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Chapter 4:Processes with Markovian increments described additive functionals of a Markov process. This

chapter describes exponentials of additive functionals that we call multiplicative functionals. We can use

them to model stochastic growth, stochastic discounting, and their interactions. After adjusting for

geometric growth or decay, a multiplicative functional contains a martingale component that turns out to be

a likelihood ratio process that is itself a special type of multiplicative functional called an exponential

martingale. By simply multiplying a baseline probability measure with Markov dynamics by a likelihood ratio

process, we can construct an alternative probability model with Markov dynamics. This procedure is useful

for asset pricing models because of how it can help us to represent stochastic growth and discounting

components that persist over long horizons. It also plays an essential role in statistical model discrimination.

We will encounter several other applications of multiplicative functionals, including models of returns and

positive cash flows that compound over multiple horizons, cumulative stochastic discount factors used

represent prices of such multi-period cash flows, and subjective beliefs of private sector investors and

policy makers that might deviate from an econometrician’s model. To analyze multiplicative functionals, we

apply mathematical tools related to ones used in the statistical theory of large deviations.
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6.1. Geometric growth and decay
To construct a multiplicative functional, we start with an underlying Markov process  that has stationary

distribution .

Let  be an additive functional that as in Chapter 4 is described by

, where  is the time  component of a Markov state vector and

 is the time  value of a martingale difference process ( ) of

unanticipated shocks. We say that  is a

multiplicative functional parameterized by . When  is a (Borel measurable) function of ,

 is also a (Borel measurable) function of .

An additive functional grows or decays linearly, so the exponential of an additive functional grows or decays

geometrically. Chapter 4 stated a Law of Large Numbers and a Central Limit Theorem for additive

functionals. In this chapter, we use other mathematical tools to analyze the limiting behavior of multiplicative

functionals. We refer to

as the multiplicative increment of the multiplicative process .

6.2. Special multiplicative functionals
We define the three primitive multiplicative functionals.

Suppose that  is constant and that  is a Borel measurable function of . Then

This process grows or decays geometrically.

X

Q

Y
def
= {Yt}

Yt+1 − Yt = κ(Xt,Wt+1) Xt t

Wt+1 t + 1 E (Wt+1 ∣ At) = 0

M
def
= {Mt : t ≥ 0} = {exp(Yt) : t ≥ 0}

κ Y0 X0

M0 > 0 X0

Nt+1 =
Mt+1

Mt

M

κ = η M0 X0

Mt = exp (tη)M0.

Definition 6.1

Example 6.1

Example 6.2
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Suppose that

Then

(6.1)

so that

A multiplicative functional that satisfies (6.1) is called a multiplicative martingale. We denote such

a process as  because it is appropriate to view it as likelihood ratio process.

Suppose that  where  is a Borel measurable function. The associated

additive functional satisfies

and is parameterized by  with initial condition

.

When the process  is stationary and ergodic, multiplicative functional Example 6.1 displays expected

growth or decay, while multiplicative functionals Example 6.2 and Example 6.3 do not. Multiplicative

functional Example 6.3 is stationary, while Example 6.1 and Example 6.2 are not.

We can construct other multiplicative functionals simply by multiplying two or more instances of these

primitive ones. Soon we shall reverse that process by taking an arbitrary multiplicative functional and

(multiplicatively) decomposing it into instances of our three types of multiplicative functionals. Before doing

so, we explore multiplicative martingales in more depth.

6.3. Multiplicative martingales and likelihood

E [exp [κ (Xt,Wt+1)]|Xt] = 1.

E (Mt+1|At) = Mt

E (Nt+1|At) = 1

M = L

Mt = exp [h(Xt)] h

Yt+1 − Yt = logMt+1 − logMt

= h(Xt+1) − h(Xt)

= h [ϕ(Xt,Wt+1)] − h(Xt)

κ(Xt,Wt+1) = h [ϕ(Xt,Wt+1)] − h(Xt)

Y0 = h(X0)

{Xt}

Example 6.3



processes
We can use multiplicative martingales to represent alternative probability models. We can characterize an

alternative model with a set of implied conditional expectations of all bounded random variables,  that

are measurable with respect to . The constructed conditional expectation is

(6.2)

We want multiplication of  by  to change the baseline probability to an alternative probability

model. To accomplish this, the random variable  must satisfy:

1. ;

2. ;

3.  is  measurable.

Property 1 is satisfied because conditional expectations map positive random variables  into positive

random variables that are  measurable. Properties 2 and 3 are satisfied because  is the multiplicative

increment of a multiplicative martingale. The resulting process  can be viewed as a likelihood ratio process

for the alternative process relative to the baseline process.

Representing an alternative probability model in this way is restrictive. Thus, if a nonnegative random

variable has conditional expectation zero under the baseline probability, it will also have zero conditional

expectation under the alternative probability measure, an indication of absolute continuity of the two

models’ transition probabilities. Two models that violate absolute continuity can be distinguished with

probabilty one from only finite samples.

Multiplicative martingales provide a way to model diverse subjective beliefs of private agents or policy-

makers within dynamic, stochastic equilibrium models when these beliefs are allowed to depart from the

model builder’s model.

Here are examples of multiplicative martingales constructed from some standard probability models.

Consider a baseline Markov process having transition probability density  with respect to a

measure  over the state space 

Let  denote some other transition density that we represent as

Bt+1,

At+1

E (Nt+1Bt+1 ∣ At).

Bt+1 Nt+1

Nt+1

Nt+1 ≥ 0

E (Nt+1 ∣ At) = 1

Nt+1 At+1

Bt+1

At N

L

πo

λ X

Po(dx
+|x)λ(dx+) = πo(x

+ ∣ x)λ(dx+)

π

Example 6.4



where we assume that  implies that  for all  and  in .

Construct the multiplicative increment process as:

Let an alternative model for a vector  be a vector autoregression:

where  is a stable matrix,  is an i.i.d. sequence of  random vectors

conditioned on . and  is a square, nonsingular matrix. Assume that a baseline model for 

has the same functional form but different settings  of its parameters. Let  be the

one-period conditional log-likelihood ratio

Notice how paramaters  of the baseline model and parameters  of the alternative

model both appear.

Because  is a nonsingular square matrix, model Example 6.5 has the same number of shocks,

i.e., entries of , as there are components of . A more general setting would be a hidden

Markov state model like one presented in Section Kfilter that has a time-invariant innovations

representation that conditions on an infinite past of an observation vector. Statistical analyses

often likelihood functions that condition on only a finite past. That typically produces an 

process that shares asymptotic properties with an alternative process that conditions on an

infinite past.

π(x+ ∣ x)λ(dx+) = [
π(x+ ∣ x)

πo(x+ ∣ x)
]πo(x

+ ∣ x)λ(dx+)

πo(x
+ ∣ x) = 0 π(x+ ∣ x) = 0 x+ x X

Nt+1 =
π(Xt+1 ∣ Xt)

πo(Xt+1 ∣ Xt)
.

X

Xt+1 = AXt + BWt+1

A {Wt+1 : t ≥ 0} N (0, I)

X0 B X

(Ao,Bo) Nt+1

logNt+1 = −
1

2
(Xt+1 − AXt)

′(BB′)−1
(Xt+1 − AXt)

+
1

2
(Xt+1 − AoXt)

′(BoBo
′)−1

(Xt+1 − AoXt)

−
1

2
log det (BB′) +

1

2
log det (BoBo

′)

(Ao,Bo) (A,B)

B

W X

Nt+1

Example 6.5

Remark 6.1
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[Hansen and Scheinkman, 2009] show that multiplicative martingales offer a way to value cumulative

returns. Let  be a multiplicative process that measures a cumulative return between date  and date zero.

Let  be a corresponding equilibrium discount factor between these same two dates. That  is a

multiplicative martingale follows from equilibrium restrictions on one-period returns:

where  is the one-period stochastic discount factor and  is the one-period gross return.

We can elicit a limiting behavior of multiplicative martingales by apply Jensen’s inequality to the concave

function  depicted in Fig. 6.1.

Fig. 6.1 Jensen’s Inequality. The logarithmic function is a concave function that equals zero when

evaluated at unity. The line segment lies below the logarithmic function.An interior average of endpoints of

the straight line lies below the logarithmic function.

By Jensen’s inequality,

Normalize  and form

Note that

Rt t

St L = RS

E [(
St+1

St
)(

Rt+1

Rt
) ∣ At] = 1,

St+1/St Rt+1/Rt

logL

E (logNt+1 ∣ At) ≤ logE (Nt+1 ∣ At) = 0.

L0 = 1

Lt =
t

∏
τ=1

Nτ .
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so that

This implies that under the baseline model the log-likelihood ratio process  is a super martingale relative

to the information sequence .

From the Law of Large Numbers, a population mean is well approximated by a sample average from a long

time series. That opens the door to discriminating between two models. Under the baseline model, the log

likelihood ratio process scaled by  converges to a negative number. Exchanging changing roles of

baseline and alternative models, consider using  instead of  as an increment. The scaled-by-

log likelihood ratio converges to the expectation of  under the alternative model that is now in

the denominator of the likelihood ratio. This limit would be positive under an assumption that the alternative

model generates the data. Such calculations justify discriminating between the two models by calculating

 and checking if it is positive or negative. This procedure amounts to an application of the method of

maximum likelihood.

Suppose now that a statistical model implied by change of measure  governs the data, not the

baseline model. Conditional relative entropy  of the martingale increment

relative to the baseline model  satisfies

To understand this inequality, note that multiplication of  by  changes the conditional

probability distribution with respect to which the conditional expectation is calculated from the misspecified

baseline model to the alternative statistical model. The function  is convex and equal to zero for

. Therefore, Jensen’s inequality implies that conditional relative entropy is nonnegative and equal to

zero when . Notice that

Thus  is a sub martingale. The expression

and is a measure of relative entropy over a -period horizon. Relative entropy is often used to analyze model

misspecifications and also appears in statistical characterizations of “large deviations” for Markov

logLt =
t

∑
τ=1

logNτ ,

E (logLt+1 ∣ At) ≤ logLt.

L

{At : t ≥ 0}

1/t
1

Nt+1
Nt+1 1/t

− logNt+1

logLt

Nt+1

E (Nt+1 logNt+1 ∣ At)

N

E (Nt+1 logNt+1 ∣ At) ≥ 0

logNt+1 Nt+1

n logn

n = 1

Nt+1 = 1

E (Lt+1 logLt+1 ∣ At) = LtE (Nt+1 logNt+1 ∣ At) + Lt logLt

≥ Lt logLt.

L logL

E (Lt logLt ∣ A0) ≥ 0,

t



processes, as we shall discuss later.

Suppose that a decision-maker does not know whether a baseline or alternative model generates the data.

Attach a subjective prior probability  to the baseline probability model and probability  on the

alternative. Suppose that  is a likelihood ratio process with  reflecting information available at date .

Date  posterior probabilities for the baseline and alternative probability models are:

When  converges to a negative number under the baseline probability, the first probability

converges to one. But when  converges to a positive number under the alternative probability, the

second probability converges to one. When the data are generated by the baseline probability model, the

Law of Large Numbers implies the former; and when the data are generated by the alternative probability

model, the Law of Large Numbers implies the latter. This analysis can be extended to situations in which

some other model generates the data.

6.4. Factoring a multiplicative functional
Following [Hansen and Scheinkman, 2009] and [Hansen, 2012], we factor a multiplicative functional into

three multiplicative components having the primitive types Example 6.1, Example 6.2, Example 6.3. As in

definition Definition 6.1, let  be an additive functional, and let . Apply a one-period operator

 defined by

(6.3)

to bounded Borel measurable functions  of the Markov state. By applying the Law of Iterated expectations,

a two-period operator iterates  twice to obtain:

(6.4)

with corresponding definitions of -period operators . The family of operators is a special case of what is

called a ``semi-group.’’ The domain of the semigroup can typically be extended to a larger family of

functions, but this extension depending on further properties of the multiplicative process used to construct

πo 1 − πo

L Lt t

t

πo

Lt(1 − πo) + πo

and
Lt(1 − πo)

Lt(1 − πo) + πo

.

1
t logLt

1
t

logLt

Y M = exp(Y )

M

Mf(x)
def
= E [exp(Yt+1 − Yt)f(Xt+1) ∣ Xt = x]

= E [(
Mt+1

Mt

)f(Xt+1)|Xt = x].

f

M

M
2f(x)

def
= E [exp(Yt+2 − Yt)f(Xt+2) ∣ Xt = x]

= E [(
Mt+2

Mt
)f(Xt+2) ∣ Xt = x],

j M
j
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it. For an extended application to asset valuation and investor preferences, see []. We will explore these

applications in discussions that follow.

First, for a strictly positive , construct the limit

(6.5)

when the limit is finite. For instance,  could be identically one. We call  the asymptotic growth (or decay)

rate of the multiplicative functional . Multiplying the multiplicative functional by  removes

expected asymptotic growth from the semigroup.

To refine this limiting characterization of a multiplicative functional and obtain two other components of the

factorization, we apply what is referred to mathematics as Perron-Frobenius theory. We start by posing:

Eigenvalue-eigenfunction Problem: Solve

(6.6)

for an eigenvalue  and a positive eigenfunction .

We call the largest eigenvalue, the principal eigenvalue, and the associated eigenvector the principal

eigenfunction of the operator . A positive eigenfunction  is a function of the Markov state that can be

expected to grow (or decay) geometrically at the long-run growth rate . Write the eigenfunction

equation (6.6) as:

Iterating the eigenfunction equation implies

Solve for the principal eigenvalue and eigenvector, and define:

f

~η = lim
j→∞

1

j
logE [exp(Yt+j − Yt)f(Xt+j) ∣ Xt = x]

= lim
j→∞

1

j
logE [

Mt+j

Mt

f(Xt+j) ∣ Xt = x]

= lim
j→∞

1

j
logMjf(x)

f ~η

M exp(−ηt)

Me(x) = exp (~η)~e(x)

exp(~η) ~e

M
~e

η = ~η

E [
Mt+1

Mt

~e(Xt+1)|Xt] = exp (~η)~e(Xt).

E [
Mt+j

Mt

~e(Xt+j)|Xt] = exp (j~η)~e(Xt).



and build

By construction,  has a conditional expectation equal to unity. Consequently,  is a multiplicative

martingale.

Let  be a multiplicative functional. Suppose that the principal eigenvalue-eigenfunction

Problem has a solution with principal eigenfunction . Then the multiplicative functional is the

product of three components that are instances of the primitive functionals in examples Example

6.1, Example 6.2, and Example 6.3:

(6.7)

where  is a multiplicative martingale.

The factorization of a multiplicative functional described in Theorem 6.1 is a counterpart to the Proposition

4.1 decomposition of an additive functional. We used the Proposition 4.1 martingale to identify the

permanent component of an additive functional in Chapter 4. In this chapter, we shall use the multiplicative

martingale isolated by Theorem 6.1 to represent a change of probability measure. That the additive

martingale  has a variance that grows linearly over time contributes a component to the

exponential trend of the multiplicative functional  along with a martingale component. The following log-

linear, log-normal model displays relevant mechanics.

Consider a stationary  process and an additive  process described by the VAR

where  is a stable matrix and  is a sequence of independent and identically

normally distributed random vectors with mean zero and covariance matrix . In Proposition

Proposition 4.1 of Chapter 4, we described the decomposition

Ñt+1

def
= exp(−~η)

Mt+1
~e(Xt+1)

Mt
~e(Xt)

= exp [~κ(Xt,Wt+1)],

L̃t+1 = Ñt+1L̃t, L̃0 = 1.

Ñt+1 L̃

Mt

~e(X)

Mt

M0
= exp (~ηt)L̃t [

~e(X0)
~e(Xt)

]

L̃t

Y = log(M)

M

X Y

Xt+1 = AXt + BWt+1

Yt+1 − Yt = ν + D ⋅ Xt + F ⋅ Wt+1

A {Wt+1 : t ≥ 0}

I

Theorem 6.1

Example 6.6
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(6.8)

where

Let . Use equation (6.8) to deduce

where

(6.9)

and

The martingale component of the multiplicative functional has “peculiar behavior.” It has

expectation one by construction. The Martingale Convergence Theorem guarantees that sample

paths converge, typically to zero. Fig. 6.2 plots probability density functions of the martingale

component for different values of .

Yt − Y0 = tν + [
t

∑
j=1

H ⋅ Wj] − g(Xt−1) + g(X0)

H =F+ B
′(I− A

′)−1
D

g(x) =D′(I− A)−1
x.

Mt = exp(Yt)

Mt

M0
= exp (~ηt)L̃t [

~e(X0)
~e(Xt)

]

~η = ν +
H ⋅H

2
,

Ñt+1 = exp(H ⋅ Wt+1 −
H ⋅H

2
), L̃0 = 1,

~e(x) = exp[g(x)] = exp [D′(I− A)−1
x]

t



Fig. 6.2 Density of  for different values of .

We are especially interested in this martingale component as a change of probability measure.

Formula (6.9) for  tells how the change in probability measure induces mean  in the

conditional distribution for the shock .

Models in which  is a finite-state Markov chain are also manageable computationally. In such models the

principal eigenvalue calculation reduces to finding an eigenvector of a matrix with all positive entries.

The stochastic process  is governed by a finite-state Markov chain on state space

, where  is the  vector whose components are all zero except for  in the

 row. The transition matrix is  where . We can represent

the Markov chain as

where ,  denotes the transpose of , and  is an  vector

process that satisfies , which is therefore a martingale-difference sequence

adapted to .

L̃t t

Ñt H

Wt+1

Xt

Xt

{s1, s2, … , sn} si n × 1 1

ith P, pij = Prob(Xt+1 = [sj|Xt = si)

Xt+1 = P
′Xt + Wt+1

E(Xt+1|Xt) = P
′Xt P

′ P {Wt+1} n × 1

E(Wt+1|Xt) = 0

Xt,Xt−1, … ,X0

Example 6.7
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Let  be an  matrix whose  entry  is an additive net growth rate 

experienced when  and . The stochastic process  is governed by the

additive functional

Let . Define a matrix  whose  element is  The stochastic

process  is governed by the multiplicative functional:

(6.10)

Associated with this multiplicative functional is the principal eigenvalue problem

To convert this to a linear algebra problem, write the  entry of  as . Since  always

assumes the value of one of the coordinate vectors ,

when  and . This allows us to rewrite the principal eigenvalue problem as

or

(6.11)

where  and  is entry  of . We want the largest eigenvalue and associated with a

positive eigenvector of (6.11).

After solving the principal eigenvalue problem, compute

(6.12)

and form the matrix . We have now constructed a matrix  that behaves as a transition

matrix for a different finite state Markov chain. Its entries are nonnegative, and

G n × n (i, j) gij Yt+1 − Yt

Xt+1 = sj Xt = si Y

Yt+1 − Yt = (Xt)
′
GXt+1.

M = exp(Y ) M (i, j)th mij = exp(gij).

M

Mt+1

Mt
= exp [(Xt)

′
GXt+1] = (Xt)

′
MXt+1.

E [
Mt+1

Mt

~e ⋅ Xt+1|Xt = x] = exp (~η)~e ⋅ x.

jth ~e ~ej Xt

si, i = 1, … ,n

(Xt)
′MXt+1 = mij

Xt = si Xt+1 = sj

∑
j

pijmij
~ej = exp(~η)~ei

P̃~e = exp(~η)~e

p̃ij = pijmij ei i e

l̃ij = exp (−~η)mij

ej

ei

L̃ = [̃lij] L̃



We can use this matrix for form increments  in a positive multiplicative martingale

process :

To achieve a Theorem 6.1 representation of the multiplicative functional , use formula (6.12) for

 to get  This allows us to write (6.10) as

(6.13)

6.5. Stochastic stability
Our characterization of a change of probability measure as the solution of a Perron-Frobenius problem

determines only transition probabilities. Since the process is Markov, it is reasonable to seek an initial

distribution of  under which the process is stationary. When the eigenfunction problem has multiple

solutions, it turns out that there is a unique solution for which the process  is stochastically stable under

the implied change of measure, in particular, the solution associated with the minimum eigenvalue. See

[Hansen and Scheinkman, 2009] and [Hansen, 2012] for a formal analysis of this problem in a continuous-

time Markov setting.

A process  is stochastically stable under a probability measure  if it is stationary and

 for any Borel measurable  satisfying

.

Stochastic stability under the change of measure provides way to think about some interesting long-term

approximations. Suppose that

(6.14)

Then

n

∑
j=1

l̃ij = 1.

(Xt)
′
L̃Xt+1

{L̃t}

Ñt+1 = (Xt)
′
L̃Xt+1.

Mt

m̃ij mij = exp (~η)m̃ij
ei
ej

.

Mt+1

Mt

= exp (~η) [(Xt)
′M̃Xt+1](

e ⋅ Xt

e ⋅ Xt+1
).

X0

X

X P̃r

limj→∞ Ẽ [h(Xj) ∣ X0 = x] = Ẽ [h(X0)] h

Ẽ|h(Xt)| < ∞

f > 0 and 0 < Ẽ [
f(Xt)
~e(Xt)

] < ∞.

Definition 6.2
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Since  is stochastically stable under ,

Under the restriction, after adjusting for the growth decay in the semigroup, we obtain a more refined

approximation:

where we assume that . Once we adjust for the impact of , the limiting function is

proportional to . The function  determines only a scale factor .

It also turns out that stochastic stability is sufficient for the Perron-Frobenius eigenvalue problem to have a

unique solution.

Let  be a multiplicative functional. Suppose that  solves the eigenfunction problem and

that under the change of measure  implied by the associated martingale  the stochastic

process  is stationary and ergodic. Consider any other solution  to eigenfunction

problem with implied martingale . Then

1. .

2. If  is stochastically stable under the change of measure  implied by the martingale ,

then ,  is proportional to , and  for all .

First we show that . Write:

Thus,

1

j
logMjf(x) = ~η +

1

j
log Ẽ [

f(Xj)
~e(Xj)

X0 = x] −
1

j
log ~e(x)∣X P̃r

lim
j→∞

1

j
logMjf(x) = ~η.

lim
j→∞

exp(−~ηj)Mjf(x) = lim
j→∞

Ẽ [
f(Xj)
~e(Xj)

X0 = x]~e(x) = Ẽ [
f(Xt)
~e(Xt)

]~e(x),∣Ẽ [ f(Xt)
~e(Xt)

] < ∞ ~η

~e f Ẽ [ f(Xt)
~e(Xt)

]~e(x)

M (~η, ~e)

P̃ M̃

X (η∗, e∗)

{M ∗
t }

η∗ ≥ ~η

X Pr∗ M ∗

η∗ = ~η e∗ ~e M ∗ = M̃ t = 0, 1, . . .

η∗ ≥ ~η

M
te∗(x) = exp (~ηt)Ẽ([

~e(X0)
~e(Xt)

]e∗(Xt) X0 = x) = exp (η∗t)e∗(x).∣Theorem 6.2

Proof



If , then

But this equality cannot be true because under  is stochatically stable and  is strictly

positive. Therefore, 

Consider next the case in which . Write

which implies that

Thus,

Suppose that , then

so that  cannot be stochastically stable under the  measure.

Finally, suppose that  and that  is not constant. Then

and  cannot be stochastically stable under the  measure.

Ẽ([
e∗(Xt)
~e(Xt)

] X0 = x) = exp (η∗t − ~ηt) [
e∗(x)
~e(x)

].∣~η > η∗

lim
t→∞

Ẽ([
e∗(Xt)
~e(Xt)

] X0 = x) = 0.∣P̃r X e∗

~e

η∗ ≥ ~η.

η∗ > ~η

Mt

M0
= exp (η∗t)(

M ∗
t

M ∗
0

)(
e∗(X0)

e∗(Xt)
),

M
t~e(x) = exp (η∗t)E ∗ [(

e∗(X0)

e∗(Xt)
)~e(Xt) X0 = x] = exp (~ηt)~e(x).∣E

∗ ([
~e(Xt)

e∗(Xt)
] X0 = x) = exp (~ηt − η∗t) [

~e(x)

e∗(x)
].∣~η < η∗

lim
t→∞

E
∗ ([

~e(Xt)

e∗(Xt)
] X0 = x) = 0,∣X Pr∗

~η = η∗
~e(x)

e∗(x)

E
∗ ([

~e(Xt)

e∗(Xt)
] X0 = x) =

~e(x)

e∗(x)∣X Pr∗



We will apply these results in a variety of ways in this and subsequent chapters.

So far, we have shown how to construct a factorization of a multiplicative functional from an underlying

stochastic model of the process. It turns out that such a factorization can help us understand implications of

stochastic equilibrium models for valuations of random payout processes. In addition, such factorizations

can help organize empirical evidence in ways that make contact with such stochastic equilibrium asset

pricing models.

6.6. Inferences about permanent shocks
Macroeconomists often study dynamic impacts of shocks to systems of variables measured in logarithms.

For example, [Alvarez and Jermann, 2005] suggest looking at asset prices using a multiplicative

representation of a cumulative stochastic discount factor, though without the tools provided by this chapter.

The additive decomposition derived and analyzed in Chapter 4 are a convenient tool for models like theirs.

We start with a factorization of a stochastic discount factor process as given in Theorem 6.1.

(6.15)

Take logarithms and form:

This looks like an additive decomposition of the type analyzed in Chapter 4, but it is actually different. While

 is a multiplicative martingale,  is typically a super martingale, but not a martingale. This leads us

to write the additive decomposition as:

where  is an additive martingale. As [Hansen, 2012] argues, a weaker result holds. If  is not degenerate

(i.e., equal to one), then  is not degenerate and conversely. A prominent multiplicative martingale

component implies a prominent role for permanent shocks in the underlying economic dynamics. A formal

probability model lets us link the two representations via the results we have described in this chapter and

Chapter 4. Example Example 6.6 provides an example with explicit formulas linking the two representations.

6.7. Empirical counterparts to a factorization of

St

S0
= exp(tηs)Ls

t [
es(X0)

es(Xt)
]

logSt − logS0 = tηs + logLs
t + log es(X0) − log es(Xt).

Ls logLs

logSt − logS0 = tη̂s + L̂s
t + ês(X0) − ês(Xt)

L̂s
t Ls

L̂
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stochastic discount factors
Consider stochastic discount factorization (6.15) again. A date zero price of a long-term bond is:

Compute the corresponding yield by taking  times minus the logarithm:

Provided that

the limiting yield on a discount bond is 

Next consider a one-period holding period return on a  period discount bond:

Using stochastic stability and taking limits as  tends to  gives the limiting holding-period return:

(6.16)

A simple calculation shows that  satisfies the following equilibrium pricing restriction on a one-period

return:

These long-horizon limits provide approximations to the eigenvalue for the stochastic discount factor and

the ratio of the eigenfunctions. In a model without a martingale component [Kazemi, 1992], observed that

the inverse of this holding-period return is the one-period stochastic discount factor. [Alvarez and Jermann,

E(
St

S0
A0) = exp(ηst)Ẽ [

1

es(Xt)
X0]es(X0).∣ ∣1/t

−ηs −
1

t
log Ẽ [

1

es(Xt)
X0] +

1

t
log es(X0).∣Ẽ [

1

es(Xt)
X0] < ∞,∣−ηs.

t

exp[ηs(t − 1)]Ẽ [ 1
es(Xt)

X1]es(X1)

exp(ηst)Ẽ [ 1
es(Xt)

X0]es(X0)∣∣t ∞

R∞
1

def
= exp(−ηs)

es(X1)

es(X0)
.

R∞
1

E [(
S1

S0
)R∞

1 A0] = Ẽ(exp(ηs) [
es(X0)

es(X1)
] exp(−ηs) [

es(X1)

es(X0)
] X0) = 1.∣ ∣
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2005] extend this insight by showing that the reciprocal reveals the component of one-period stochastic

discount factor net of its martingale component. Within the [Kazemi, 1992] setup, a subjective belief

specification, distinct from the baseline probability specification used to represent valuations, could

rationalize the martingale component of a cumulative stochastic discount factor process. For instance, the

baseline probability specification could be the one that actually generates the data. This distinction

between probability measures can be sufficient to induce a martingale component relative to baseline

probabilities even though this component is absent when valuations are depicted with the subjective

probabilities.

In practice, we have only have bond data with a finite payoff horizon, whereas the characterizations

[Kazemi, 1992] and [Alvarez and Jermann, 2005] use bond prices with a limiting payoff horizon. Empirical

implementations using such characterizations assume that the observed term structure data have a

sufficiently long duration component to provide plausible proxy for the limiting counterpart.

6.8. Long-term risk-return tradeoff for cash flows
Following [Hansen and Scheinkman, 2009] and [Hansen et al., 2008], we consider the valuation of

stochastic cash flows, , that are multiplicative functionals. Such cash flows are determinants of prices of

both equities and bonds.

We now study long-term limits of prices of such cash flows. In addition to the stochastic discount process

(6.15), form:

with a corresponding cash-flow return over horizon :

Note that as a special case, the cash-flow return on a unit date  cash-flow is:

Define the proportional risk premium on the initial cash-flow return as:

G

logGt − logG0 = tηg + logL
g
t + log es(X0) − log es(Xt),

t

Gt

E [( St

S0
)Gt A0]

=

Gt

G0

E( StGt

S0G0
X0)

.∣ ∣t

1

E( St

S0
X0)∣
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(6.17)

where the third term is minus the logarithm of the riskless cash-flow return for horizon . To adjust for the

investment horizon, we scale by .

The product  is itself a multiplicative functional. Let  denote its geometric growth component. Then

from (6.17), the limiting cash-flow risk compensation is:

This expression resembles a covariance, but it differs from a covariance because we are working with

proportional measures of risk compensation for positive payoffs.

A cumulative return process  is a special case of a cash flow. For such a process,  for

 is a  period return for any such  and . Normalize  and . For such a

cash flow,  is a multiplicative martingale, implying that , so that the limiting

proportional risk premium is [Martin, 2012] studies tail behavior of cumulative returns.

Since  is a martingale bounded from below, it converges almost surely, typically to zero. Since

its date zero conditional expectation is one, for long horizons this process necessary has a fat

right tail.

We also investigate the limiting behavior of one-period holding period returns. An empirical asset pricing

literature has explored these returns starting with [van Binsbergen et al., 2012]. See [Golez and Jackwerth,

2024] for a recent update of this evidence. Use the factorization of  to get

Based as it is on a multiplicative factorization of , this typically does not the difference between the

logarithm of the factorization of  and the logarithm of the factorization of . We provide a characterization

of the limiting one-period holding period return for the cash flow by imitating and extending our analysis of a

limiting holding-period return for riskless bond. This gives the following analogue to (6.16):

The eigenvalue and eigenfunction adjustments come from studying  instead of ; we also n inherit a

stochastic growth term . By multiplying this return by  we obtain , the date one

1

t
logE(

Gt

G0
X0) −

1

t
logE(

StGt

S0G0
X0) +

1

t
logE(

St

S0
X0),∣ ∣ ∣ t

1/t

SG ηsg
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martingale increment for . The one-period pricing relation for the cash-flow holding-period return

follows immediately.

Finally, suppose that  so that the martingale component of the stochastic discount factor process is

degenerate. Then  inherits the martingale component of , implying that

As a consequence, the long-term risk-return tradeoff is zero, since in the limit proportional risk

compensation is

6.9. Bounding investor beliefs
We use the cumulative stochastic discount factorization to analyze two distince approaches to drawing

inferences about investor beliefs.

6.9.1. Subjective beliefs in the absence of long-term risk
Suppose that we have data on prices of one-period state-contingent claims. We can use these data to infer

the one-period operator,  Recall that we represent this operator using a baseline specification of the

one-period transition probabilities. One possibility is that the one-period baseline transition probabilities

agree with the data generation. Rational expectations models equate transition probabilities to those used

by investors. Suppose instead that

we endow investors with subjective beliefs that can differ from the baseline specification;

investors think there are no permanent macroeconomic shocks;

investors don’t have risk-based preferences that can induce a multiplicative martingale in a cumulative

stochastic discount factor process.[1]

Under these three restrictions, we could identify the  as the likelihood ratio for investor beliefs relative to

the baseline probability distribution. Thus, the implied martingale component in the cumulative stochastic

discount factor identifies the subjective beliefs of investors. Using this change of measure, the limiting long-

term risk compensations derived in the previous section are zero. These assumptions allow for the “Ross

recovery” of investor beliefs.[2]

SG

Ls = 1

SG G

ηsg = ηs + ηg

esg(x) = es(x)eg(x)

ηs + ηg − ηsg = 0.

M.

Ls



6.9.2. Restricting the martingale increment with limited asset
market data

Suppose instead that we assume rational expectations by endowing investors with knowledge of the data

generating process. With limited asset market data we cannot identify the martingale component to

cumulative stochastic discount factor process without additional model restrictions. We can, however,

obtain potentially useful bounds on the martingale increment. We know that as a stochastic process the

implied martingale has some peculiar behavior, but t nevertheless hat the implied probability measure can

be well behaved. Consequently, in contrast to [Alvarez and Jermann, 2005], we use the increment as a

device to represent conditional probabilities instead of just as a random variable.

There is a substantial literature on divergence measures for probability densities. Relative entropy is an

important example. More generally, consider a convex function  that is zero when evaluated at one. The

function  and  are examples of such functions. Jensen’s inequality implies that

and equal to zero when  is one, provided that  is a multiplicative martingale increment (has

conditional expectation one). This gives rise to a family of  divergences that can be used to assess

departures from baseline probabilities. Relative entropy,  is an example that is particularly

tractable and has been used often. Both  and  can be interpreted as expected log-likelihood

ratios.

One way of assessing the magnitude of  solves:

Minimum divergence Problem

subject to:

where  is a vector of asset payoffs and  is a vector of corresponding prices.

Recall that the term

ϕ

n logn − logn

E [ϕ(N1) ∣ X0] ≥ 0,

N1 N1

ϕ

ϕ(n) = n logn

n logn − logn

N L
1

min
N1≥0

E [ϕ(N1) ∣ X0]

E (N1 ∣ X0) = 1

E(N1 [exp(ηs)
es(X0)

es(X1)
]Y1 X0) = Q0∣Y1 Q0
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can be approximated by the reciprocal of the one-period holding-period return on a long-term bond.

This approach is an example of partial identification because the vector  of asset payoffs may not be

sufficient to reconstruct all potential one-period asset payoffs and prices. This could be because data

limitations lead an econometrician to choose to use incomplete data on financial markets.

To avoid having to estimate conditional expectations, applications often study an unconditional

counterpart to this problem. In such situations, conditioning can be brought in through the “back

door” by scaling payoffs and prices with variables in the conditioning information set; for example,

see [Hansen and Singleton, 1982] and [Hansen and Richard, 1987]. See [Bakshi and Chabi-Yo,

2012] and [Bakshi et al., 2017] for some related implementations.

[Alvarez and Jermann, 2005] use  as the objective to be minimized. Notice

that

where the term in square brackets is the logarithm of the limiting holding-period bond return. The

criterion thus equals that in the minimum divergence problem, but with an additive translation.

Rewrite the constraints as:

Thus we are left with an equivalent minimization problem in which the translation term is

subtracted off to obtain the bound of interest.

Applied researchers have sometimes omitted the first constraint, which weakens the bound.

[Chen et al., 2024] isolate a potentially problematic aspect of monotone decreasing divergences

because they can fail to detect certain limiting forms of deviations from baseline probabilities.

[exp(ηs)
es(X0)

es(X1)
] = (R∞

1 )−1

Y1

−E (logS1 + logS0)

logN s
1 = logS1 − logS0 + [ηs + log es(X1) − log es(X0)],

E(
S1

S0
R∞

1 ) = 1

E(
S1

S0
Y1) = Q0.
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Remark 6.4

Remark 6.5
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[1]

[2]

[Chen et al., 2020] propose extensions of the one-period divergence measures to multi-period

counterparts that remain tractable and enlightening. Their method for accommodating

conditioning information for bounding such divergences has a direct extension to the problem

considered here.

If the martingale component of the stochastic discount factor is identically one, then a testable

implication is:

This third restriction is violated by recursive utility models of investor preference that we will analyze in

a subsequent chapter. See discussions in [Alvarez and Jermann, 2005], [Hansen and Scheinkman,

2009], and [Borovička et al., 2016].

Our presentation is consistent with the formal analysis in [Ross, 2015], although Ross’s derives and

motivates his result somewhat differently.

E [(R∞
t )−1Y1 ∣ X0] = Q0.

Remark 6.6
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