  plays the same role

that the “score vector” increment does in maximum likelihood estimation. But because there is a

possibly infinite dimensional vector of nuisance parameters here, a better analogy is that 

acts much like the residual vector in a regression of parameters of interest score increments on

nuisance parameter score increments. By undertaking to infer the parameter vector  from

conditional or unconditional moment restrictions, we have purposefully pushed all nuisance

parameters into the background.

The representation

A ∈ A

Gt(A
∗) = (E [Gt(A

d)Gt(A
d)′])

−1
Gt(A

d)

E [Gt(A
∗)Gt(A)′] = (E [Gt(A

d)Gt(A
d)′])

−1

[∇(A)] = I.

0 ≤ E ([Gt(A) − Gt(A
∗)][Gt(A) − Gt(A

∗)]′) = cov(A) − (E [Gt(A
d)Gt(A

d)′])
−1

.

inf
A∈A

cov(A) = (E [Gt(A
d)Gt(A

d)′])
−1

Gt(Ad)

Gt(Ad)

β

E([
∂ϕ

∂b′
(Xt,β)]

′

At) = ∇(A) = E [Gt(A
d)Gt(A)′]

Remark 12.4

Remark 12.5



used to compute the efficiency bound is an application of the Riesz Representation Theorem. To

understand this, introduce the -dimensional coordinate vectors  for  and

consider:

(12.5)

Note that

The integer  selects the coordinate of  with respect to which we are differentiating.

If  and  are both in , then so are linear combinations. Therefore  is a

linear functional defined on a linear space of random variables of the form  for

a given .

The martingale approximations for the scalar process with stationary increments

has martingale increment .

The Riesz Representation Theorem asserts that the linear functional  can be

represented as an inner product

where the scalar random variable  is in the mean square closure of

We can represent  as

for some selection process  or more generally as a limit point of a sequence of such

selection processes.

The preceding construction pins down row  of . Repeating an analogous construction for each

 gives the selection matrix .

The GMM efficiency bound presumed that we could solve equation (12.5). The Riesz

Representation Theorem requires that  be in a mean square closure of a linear space. Provided

that the linear functionals  are mean square continuous, the efficiency bound can be

k ui i = 1, 2, . . . , k

(ui)
′∇(A)uj = E([

∂ϕ

∂bi
(Xt,β)] ⋅ Atuj).

i b

A1 A2 A (ui)′∇(A)uj

ϕ(Xt,β)′Atuj

i

{
N

∑
t=1

ϕ(Xt,β)′Atuj : N ≥ 1}

Gt(A)uj

(ui)′∇(A)uj

(ui)
′∇(A)uj = E [RtGt(A)uj]

Rt

{Gt(A)uj : A ∈ A}.

Rt

Rt = Gt(A
d)uj

Ad ∈ A

j Ad

j = 1, 2, . . . , k Ad

Rt

(ui)′∇(A)uj



represented in terms of the limit point of a sequence of GMM estimators associated with

alternative selection processes even when the limit points are not attained.

Consider Example 12.1 in which we assumed that . Then

Therefore,

and the GMM efficiency bound is

Consider again Example 12.2 in the special case in which  so that the conditional moment

condition of interest is:

Let

which we assume to be nonsingular. To compute the efficiency bound, we wish to solve the

following equation for 

(12.6)

Given the flexibility in the choice of the random  with entries that are  measurable, this

equation is equivalent to

At = A

A
′
VA

d = A
′
D.

A
d = V

−1
D

(D′
V

−1
D)

−1
.

ℓ = 1

E [ϕ(Xt,β) ∣ At−1] = 0.

E [ϕ(Xt,β)ϕ(Xt,β)′ ∣ At−1] = Vt−1,

Ad
t

E (Ad
t

′
Vt−1At) = ∇(A) = E([

∂ϕ

∂b′
(Xt,β)]

′

At).

At At−1

Example 12.1 (cont.)

Example 12.2 (cont.)



where we have taken transposes of the expressions in (12.6). Thus

and the efficiency bound is:

Next consider a conditional moment justification for two-stage least squares. Add the following

special restrictions. Suppose that  and that  where  is constant. Further

suppose that

Finally, suppose that

where  has more entries than . Notice that  can be computed as a least squares

regression. Then

The scaling by  is inconsequential to the construction of a selection process. The matrix of

regression coefficients can be replaced by the finite sample least squares regression coefficients

without altering the statistical efficiency.

To obtain this rationale for two-stage least squares, we had to impose a special structure, one that

does not prevail in many important applications. For instance, suppose that  depends on

conditioning information so that a form of conditional heteroskedasticity is present. That

dependence shows up in essential ways in how  should be constructed. Further, suppose that

the expectation  depends nonlinearly on . In that case, to attain or to

approximate the efficiency bound, a least squares regression should account for potential

nonlinearity.

Vt−1A
d
t = E([

∂ϕ

∂b′
(Xt,β)] ∣ At−1)

Ad
t = (Vt−1)−1

E([
∂ϕ

∂b′
(Xt,β)] ∣ At−1)

[E([
∂ϕ

∂b′
(Xt,β)]

′

∣ At−1)(Vt−1)−1
E([

∂ϕ

∂b′
(Xt,β)] ∣ At−1)]

−1

.

r = 1 Vt−1 = v > 0 v

ϕ(Xt, b) = Y 1
t − Y 2

t ⋅ b

E (Y 2
t ∣ At−1) = ΠZt−1

Zt−1 Y 2
t Π

Ad
t = (

1

v
)Zt−1

′Π′

1
v

Vt−1

Ad
t

E [Y 2
t ∣ At−1] Zt−1



To implement the conditional moment version of the GMM efficiency bound requires the

estimation of conditional moments for which the model may not provide functional forms. Reliable

nonparametric estimation becomes particularly challenging in high dimensions. Suppose instead

that a researcher adopts a convenient parametric approximation to these conditional moments.

While this will induced a form of misspecification, it will not necessarily undermine either the

consistency of the resulting GMM estimator or its asymptotic distribution. The misspecification

may only make the resulting estimator only cause a reduction in the statistical efficiency of the

estimator as measured by the asymptotic covariance matrix of the resulting GMM estimator.

Suppose now that  and consider an unconditional moment formulation.

Then even if the covariance structure is homoskedastic and conditional expectations are linear,

the two-squares least square approach will no longer be statistically efficient. We illustrate why by

mapping into the framework of Example 12.1.

Use as our  function

in forming an unconditional moment restriction and implementing constructing the efficient GMM

estimator where the entries of  and in the date  conditioning information set (

measurable). Now form:

pertinent to the central limit approximation. Then an efficient selection matrix  is given by:

The matrix  is typically not proportional to a vector of regression coefficients of  on ,

as presumed in the justification for two-stage least squares. The temporal dependence removes

this connection. Hence, a commonly-used measure of “instrument relevance” obtained by

regressing the endogenous  onto  is no longer a valid diagnostic .

A special case of this analysis is when  in the date  conditioning information set. One

estimator could be constructed by setting . The standard two-stage least squares

estimator now is simply the ordinary least squares estimator. Next expand  to be:

ℓ = 2

ϕ

ϕ(Xt, b) = Zt−2 [Y 1
t − (Y 2

t )
′
b]

Zt2 t − 2 At−2

V = E [ϕ(Xt,β)ϕ(Xt,β)′] + E [ϕ(Xt,β)ϕ(Xt+1,β)′] + E [ϕ(Xt,β)ϕ(Xt−1,β)′]

Ad

A
d = V

−1E [Zt−2(Y 2
t )′]

Ad Y 2
t Zt−2

Y 2
t Zt−2

Y 2
t t − 2

Zt−2 = Y 2
t

Zt−2
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The  selection matrix will typically include  in the estimation in spite of the fact that this

variable is not needed in an initial least squares regression of  onto .

Since there is great flexibility in the construction of , there is further scope for efficiency gains

attained by using the conditional moment formulation of the family of GMM estimators. [Hansen

and Singleton, 1996] construct the efficiency bound in Example 12.2 for a linear data generating

process.

12.7. Statistical tests based on efficient GMM
estimators
First suppose that we have statistically efficient selection process. Thus the selection matrix is some

nonsingular matrix transformation of  where  satisfies the “first-order conditions” (12.3). Recall the

approximation

which includes an adjustment for estimation. Let  denote the increment in the martingale

approximation for

We use the representation implied by (12.3) to write:

These constructions allow us to write:

(12.7)

where

Zt−2 = [ ].
Y 2
t

Y 2
t−1

Ad Y 2
t−1

Y 2
t Zt−2

Zt−ℓ

Ad Ad

1

√N

N

∑
t=1

Bt
′ϕ(Xt, bN) ≈

1

√N

N

∑
t=1

[Bt
′ − ∇̃(B)′[∇(Ad)′]

−1
Ad

t

′
]ϕ(Xt,β),

G̃t(B)

N

∑
t=1

Bt
′ϕ(Xt,β).

∇̃(B) = E [Gt(A
d)Gt(B)′].

1

√N

N

∑
t=1

Bt
′ϕ(Xt, bN) ≈

1

√N

N

∑
t=1

Ĝt(B)
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The term, , that appears inside the sum on the right side of (12.7) is the population least squares

residual from regressing  onto . This regression residual can also be interpreted as a

martingale increment for a stationary increments process.

Suppose that  has a nonsingular covariance matrix. Consider the quadratic form used for building a

test:

This test can be implemented in practice by replacing  with a statistically consistent

estimator of it. There is an equivalent way to represent this quadratic form:

This equivalence follows because the inverse of the covariance matrix for the regression error  is the

upper diagonal block of the inverse of the covariance matrix:

Consider Example 12.1 again. We have already shown that

Suppose that we choose  with dimension  so that

Ĝt(B)
def
= G̃t(B) − E [G̃t(B)Gt(A

d)′](E [Gt(A
d)Gt(A

d)′])
−1
Gt(A

d)

Ĝt(B)

G̃t(B) Gt(Ad)

Ĝt(B)

1

N
[

N

∑
t=1

ϕ(Xt, bN)′Bt](E [Ĝt(B)Ĝt(B)′])
−1
[

N

∑
t=1

Bt
′ϕ(Xt, bN)] ⇒ χ2(

~
k).

E [Ĝt(B)Ĝt(B)′]

1

N

N

∑
t=1

ϕ(Xt, bN)′ [ ][E([ ] [ ])]

−1

[
N

∑
t=1

[ ]ϕ(Xt, bN)]

Bt Ad
t

G̃t(B)

Gt(Ad)
G̃t(B)′ Gt(Ad)′

Bt
′

Ad
t

′

Ĝt(B)

E([ ] [ ])
G̃t(B)

Gt(Ad)
G̃t(B)′ Gt(Ad)′

A
d = V

−1
D.

B r × (r − k)

[ ]Ad B
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has full rank. Then

If we replace  with  on the left side of the above limit we find

The difference in the resulting  distribution emerges because estimating  free parameters

reduces degrees of freedom by . It is straightforward to show that

an approximation that is useful for constructing confidence sets for GMM estimates of parameter

vector .

To continue our study of Example 12.1, form the population problem:

This has a minimizer at  provided that the unconditional moment conditions are satisfied. If

 is the only possible parameter vector that satisfies the population moment conditions, then

 is the unique solution to the population minimization problem stated here. Suppose that we

construct an estimator by solving a minimization problem:

(12.8)

First-order necessary conditions are

1

N

N

∑
t=1

ϕ(Xt, bN)′
V

−1
N

∑
t=1

ϕ(Xt, bN)′ ⇒ χ2(r − k).

bN β

1

N

N

∑
t=1

ϕ(Xt,β)′
V

−1
N

∑
t=1

ϕ(Xt,β)′ ⇒ χ2(r)

χ2 k

k

1

N

N

∑
t=1

ϕ(Xt,β)′
V

−1
N

∑
t=1

ϕ(Xt,β)′ −
1

N

N

∑
t=1

ϕ(Xt, bN)′
V

−1
N

∑
t=1

ϕ(Xt, bN)′ ⇒ χ2(k),

β

min
b

E[ϕ(Xt, b)]′
V

−1E [ϕ(Xt, b)].

b = β

b = β

b = β

min
b

1

N

N

∑
t=1

ϕ(Xt, b)
′
V

−1
N

∑
t=1

ϕ(Xt, b).

1

N

N

∑
t=1

[
∂ϕ

∂b′
(Xt, bN)]

′

V
−1

N

∑
t=1

ϕ(Xt, bN) = 0.

Remark 12.7



Assume that we already know that the solution  of the above first-order conditions provides a

consistent estimator of parameter vector . Then we can show that

where convergence is with probability one. Thus, in this case the implied selection matrix

provides an estimator that attains the efficiency bound. The limiting distribution of the minimizer

of criterion (12.8) is  with  degrees of freedom. Thus this gives a combined approach to

estimation and testing

There is an interesting variation of the approach described in Remark 12.7. For any , let  be

the population covariance matrix in the martingale increment used in the Central Limit

approximation for the process

Assume that  is nonsingular for every  in a parameter space. Form the population

minimization problem:

If  is the only vector that satisfies the associated population first-order conditions, then

 is again the unique solution to the above population minimization problem.

Now form sample counterparts of both  and  as functions of . Minimizing a

sample counterpart of the above population minimization problem gives rise to a “continuously-

updated GMM estimator”. See [Hansen et al., 1996]. The parameter vector and an appropriately

scaled minimized objective function have the same limiting distributions as those described in

Remark 12.7.

bN

β

1

N

N

∑
t=1

[
∂ϕ

∂b′
(X, bN)] → D

A = V
−1
D

χ2 r − k

b V(b)

1

√N

N

∑
t=1

ϕ(Xt,β).

V(b) b

min
b

E[ϕ(Xt, b)]′[V(b)]−1
E [ϕ(Xt, b)].

b = β

b = β

E [ϕ(Xt, b)] V(b) b

Remark 12.8

Remark 12.9
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It can be numerically challenging to find minimizers to the continuosly-updated GMM estimator in

high dimensions. Similarly, it can be difficult construct confidence sets based on this objective. As

an [Chernozhukov and Hong, 2003] and [Chen et al., 2018] devise and justify simulation-based

methods for inference applicable for the continuously-weighted GMM objective function. They do

so by adapting insights from simulation-based approaches for Bayesian inferences. The Bayeisan-

type calculations can be numerically more tractable [Chernozhukov and Hong, 2003] treat the

continuously-updated objective function as a “log-likelihood function”, and then use large sample

approximations to justify the Bayesian-like calculations. They justify this approach even though

the continuously-updated objective is not a formally a log-likelihood function. [Chen et al., 2018]

show how to modify this approach to attain additional robustness and reliability. An attractive

feature of these methods is that they exploit the shape of the continuously-updated GMM

objective function, but in so doing they impose a “prior” distribution to help guide this exploration.

When applications of GMM methods call for general (but weak) forms of temporal dependence,

the reliable estimation of the covariance matrix  needed for central limit approximation can be

very challenging. Various researcher have proposed methods the come from what is called

“spectral density” estimation. Within this latter literature, the matrix  is the spectral density

matrix for the process  Spectral methods are local in nature and can be

notoriously unreliable for high dimensions (large values of ). Some form of time-series

approximation may be necessary for such estimation environments.

In the case of moment matching, assuming a correct specification, one could use very large

sample simulations conditioned on each of the hypothetical parameters to approximate the

construction of . Remarkably, this is not often done in economics, even though it could

improve the quality of the inferences.

12.8. An alternative approach to misspecification
We modify the target of estimation to include an estimate of the underlying probability distribution. At the

same time as we estimate the parameter vector, we estimate the distribution of the observable data that

supports this estimation. We relax the assumption the that the moment conditions are satisfied under the

data generating process and instead find distributions that are potentially statistically close to the data

generating process. In many models of interest, the expectations used for the moment conditions could be

the subjective beliefs of the agents “inside the model” with expectations that differ from the actual data

generating process.

There is a substantial literature on what is called generalized empirical likelihood that addresses this, with

the primary motivation to improve second-order efficiency, and constructs that we do not study here. Since

V

V

{ϕ(Xt,β) : t ≥ 0}.

r

V(b)

Remark 12.10
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this literature features a finite number of unconditional moment condition, these second-order efficiency

gains are applied to a second-best formulation of statistical efficiency.

Instead of focusing on a refinements inferences, we following a suggestion in [Hansen, 2014] by thinking of

the beliefs as those of economic agents withinthe models we build. Thus we use special cases of the

generalized empirical likelihood methods as diagnostics that are informative about potential

misspecification. With this aim in mind, relative entropy divergence provides one convenient way to

proceed. We also make a revealing comparison to outcomes when we use a quadratic-divergence measure.

12.8.1. Relative entropy divergence

Consider the following population alternative proposed by [Kitamura and Stutzer, 1997] to the GMM

approach we described so far:

Given multipliers,  and  on the constraints, the first-order conditions for the inner minimization are:

Solving for the minimizing  given the multipliers  and  gives:

Imposing the  constraint implies that

with an inner minimization problem replaced by

Thus the counterpart to a GMM estimator solves the min-max problem:

min
b∈P

min
M≥0

E [M(logM)]

E [Mϕ(Xt, b)] = 0
E (M − 1) = 0.

λ, ζ

λ ⋅ ϕ(Xt, b) + ζ + log(M) + 1 = 0.

M(b,λ, ζ) λ ζ

M(b,λ, ζ) = exp [−λ ⋅ ϕ(Xt, b)] exp(−ζ − 1)

EM = 1

M(b,λ) =
exp [−λ ⋅ ϕ(Xt, b)]

E (exp [−λ ⋅ ϕ(Xt, b)])

max
λ∈Rr

− logE (exp [−λ ⋅ ϕ(Xt, b)]).

min
b∈P

max
λ∈Rr

− logE (exp [−λ ⋅ ϕ(Xt, b)]).

file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id216
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id300


[Kitamura and Stutzer, 1997] establish that the minimizing solution to a sample counterpart to this

population objective has the same first-order properties as an efficient GMM estimator when

 is itself a martingale difference sequence.

12.8.2. Quadratic divergence

Consider a counterpart with a quadratic divergence to the problem that we just analyzed:

Given multipliers,  and  on the constraints, the first-order conditions for the inner minimization are:

Thus

(12.9)

Since  has mean one,

and thus

Let

which is the covariance matrix of the random vector: . We take the moment conditions not to be

redundant so that  is nonsingular. Imposing the constraint that under the probability measure induced

by ,  has mean zero gives the formula;

{ϕ(Xt,β) : t ≥ 0}

min
b∈P

min
M≥0

1

2
E [(M − 1)2]

E [Mϕ(Xt, b)] = 0
E (M − 1) = 0.

λ, ζ

λ ⋅ ϕ(Xt, b) + ζ + M − 1 = 0.

M(b,λ, ζ) = 1 − ζ − λ ⋅ ϕ(Xt, b).

M

ζ = −λ ⋅ Eϕ(Xt, b),

M(b,λ) − 1 = −λ ⋅ [ϕ(Xt, b) − Eϕ(Xt, b)].

V(b)
def
= E ([ϕ(Xt, b) − E [ϕ(Xt, b)]]ϕ(Xt, b)′)

= E ([ϕ(Xt, b) − E [ϕ(Xt, b)]][ϕ(Xt, b) − E [ϕ(Xt, b)]]′),

ϕ(Xt, b)

V(b)

M(b,λ) ϕ(Xt, b),

V(b)λ = E [ϕ(Xt, b)].
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Thus

(12.10)

and the  of interest is determined by:

This is recognizable as the population counterpart to the continuously-updated objective for GMM. For

instance, see [Hansen et al., 1996].

So far, we have ignored the restriction that . The solution for  implied by (12.10) has mean

one, but it could be negative with positive probability. Imposing nonnegativity potentially alters the solution

for  and could raise the objective for inferring  In this case the first-order conditions (12.9) are modified

to be:

We no longer have a quasi-analytical solution, but instead solve:

12.8.3. Using the recovered probabilities as diagnostics for
misspecification

[Brown and Back, 1993] suggest using the implied probabilities from a GMM estimation, implemented with

a quadratic divergence, as a model diagnostic. Take as a starting point the empirical distribution obtained by

assigning  to each of the realized ’s. Then scale these weight the corresponding  computed at

the GMM estimator of  and isolate where the big adjustments are. This can inform an applied researcher as

to what aspects of the empirical distribution the model finds particularly challenging.

As alternative following a formulation of [Chen et al., 2020]. Consider the relative entropy divergence. A

probability distribution is characterized by the expectations it assigns to functions of the underlying random

vector, say . Take the minimum divergence outcome as a starting point and inflate by some percentage.

Call this divergence . For a rich class of functions,  and hypothetical parameter vector, , solve

M(b,λ) − 1 = −E[ϕ(Xt, b)]′
V(b)−1 [ϕ(Xt, b) − Eϕ(Xt, b)]

1

2
[(M − 1)2] =

1

2
E[ϕ(Xt, b)]′

V(b)−1E[ϕ(Xt, b)]′,

b

min
b∈P

1

2
E[ϕ(Xt, b)]′

V(b)−1E [ϕ(Xt, b)].

M ≥ 0 M(b,λ)

M b.

M(b,λ, ζ) = {
1 − ζ − λ ⋅ ϕ(Xt, b)  if positive

0  otherwise.

min
b∈P

max
λ,ζ

1

2
E ([M(b,λ, ζ) − 1]2)

1/N Xt M

β

Xt

κ
~
ϕ, b
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[1]

This provides a sharp upper bound on . To get a sharp lower bound, repeat the same

calculation by computing a sharp upper bound for  and multiply the outcome by minus one.

We may leverage our previous calculations by proceeding differently. First solve the minimum divergence

problem and compute the implied expectation for  Solve:

for . The added constraint will induce a larger divergence bound. By increasing  we may attain a

divergence of . With formulation, we have an immediate extension of our previous analysis leading to the

following problem

As a special case, we may set  equal to one of the coordinates of  and deduce implied upper and

lower bounds on the different parameter coefficients.

[Chen et al., 2024] describe inferential methods that support such an analysis expressed in terms of large

sample approximations.

So far, we have treated this as unconditional problem including both the moment conditions and

the divergence measures. [Chen et al., 2020] show how to extend this analysis to the case with

conditional moment restrictions along with an intertemporal measure of statistical divergence.

See [Hansen, 2000] and [Hansen, 2008] for overviews of GMM estimation.

min
b∈P

min
M≥0

E [M ~
ϕ(Xt, b)]

E [M logM] ≤ κ

E [Mϕ(Xt, b)] = 0
E (M − 1) = 0.

E[M
~
ϕ(Xt, b)]

E[M
~
ϕ(Xt, b)]

E[M,
~
ϕ(Xt, b)] = r–.

min
b∈P

min
M≥0

[M(logM)]

E [Mϕ(Xt, b)] = 0
E [Mψ(Xt, b)] − r = 0

E (M − 1) = 0.

r > r– r

κ

min
b∈P

max
λ∈Rr,

~
λ∈R

− logE (exp [−λ ⋅ ϕ(Xt, b) −
~
λ

~
ϕ(Xt, b) +

~
λr])

~
ϕ(Xt, b) b
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