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Chapter 3 described some implications of processes with stationary increments. In this chapter, we add

structure by modeling the increments as a stationary Markov process. Such processes are commonly used

to model economic time series of logs of key macroeconomic variables like GDP, capital and labor stocks,

and price levels with stochastic growth that is additive over time. Eventually, we will explore the implications

of exponentiating a process with stationary increment processes. Doing that transforms an arithmetically

growing process to one that displays geometric stochastic growth.

4.1. Definition of additive functional
Let  be a -dimensional stochastic process of unanticipated economic shocks. Let

 be a discrete-time stationary Markov process that is generated by initial distribution  for

 and transition equation

(4.1)

where  is a Borel measurable function. Let  be the filtration generated by histories of

 and ;  serves as the information set (sigma algebra) generated by . We presume

that the conditional probability distribution for  conditioned on  depends only on . To assure that

the process  represents unanticipated shocks, we restrict it to satisfy

{Wt+1 : t ≥ 0} k

{Xt : t ≥ 0} Q

X0

Xt+1 = ϕ(Xt, Wt+1),

ϕ {At : t = 0, 1, . . . }

W X At X0, W1, … , Wt

Wt+1 At Xt

{Wt+1 : t ≥ 0}

E (Wt+1|At) = 0.
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We produce results that condition on a statistical model in the sense of Section Limiting Empirical Measures

in Chapter 1:Laws of Large Numbers and Stochastic Processes, or equivalently on invariant events. Given

this, for notational simplicity, we simply assume that the stationary  process is ergodic.[1] The

Markov structure of  makes the distribution of  conditioned on  depend only on .
[2]

A process  is said to be an additive functional if it can be represented as

(4.2)

for a (Borel measurable) function , or equivalently

where we initialize  at some arbitrary random variable depending on date zero information,

although such a restriction is not needed for what follows.

An additive functional  is said to be an additive martingale if

Note that  implies the martingale restriction that we used previously:

It is easy to see that a linear combination of two additive functionals  and  is itself an additive

functional. If  is used to construct the first process and  the second process, then  can

be used to construct the sum of the two processes. –>

Suppose that

{Xt : t ≥ 0}

{Xt} (Xt+1, Wt+1) At Xt

{Yt}

Yt+1 − Yt = κ(Xt, Wt+1)

κ : Rn × R
k → R

Yt = Y0 +
t

∑
j=1

κ(Xj−1, Wj),

Y0

{Yt : t = 0, 1, . . . }

E [κ(Xt, Wt+1)|Xt] = 0.

E [κ(Xt, Wt+1)|Xt] = 0

E (Yt+1|At) = Yt,   for  t ≥ 0.

{Y
[1]

t } {Y
[2]

t }

κ1 κ2 κ = κ1 + κ2

Yt+1 − Yt = μ(Xt) + σ(Xt)Wt+1

Definition 4.1

Definition 4.2

Example 4.1
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where  is an i.i.d.~sequence of standardized multivariate normally distributed

random vectors,  is a stable matrix, and  has full column rank, and the random vector  is

generated by initial distribution  associated with the stationary distribution for the 

process. Here  is the conditional mean of  and  is its conditional

variance. When  depends on , this is called a stochastic volatility model because  is

a stochastic process. Conditional variances evolve stochastically over time.

In Example 4.1, when the conditional mean , the process  is a martingale.

4.2. Extracting Martingales
We can decompose an additive functional into a sum of components, one of which is an additive martingale

that encapsulates all long-run stochastic variation as in Proposition 3.1. In this section, we show how to

extract the martingale component. We adopt a construction like that used to establish Proposition 3.1 and

proceed in four steps.

4.2.1. Martingale construction
1. Construct the trend coefficient as the unconditional expectation:

2. Form the random variable  by computing multiperiod forecasts for each horizon and summing these

forecasts over all horizons. Start by constructing

Thus

Summing the terms, construct

Xt+1 = AXt + BWt+1

{Wt+1 : t ≥ 0}

A B X0

Q {Xt}

μ(Xt) Yt+1 − Yt |σ(Xt)|2

σ Xt |σ(Xt)|2

μ(Xt) = 0 {Yt}

η = E [κ(Xt, Wt+1)].

Ht

κ(x) = E [κ(Xt, Wt+1) − η ∣ Xt = x],–

E [κ(Xt+j−1, Wt+j) − η|Xt = x] = T
j−1κ(x).–
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(4.3)

where  is the operator defined in (2.1). The right side becomes a function of only  once we

substitute for  for  as implied by (4.1).

This construction requires that the infinite sum

converges in mean square under the stationary distribution for . A sufficient condition for this

is that  is a strong contraction for some integer  and  where  is defined in (2.7).

3. Compute

where[3]

4. Build the martingale increment:

where

By construction, the expectation of  conditioned on  is zero.

Ht =
∞

∑
j=0

E ([κ(Xt−1+j, Wt+j) − η] ∣ Xt)

=κ(Xt−1, Wt) − η +
∞

∑
j=0

E [κ(Xt+j) ∣ Wt, Xt−1]

=κ(Xt−1, Wt) − η +
∞

∑
j=0

T
jκ(Xt)

=κ(Xt−1, Wt) − η + (I − T)−1κ(Xt)
def
=κh(Xt−1, Wt)

–

–

–

T (Xt−1, Wt)

ϕ(Xt−1, Wt) Xt

∞

∑
j=0

T
jκ(x) = (I − T)−1κ(x)––

{Xt : t ≥ 0}

T
m m ≥ 1 κ ∈ N–N

H +
t = E (Ht+1 ∣ Xt) = κ+(Xt)

κ+(x)
def
= E [κ(Xt, Wt+1) ∣ Xt = x] − η + E [(I − T)−1

κ(Xt+1) ∣ Xt = x]

= E [κ(Xt, Wt+1) ∣ Xt = x] − η + (I − T)−1
Tκ(x).

–

–

Gt = Ht − H +
t−1 = κm(Xt−1, Wt)

κm(Xt−1, Wt)
def
= κh(Xt−1, Wt) − κ+(Xt−1).

κm(Xt, Wt+1) Xt
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Armed with these calculations, we now report a Markov counterpart to Proposition 3.1.

Suppose that  is an additive functional, that  is a strong contraction on  for

some , and that . Then

Notice that the martingale component is itself an additive functional. The first is a linear time trend, the

second an additive martingale, the third a stationary process with mean zero, and the fourth a time-invariant

constant. If we happen to impose the initialization: , then the fourth term is zero. We use

Proposition 4.1 decomposition as a way to associate a ‘’permanent shock’’ with an additive functional. The

permanent shock is the increment to the martingale.

4.3. Applications
We now compute martingale increments for two models of economic time series.

4.3.1. Vector autoregression

We apply the four-step construction in Algorithm Martingale construction when the Markov state 

follows a first-order VAR

(4.4)

where  is a stable matrix and  is a sequence of independent and identically normally

distributed random variables with mean vector zero and identity covariance matrix. The one-step ahead

conditional covariance matrix of the time  shocks  to  equals . Let

(4.5)

where  and  are row vectors with the same dimensions as  and , respectively. For this example,

the four steps of Algorithm Martingale construction become:

1. The trend growth rate is  as specified.

{Yt : t ≥ 0} T
m N

m E[κ(Xt, Wt+1)2] < ∞

Yt = tη +
t

∑
j=1

κm(Xj−1, Wj) − κ+(Xt) + Y0 + κ+(X0).

trend martingale stationary invariant

Y0 = −κ+(X0)

{Xt}

Xt+1 = AXt + BWt+1,

A {Wt+1 : t ≥ 0}

t + 1 BWt+1 Xt+1 BB
′

Yt+1 − Yt = κ(Xt, Wt+1) = DXt + η + FWt+1,

D F Xt Wt+1

η

Proposition 4.1
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2. 

3. 

4. (4.6)

From Example 1.8, we expect the coefficient of martingale increment to be the sum of impulse responses for

the increment process . The impulse response function is the sequence of

vectors:

(4.7)

Summing these vectors gives

as anticipated.

4.3.2. An economic rationale
Recursive utility represents preferences using recursively-constructed continuation values. As an

illustration, let  be the date  continuation value used to rank current and future consumption, and let 

denotes its logarithm. Suppose that for the logarithm of consumption, ,

where the first two equations are backward looking and third and fourth ones are forward looking. In

particular, current  depends on the future  through the construction of  In turn,  is risk-adjusted

certainty-equivalent of the next period continuation value . In particular, these preferences use an

exponential risk adjustment as reflected in formula for  instead of the conditional expectation of the

future continuation value. We restrict the subjective discount factor,  to satisfy  and the risk

aversion parameter,  to satisfy  The  matrix governing the state dynamics is a stable. The forward

equations typically require a terminal condition for the continuation value to be used in computing a solution

κh(Xt−1, Wt, Xt) = DXt−1 + FWt + D(I − A)−1Xt

κ+(Xt) = DXt + D(I − A)−1
AXt

κm(Xt−1, Wt) = FWt + D(I − A)−1(Xt − AXt−1)

= [F + D(I − A)−1
B]Wt.

{DXt + FWt+1 : t ≥ 0}

F,DB,DAB,DA2
B, ⋯ .

F + D (I + A + A
2 + ⋯)B = F + D(I − A)−1

B

Vt t V̂t

Ĉt = log Ct

Xt+1 = AXt + BWt+1

Ĉt+1 − Ĉt = DXt + η + FWt+1

V̂t = (1 − β)Ĉt + βR̂t

R̂t =
1

1 − γ
logE(exp [(1 − γ)V̂t+1] ∣ At)

V̂t V̂t+1 R̂t. R̂

V̂t+1

R̂t

β, 0 < β < 1,

γ, γ ≥ 1. A
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for today’s continuation value iteratively. Here we impose time invariance by considering an infinite-horizon

specification, one that could be constructed by taking a limit of finite horizon problems with zero terminal

conditions.

These preferences are a special case of preferences [Kreps and Porteus, 1978] and [Epstein and Zin, 1989]

for which feature a role for the intertemporal composition of risk. In the limiting case as  is the

conditional expectation allowing us to write the continuation value recursion as:

which can be solved forward to obtain:

Thus this limiting case gives discounted expected logarithmic utility as a way to assess alternative

consumption processes.

When the process  is highly persistent, there is said to be substantial “long-run risk” in

consumption. [Bansal and Yaron, 2004] also consider a process governing stochastic volatility that we

abstract from in the computations that follow. While the illustrative calculations in what follows use the VAR-

type application of [Hansen et al., 2008], some of the basic insights extend much more generally.

To provide a Markov characterization of the continuation value process, it is convenient to subtract  from

both sides of the second equation:

and rewrite the third equation as:

Given the assumed dynamics for the growth rate in consumption,  and  are co-integrated. We use

``guess and verify’’ to seek a solution of the form:

γ ↓ 1, Rt

V̂t = (1 − β)Ĉt + βE(V̂t+1 ∣ At).

V̂t = (1 − β)
∞

∑
τ=0

βτ
E(Ĉt+τ ∣ At).

{DXt}

Ĉt

V̂t − Ĉt = β(R̂t − Ĉt),

(R̂t − Ĉt)

=
1

1 − γ
logE(exp [(1 − γ)(V̂t+1 − Ĉt+1)+ (1 − γ)(Ĉt+1 − Ĉt)] ∣ At)

Ĉ V̂

V̂t − Ĉt = υXt + v.
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The coefficient vector  satisfies:

with a solution:

Notice that the formula for the coefficient  does not depend on the choice of .

The scalar  satisfies:

where we have computed expectations using known calculations for log-normally distributed random

variables.

Solving this forward gives:

(4.8)

Notice the first term in the square brackets of (4.8) is the average growth rate expressed in logarithms. For

the second contribution, it is revealing to inspect the  limit. Observe that the limiting version of  is:

implying that the term of interest is

(4.9)

This gives a variance adjustment to the continuation value that the product of  and variance of

the increment to the martingale component of the logarithm of consumption as reported in (4.6). When

 this variance adjustment is zero. Larger values of  increases this adjustment. The  limit

is pertinent because this parameter is often set close to unity in the macro-finance literature.

As an illustration [Hansen et al., 2008] and [Hansen and Sargent, 2021], identify long-term risk in

consumption by imposing cointegration on a VAR. By design, in what follows, we will abstract from model

υ

υ = βυA + βD,

υ = βD(I − βA)−1.

υ γ

v

v =βv + βη

+
β(1 − γ)

2
|υB + F|2

v =
β

1 − β
[η +

(1 − γ)

2
|υB + F|2].

β = 1 υ

υ = D(I − A)−1,

(1 − γ)

2
D(I − A)−1

B + F
2
.∣ ∣ (1 − γ)/2

γ = 1, γ > 0 β = 1
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uncertainty and follow the common practice of plugging in estimates as if they were known with certainty.

Later chapters will take the challenge of incorporating model uncertainty into preferences.

We construct a trivariate VAR system in which (1) the logarithm of proprietor’s income plus corporate

profits, (2) the logarithm of personal dividend income, and (3) the logarithm of consumption have the same

trend growth rate and martingale increment. Fig. 4.1 reports log differences in two time series.

Fig. 4.1 Time series for the i) logarithm of proprietor’s income plus corporate profits relative to

consumption (blue) and ii) the logarithm of personal dividend income relative to consumption (red).

We follow [Hansen and Sargent, 2021] by constructing a VAR system in the steps that follow:

1. Form:

where  is consumption,  is business income, and  is personal dividend income.

2. Construct

Zt+1 =
⎡⎢⎣ log Ct+1 − log Ct

log Bust+1 − log Ct+1

log Divt+1 − log Ct+1

⎤⎥⎦Ct Bust Divt
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Express a vector autoregression and consumption growth as;

where  is a stable matrix (i.e., its eigenvalues are all bounded in modulus below unity) and  is the

innovation covariance matrix. Similar constructions can be done for the growth in business income and in

dividend income by using the formulas:

(4.10)

Thus both can be constructed as linear transformations of  and .

3. Deduce a common permanent shock to all three time series using the approach describe in Section

Permanent shocks of Chapter Stationary Increments using formula

where

The initial scaling on the right side of the formula for the row vector,  is done so that the permanent

shock, , has standard deviation equal to one. We think of the shocks that are linear combinations of

 formed with coefficient vectors that are orthogonal for  as being transitory. Their long-term

impulse response is zero. They are not uniquely defined without further (potentially economic) restrictions.

This lack of uniqueness is evident because there are multiple three-dimensional vectors that are orthogonal

to  Linear combinations of any orthogonal vectors are also orthogonal to  There is two-dimensional

subspace of such vectors.

Xt = .

⎡⎢⎣ Zt

Zt−1

Zt−2

Zt−3

log Bust−4 − log Ct−4

log Divt−4 − log Ct−4

⎤⎥⎦Xt+1 = H + AXt + BWt+1

log Ct+1 − log Ct = η + DXt + FWt+1

A BB
′

log Bust+1 − log Bust

= (log Bust+1 − log Ct+1) − (log Bust − log Ct) + (log Ct+1 − log Ct)

log Divt+1 − log Divt

= (log Divt+1 − log Ct+1) − (log Divt − log Ct) + (log Ct+1 − log Ct).

Zt+1 Zt

W
p
t+1 = F

pWt+1

F
p

def
=

1

|D(I − A)−1
B + F|

[D(I − A)−1
B + F].

F
p,

W
p
t+1

Wt+1 F
p

F
p. F

p.
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We report the impulse responses of log consumption to the permanent shock and two transitory shocks in

Fig. 4.2. All three shocks are normalized to have a unit standard deviation and the responses are multiplied

by 100. Notice that the permanent shock has a substantial impact that builds over time. Its limiting value is

, which we verified contributes to the continuation value of consumption as reflected

in (4.9).

The magnitude of the limiting version of this response is pertinent for the long-run risk model for the limiting

case in which the subjective rate of discount is zero. Measure of long-term impacts can be challenging as

we will see in the next chapter.

Fig. 4.2 Impulse responses of log consumption to permanent and two transitory shocks. The blue curve

depicts the responses to a permanent shock. Responses to other transitory shocks are linear

combinations of the two that are plotted.

In Chapter 8:Exploring Recursive Utility, we investigate more generally the implications of a class of

recursive utility preferences which nests this specification as a special case. Among other results, we obtain

analogous formulas as first-order approximations to more general consumption dynamics.

|D(I − A)−1
B + F|
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4.3.3. Growth-Rate Regimes

We construct a Proposition 4.1 decomposition for a model with persistent switches in the conditional mean

and volatility of the growth rate .

Suppose that  evolves according to an -state Markov chain with transition matrix . Realized

values of  are coordinate vectors in . Suppose that  has only one unit eigenvalue. Let  be the row

eigenvector associated with that unit eigenvalue normalized so that  and

Consider an additive functional satisfying

where  is an i.i.d. sequence of multivariate standard normally distributed random vectors. Evidently,

the stationary Markov  process induces discrete changes in both the conditional mean and

the conditional volatility of the growth rate process .

Observe that  and let

(4.11)

Thus we can represent the evolution of the Markov chain as

 is an  discrete-valued vector process that satisfies , which is

therefore a martingale increment sequence adapted to .

We again apply the four-step construction in algorithm.[4]

1. 

2. 

3. 

which implies that

Yt+1 − Yt

{Xt : t ≥ 0} n P

Xt R
n

P q

q ⋅ 1n = 1

q′
P = q′.

Yt+1 − Yt = DXt + Xt
′
FW1,t+1,

{W1,t}

{Xt : t ≥ 0}

{Yt+1 − Yt}

E(Xt+1|Xt) = PXt

W2,t+1 = Xt+1 − E (Xt+1|Xt).

Xt+1 = PXt + W2,t+1

{W2,t+1 : t ≥ 0} n × 1 E(W2,t+1|Xt) = 0

Xt, Xt−1, . . . , X0

η = Dq

Ht = D(Xt−1 − q) + Xt−1
′
FW1,t + D(I − P)−1(Xt − q)

H +
t = E (Ht+1 ∣ Xt) = D (Xt − q) + D(I − P)−1

P(Xt − q)



[1]

[2]

[3]

[4]

4. 

where we have substituted from equation (4.11).

The martingale increment has both continuous and discrete components:

If we wanted to include model uncertainty in the spirit of Chapter 1, we could construct a set of

statistical models like the one described here, each indexed by its own parameter vector,

and then form a weighted average over that set of models.

Like , the pair  is a first-order Markov process restricted so that the joint transition

distribution depends only on .

Notice that 

The operator  applied to zero-means processes is well defined.

κ+(x) = D (x − q) + D(I − P)−1
P (x − q)

Gt = Ht − H +
t−1 = Xt−1

′
FW1,t + D(I − P)−1

W2,t

κm(Xt, Wt+1) = Xt
′
FW1,t+1

continuous

+ D(I − P)−1
W2,t+1

discrete

.
 

{Xt} {(Xt, Wt)}

Xt

T(I − T)−1
κ(x) = (I − T)−1

Tκ(x).––

(I − P)−1
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