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8.1. Introduction
Likelihood functions are probability distributions conditioned on parameters; prior probability distributions

describe a decision maker’s subjective belief about those parameters.[2] By distinguishing roles played by

likelihood functions and subjective priors over their parameters, this chapter brings some recent contributions

to decision theory into contact with statistics and econometrics in ways that can address practical

econometric concerns about model misspecifications and choices of prior probabilities.

We combine ideas from control theories that construct decision rules that are robust to a class of model

misspecifications with axiomatic decision theories invented by economic theorists. Such decision theories

originated with axiomatic formulations by von Neumann and Morgenstern, Savage, and Wald ([Wald, 1947,

Wald, 1949, Wald, 1950], [Savage, 1954]). Ellsberg ([Ellsberg, 1961]) pointed out that Savage’s framework

Pioneers in Uncertainty and Decision Theory. Frank Knight, Abraham Wald, abd Jimmie Savage.

“Uncertainty must be taken in a sense radically distinct from the familiar notion of risk, from which it has

never been properly separated…. and there are far-reaching and crucial differences in the bearings of the

phenomena depending on which of the two is really present and operating.” [Knight, 1921]
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seems to include nothing that could be called “uncertainty” as distinct from “risk”. Theorists after Ellsberg

constructed coherent systems of axioms that embrace a notion of ambiguity aversion. However, most recent

axiomatic formulations of decision making under uncertainty in economics are not cast explicitly in terms of

likelihood functions and prior distributions over parameters.

This chapter reinterprets objects that appear in some of those axiomatic foundations of decision theories in

ways useful to an econometrician. We do this by showing how to use an axiomatic structure to express

ambiguity about a prior over a family of statistical models, on the one hand, along with concerns about

misspecifications of those models, on the other hand.

Although they proceeded differently than we do here, [Chamberlain, 2020], [Cerreia-Vioglio et al., 2013], and

[Denti and Pomatto, 2022] studied related issues. [Chamberlain, 2020] emphasized that likelihoods and

priors are both vulnerable to potential misspecifications. He focused on uncertainty about predictive

distributions constructed by integrating likelihoods with respect to priors. In contrast to Chamberlain, we

formulate a decision theory that distinguishes uncertainties about priors from uncertainties about likelihoods.

[Cerreia-Vioglio et al., 2013] (section 4.2) provided a rationalization of the smooth ambiguity preferences

proposed by [Klibanoff et al., 2005] that includes likelihoods and priors as components. [Denti and Pomatto,

2022] extended this approach by using an axiomatic revealed preference approach to deduce a

parameterization of a likelihood function. However, neither [Cerreia-Vioglio et al., 2013] nor [Denti and

Pomatto, 2022] sharply distinguished prior uncertainty from concerns about misspecifications of likelihood

functions. We want to do that. We formulate concerns about statistical model misspecifications as uncertainty

about likelihoods.

More specifically, we align definitions of statistical models, uncertainty, and ambiguity with ideas from

decision theories that build on [Anscombe and Aumann, 1963]’s way of representing subjective and objective

uncertainties. In particular, we connect our analysis to econometrics and robust control theory by using

Anscombe-Aumann states as parameters that index alternative statistical models of random variables that

affect outcomes that a decision maker cares about. By modifying aspects of [Gilboa et al., 2010], [Cerreia-

Vioglio et al., 2013], and [Denti and Pomatto, 2022], we show how to use variational preferences to represent

uncertainty about priors and also concerns about statistical model misspecifications.

Discrepancies between two probability distributions occur throughout our analysis. This fact opens possible

connections between our framework and some models in “behavioral” economics and finance that assume

that decision makers inside their models have expected utility preferences in which an agent’s subjective

probability – typically a predictive density – differs systematically from the predictive density that the model

user assumes governs the data.[3] Other “behavioral” models focus on putative differences among agents’

degrees of confidence in their views of the world. Our framework implies that the form taken by a “lack of

confidence” should depend on the probabilistic concept about which a decision maker is uncertain.

Preference structures that we describe in this chapter allow us to formalize different amounts of “confidence”

about details of specifications of particular statistical models, on one hand, and about subjective probabilities

to attach to alternative statistical models, on the other hand. Our representations of preferences provide ways
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to characterize degrees of confidence in terms of statistical discrepancies between alternative probability

distributions.[4]

8.2. Background motivation
We are sometimes told that we live in a “data rich” environment. Nevertheless, data are often not “rich” along

all of the dimensions that we care about for decision making. Furthermore, data don’t “speak for themselves”.

To get them to say something, we have to posit a statistical model. For all the hype, the types of statistical

learning we actually do is infer parameters of a family of statistical models. Doubts about what existing

evidence has taught them about some important dimensions has led some scientists to think about what they

call “deep uncertainties.” For example, in a recent paper we read:

In this chapter, we formulate “deep uncertainties” as lack of confidence in how we represent probabilities of

events and outcomes that are pertinent for designing tax, benefit, and regulatory policies. We do this by

confessing ambiguities about probabilities, though necessarily in a restrained way.

In our experience as macroeconomists, model uncertainties are not taken seriously enough, too often being

dismissed as being of “second-order”, whatever that means in various contexts. In policy-making settings,

there is a sometimes misplaced wisdom that acknowledging uncertainty should tilt decisions toward passivity.

But in other times and places, one senses that the model uncertainty emboldens pretense:

As economists, part of our job is to delineate tradeoffs. Explicit incorporation of precise notions of uncertainty

allows us to explore two tradeoffs pertinent to decision making. Difficult tradeoffs emerge when we consider

implications from multiple statistical models and alternative parameter configurations. Thus, when making

decisions, how much weight should we assign to best “guesses” in the face of our model specification doubts,

versus possibly bad outcomes that our doubts unleash? Focusing exclusively on best guesses can lead us

naively to ignore adverse possibilities worth considering. Focusing exclusively on worrisome bad outcomes

can lead to extreme policies that perform poorly in more normal outcomes. Such considerations induce us to

formalize tradeoffs in terms of explicit expressions of aversions to uncertainty.

“The economic consequences of many of the complex risks associated with climate change cannot,

however, currently be quantified. … these unquantified, poorly understood and often deeply uncertain

risks can and should be included in economic evaluations and decision-making processes.” [Rising et al.,

2022]

“Even if true scientists should recognize the limits of studying human behavior, as long as the public has

expectations, there will be people who pretend or believe that they can do more to meet popular

demand than what is really in their power.” [Hayek, 1989]
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There are also intertemporal tradeoffs: should we act now, or should we wait until we have learned more?

While waiting is tempting, it can also be so much more costly that it becomes prudent to take at least some

actions now even though we anticipate knowing more later.

8.2.1. Aims

In this chapter we allow for uncertainties that include

risks: unknown outcomes with known probabilities;

ambiguities: unknown weights to assign to alternative probability models;

misspecifications: unknown ways in which a model provides flawed probabilities;

We will focus on formulations that are tractable and enlightening.

8.3. Decision theory overview
Decision theory under uncertainty provides alternative axiomatic formulations of “rationality.” As there are

multiple axiomatic formulations of decision making under uncertainty, it is perhaps best to replace the term

“rational” with “prudent.” While these axiomatic formulations are of intellectual and substantive interest, in this

chapter we will focus on the implied representations. This approach remains interesting because we have

sympathy for Savage’s own perspective on his elegant axiomatic formulation:

8.3.1. Approach

In this chapter we will exploit modifications of Savage-style axiomatic formulations from decision theory under

uncertainty, to investigate notions of uncertainty beyond risk. The overall aim is to make contact with applied

challenges in economics and other disciplines. We will start with the basics of statistical decision theory and

then proceed to explore extensions that distinguish concerns about potential misspecifications of likelihoods

from concerns about the misspecification of priors. This opens the door to better ways for conducting

uncertainty quantification for dynamic, stochastic economic models used for private sector planning and

governmental policy assessment. It is achieved by providing tractable and revealing methods for exploring

sensitivity to subjective uncertainties, including potential model misspecification and ambiguity across

models. This will allow us to systematically:

assess the impact of uncertainty on prudent decision or policy outcomes;

Indeed the axioms have served their only function in justifying the existential parts of Theorems 1 and 3;

in further exploitation of the theory, …, the axioms themselves can end, in my experience, and should be

forgotten.” [Savage, 1952]
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isolate the forms of uncertainty that are most consequential for these outcomes.

To make the methods tractable and revealing we will utilize tools from probability and statistics to limit the

type and amount of uncertainty that is entertained. As inputs, the resulting representations of objectives for

decision making will require a specification of aversion to or dislike of uncertainty about probabilities over

future events.

8.3.2. Anscombe-Aumann (AA)
[Anscombe and Aumann, 1963] provided a different way to justify Savage’s representation of decision making

in the presence of subjective uncertainty. They feature prominently the distinction between a “horse race” and

a “roulette wheel”. They rationalize preferences over acts, where an act maps states into lotteries over prizes.

The latter is the counterpart to a roulette wheel. Probability assignments over states then become the

subjective input and the counterpart to the “horse race.”

[Anscombe and Aumann, 1963] used this formulation to extend the von Neumann-Morgenstern expected

utility with known probabilities to decisions problems where subjective probabilities also play a central role as

in Savage’s approach. While [Anscombe and Aumann, 1963] provides an alternative derivation of subjective

expected utility, many subsequent contributions used the Anscombe-Aumann framework to extend the

analysis to incorporate forms of ambiguity aversion. Prominent examples include [Gilboa and Schmeidler,

1989] and [Maccheroni et al., 2006]. In what follows we provide a statistical slant to such analyses.

8.3.3. Basic setup
Consider a parameterized model of a random vector with realization :

where

 and  is a parameter space, and  is the space of possible realizations of . We refer to  as a

likelihood and the probability implied by each  as a “structured” probability model.

Denote by  a prior distribution over  We will sometimes have reason to focus on a particular prior,  that

we will call a baseline prior. We denote a prize rule by  which maps  into prizes. We define a decision rule,

 that can condition on observations or signals. To elaborate further, partition  where the decision

rule can depend on  and the prize rule on the entire  vector. A probability distribution over the ’s reflects

x

ℓ(x ∣ θ)dτ(x)

∫
X

ℓ(x ∣ θ)dτ(x) = 1,

θ ∈ Θ Θ X x ℓ

θ

π Θ. π

γ X

δ, x = (w, z)

z, x w
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random outcomes realized after a decision has been made. For instance, in an intertemporal context,  may

reflect future shocks. Thus decisions may have further repercussions for prizes beyond :

Since the decision rule can depend on  , ex post learning is entertained. Decision rules are restricted to be in

a set  and imply restrictions for prize rules:

The preferences over prize rules imply a ranking over decision rules, the ’s, in . While we are featuring the

impact of a decision rule on a prize rule, we may extend the analysis to allow  to influence  as happens when

we entertain experimentation.

Risk is assessed using expected utility with a utility function . We compute the expected utility for prize rules

as a function of  as:

Following a language from statistical decision theory, we call  the risk function for a given prize rule

when viewed as a function of [5]

We allow the utility function to depend on the unknown parameter  as is common in statistical decision

problems. Arguably, such a formulation is a short hand for a more primitive specification in which in a dynamic

setup the parameter has ramifications for a future prize and hence shows up in a value function formulation.

8.3.4. A simple statistical application
As an illustration, we consider a model selection problem. Suppose  and that the decision

maker can use the entire underlying random vector. Thus, we make no distinction between  and  and no

distinctions between  and .

The decision rule,  is a mapping from  to  where  means that the decision maker

selects model  and  means that the decision maker selects model 

We allow for intermediate values between zero and one, which can be interpreted as randomization. These

intermediate choices will end up not being of particular interest for this example.

The utility function for assessing risk is:

w

z

γδ(x) = Ψ[δ(z),x].

z

Δ

Γ(Δ)
def
= {γδ : δ ∈ Δ}.

δ Δ

δ ℓ

U

θ

U(γ ∣ θ) = ∫
X

U [γ(x), θ]ℓ(x ∣ θ)dτ(x).
–

U(γ ∣ θ)
–

θ.

θ,

Θ = {θ1, θ2},

γ δ

x z

δ = γ Z [0, 1] δ(z) = 1

θ1 δ(z) = 0 θ2.



where  and  are positive utility parameters.

A class of decision rules, called threshold rules, will be of particular interest. Partition  into two sets:

where the intersection of  and  is empty. A threshold rule has the form:

For a threshold rule, the conditional expected utility is

Suppose that the utility weights  and  are both one. Under this threshold decision rule,  is

the probability of making a mistake when model  generates the data, and  is the probability

of making a mistake if model  generates the data. In statistics, the first of these is called a Type I error, and

the second a Type II error, assuming we consider  to be the “null model” and  to be the “alternative

model.” The utility weights determine the relative importance, to the decision maker, of making a correct

identification of the model.

8.4. Subjective expected utility
Order preferences over  and hence 

for a specific  This representation is supported by Savage and Anscombe-Aumann axioms, but imposes full

confidence with no potential misspecification of the priors or the likelihood.

We use these preference for a decision problem where prize rules are restricted to be in the set :

U(δ, θ1) = υ1δ

U(δ, θ2) = υ2(1 − δ)

υ1, υ2

Z

Z = Z1 ∪ Z2,

Z1 Z2

δ(z) = {
1  if z ∈ Z1

0  if z ∈ Z2.

U(γ ∣ θ1) = υ1 ∫
Z1

ℓ(z ∣ θ1)dτ(z)

U(γ ∣ θ2) = υ2 ∫
Z2

ℓ(z ∣ θ2)dτ(z).

–

–

υ1 υ2 1 − U(γ ∣ θ1)
–

θ1 1 − U(γ ∣ θ2)
–

θ2

θ1 θ2

γ δ

∫
Θ

[∫
X

U [γ(x), θ]ℓ(x|θ)dτ(x)]dπ(θ) = ∫
Θ

U(γ ∣ θ)dπ(θ)
–

π.

Γ(Δ)

Problem 11.1



(8.1)

Recall that partitioning of  where the decision rule can only depend on  and the prize rule on the

entire  vector. Factor  and  as:

(8.2)

These factorizations in (8.2) allow us to write the objective as:

To solve problem (8.1), it is convenient to exchange the orders of integration in the objective:

Notice that even if the utility function  does not depend on , this dependence may emerge after we

integrate over  because of the dependence of  on the unknown parameter.

As  only depends on  and the objective is additively separable in , we may equivalently solve a conditional

problem: using the objective:

for each value of  provided that the restrictions imposed on  by the construction of the set of decision rules

 are separable in . That is, provided that we can write:

(8.3)

for given constraint sets  we may solve

(8.4)

max
γ∈Γ(Δ)

∫
Θ

(∫
X

U [γ(x), θ]ℓ(x|θ)dτ(x))dπ(θ).

x = (w, z) z

x ℓ(⋅ ∣ θ) τ

dτ(x) = dτ2(w)dτ1(z)

ℓ(x ∣ θ) = ℓ2(w ∣ z, θ)ℓ1(z ∣ θ)

∫
Θ

[∫
Z

(∫
W

U [γ(x), θ]ℓ2(w ∣ z, θ)dτ2(w))ℓ1(z ∣ θ)dτ1(z)]dπ(θ).

∫
Z

[∫
Θ

(∫
W

U [γ(x), θ]ℓ2(w ∣ z, θ)dτ2(w))ℓ1(z ∣ θ)dπ(θ)]dτ1(z)

U θ

W ℓ2(⋅ ∣ θ)

δ z z

Ũ [δ(z)]
def
= ∫

Θ

(∫
W

U (Ψ[δ(z),w, z], θ)ℓ2(w ∣ z, θ)dτ2(w))ℓ1(z ∣ θ)dπ(θ)

z δ

Δ z

Δ = {δ : δ(z) ∈ Δ(z) for all z ∈ Z}

Δ(z),

max
δ(z)∈Δ(z)

Ũ [δ(z)]

Problem 11.2



Finally, notice that

is the Bayesian posterior distribution for  Equivalently, we may solve the conditional Bayesian problem:

(8.5)

since in forming the objective of conditional problem, (8.5), we divided the objective for the conditional

problem, (8.4) by a function of  alone.

For illustration purposes, consider the example given in Section A simple statistical application. In this

example,  and there is no  contribution. Impose prior probabilities,  and  on

the two models. Compute the Bayesian posterior probabilities for each value of 

Consider the conditional problem. If the decision maker chooses model one, then the conditional expected

utility is  and similarly for choosing model two. Thus the Bayesian decision maker computes:

and chooses a model in accordance to this maximization. This maximization is equivalent to

expressed in terms of the prior, likelihood, and utility contributions. Taking logarithms and rearranging, we see

that model  is selected if

(8.6)

If the right side of this inequality is zero, say because prior probabilities are the same across models and utility

weights are also the same, then the decision rule says to maximize the log likelihood. More generally, both

dπ̄(θ ∣ z)
def
= [

ℓ1(z ∣ θ)

∫
Θ

ℓ1(z ∣ θ)dπ(θ)
]dπ(θ)

θ.

max
δ(z)∈Δ(z)

∫
Θ

(∫
W

U [Ψ(δ(z),w, z), θ]ℓ2(w ∣ z, θ)dτ2(w))dπ̄(θ ∣ z),

z

x = z w π(θ1), π(θ2) = 1 − π(θ1)

θ,

π̄(θ1 ∣ z) =
ℓ(z ∣ θ1)π(θ1)

ℓ(z ∣ θ1)π(θ1) + ℓ(z ∣ θ2)π(θ2)

π̄(θ2 ∣ z) =
ℓ(z ∣ θ2)π(θ2)

ℓ(z ∣ θ1)π(θ1) + ℓ(z ∣ θ2)π(θ2)

υ1π̄(θ1 ∣ z)

max {υ1π̄(θ1 ∣ z), υ2π̄(θ2 ∣ z)}

max {υ1π(θ1)ℓ(z ∣ θ1), υ2π(θ2)ℓ(z ∣ θ2)}

θ1

log ℓ(z ∣ θ1) − log ℓ(z ∣ θ2) ≥ log υ2 − log υ1 + logπ(θ2) − logπ(θ1)

Problem 11.3



prior weights and utility weights come into play.

Notice that this decision rule is a threshold rule where we use the posterior probabilities to partition the 

space. The subset  contains all  such that inequality (8.6) is satisfied with a weak inequality. We arbitrarily

include the indifference values in .

The Bayesian solution to the decision problem is posed assuming full confidence in a subjective prior

distribution. In many problems, including ones with multiple sources of uncertainty, such confidence may well

not be warranted. Such a concern might well have been the motivation behind Savage’s remark:

Personal communication from L. J. Savage to Karl Popper in 1957

8.5. An extreme response
Suppose we go to the other extreme and avoid imposing a prior altogether. Compare two prize rules,  and

, by computing the conditional (on ) expected utilities,  and  for each . Then  is

preferred to  if the conditional expected utility of the former exceeds that of the latter for all . This,

however, only implies a partial ordering among prize rules. Many such rules cannot be ranked. This partial

ordering gives rise to a construct called admissibility, where an admissible  cannot be dominated in

the sense of this partial order.

8.5.1. Constructing admissible decision rules

One way to construct an admissible decision rule is to impose a prior and solve the resulting Bayesian

decision problem. We give two situations in which this result necessarily applies, but there are other settings

where this result is known to hold.

If an ex ante Bayesian decision problem, (8.1), has a unique solution (except possibly on a set that

has measure zero under ) , then this Bayesian solution is admissible.

Proof. Let  be a decision rule that weakly dominates a Bayesian decision rule, , in the sense that

Z

Z1 z

Z1

… if I knew of any good way to make a mathematical model of these phenomena [vagueness and

indecision], I would adopt it, but I despair of finding one. One of the consequences of vagueness is that

we are able to elicit precise probabilities by self-interrogation in some situations but not in others.

γ1

γ2 θ U [γ1, θ]
–

U [γ2, θ]
–

θ ∈ Θ γ2

γ1 θ ∈ Θ

δ ∈ Δ

τ2

~
δ δ

Proposition 8.1



for all  The  must also solve the ex ante Bayesian decision problem. Since the solution to the ex

ante decision problem is unique, .

Suppose  has a finite number of elements. If a prior distribution  assigns positive probability to

each element of  then a decision rule that solves the Bayesian decision problem (8.1) is

admissible.

Proof. Let  be a decision rule that weakly dominates a Bayesian decision rule, , in the sense that

(8.7)

for  Suppose that the prior,  used in constructing the decision rule,  assigns strictly positive

probability to each value of . Use this prior to form expectations of both sides of inequality (8.7),

But this latter inequality must hold with equality. Since each element of  has strictly positive positive

prior probability, inequality (8.7) must also hold with equality. Therefore,  must be admissible.

While we are primarily interested in the use of alternative subjective priors as a way to construct

admissible decision rules, sufficient conditions have been derived under which we can find priors

that give Bayesian justifications for all admissible decision rules. Such results come under the

heading of Complete class theorems. See, for instance, [LeCam, 1955], [Ferguson, 1967], and

[Brown, 1981].

8.5.2. A simple statistical application reconsidered

For illustration purposes, we again consider the model selection example. Consider a threshold decision rule

of the form:

U(δ ∣ θ) ≤ U(
~
δ ∣ θ)

––

θ ∈ Θ.
~
δ

~
δ = δ

Θ dπ

Θ,

~
δ δ

U(δ ∣ θ) ≤ U(
~
δ ∣ θ)

––

θ ∈ Θ. dπ, δ,

θ ∈ Θ

∫
Θ

U(δ ∣ θ)dπ(θ) ≤ ∫
Θ

U(
~
δ ∣ θ)dπ(θ)

––

Θ

δ

Proposition 8.2

Remark 8.1
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(8.8)

From formula (8.6), provided that we choose the prior probabilities to satisfy:

(8.9)

threshold rule (8.8) solves a Bayesian decision problem. Thus the implicit prior for the threshold rule is:

To provide a complementary analysis, form:

and use the probability measure for  under model  to induce a corresponding probability measure for the

scalar . Suppose this probability measure has a density  relative to the Lebesgue measure. Observe

that the counterpart density,  satisfies:

This follows from the construction of  because the ratio of densities is equal to  For a decision rule,

 with threshold  compute the two risks:

where we include the multiplication by  in the second row to change the computation using the

model  probabilities.

Consider the two-dimensional curve of model risks,  parametrized by the threshold . The

slope of this curve at point corresponding to  is the ratio of the two derivatives with with respect to :

δr(z) = {
1, log ℓ(z ∣ θ1) − log ℓ(z ∣ θ2) ≥ r

0, log ℓ(z ∣ θ1) − log ℓ(z ∣ θ2) < r

logπ(θ2) − logπ(θ1) = r + log υ1 − log υ2,

π(θ1) =
1

1 + exp (r)( υ1

υ2
)

π(θ2) =
exp (r)( υ1

υ2
)

1 + exp (r)( υ1

υ2
)

.

y = log ℓ(z ∣ θ1) − log ℓ(z ∣ θ2),

z θ1

y f(⋅ ∣ θ1)

f(⋅ ∣ θ2)

f(y ∣ θ2) = exp(−y)f(y ∣ θ1).

y exp(−y).

δr, r,

u1(r)
def
= U(δr ∣ θ1) = υ1 ∫

+∞

r

f(y ∣ θ1)dy

u2(r)
def
= U(δr ∣ θ2) = υ2 ∫

r

−∞

exp(−y)f(y ∣ θ1)dy

––

––

exp(−y)

θ2

(u1(r),u2(r)),––r

r r



We compute the second-order derivative of the curve as

and hence the curve is concave.

Using prior probabilities to weight the two risks gives:

Maximizing this objective by choice of a threshold  gives the first-order conditions:

implying that

As expected, this agrees with (8.9). Thus the negative of the slope of the curve reveals the ratio of

probabilities that would justify a Bayesian solution given a threshold .

We illustrate this computation in Figures Fig. 8.1 and Fig. 8.2. Both figures report the upper boundary of the

set of feasible risks for alternative decision rules. The risks along the boundary are attainable with admissible

decision rules. The utility weights,  and  are both set to one in Figure Fig. 8.1, and  is to  in Figure Fig.

8.2. Thus ,the upper envelop of risks is flatter in Figure Fig. 8.2 than in Figure Fig. 8.1. The flatter curve implies

prior probabilities that are close to being the same.

du2(r)/dr

du1(r)/dr
= −(

υ2

υ1
) exp(−r)

–

–

d
dr

du2(r)/dr

du1(r)/dr

d
dr
u1(r)

= −
υ2 exp(−r)

(υ1)2f(r)
< 0,

–

–

–

π(θ1)u1(r) + π(θ2)u2(r)––

r

−π(θ1)υ1f(r) + π(θ2)υ2 exp(−r)f(r) = 0,

(
υ2

υ1
) exp(−r) =

π(θ1)

π(θ2)

r

υ1 υ2 υ2 .5



Fig. 8.1 The blue curve gives the upper boundary of the feasible set of risks. The utility function parameters

are given by  When , the implied prior is given by  and

 as implied by the slope of the tangent line.

υ1 = υ2 = 1. ur(θ1) = .9–π(θ1) = .68

π(θ2) = .32,
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Fig. 8.2 The blue curve gives the upper boundary of the feasible set of risks. The utility function parameters

are given by  When , the implied prior is given by  and

 as implied by the slope of the tangent line.

8.6. Divergences
To investigate prior sensitivity, we seek a convenient way to represent a family of alternative priors. We start

with a baseline prior  Consider alternative priors of the form  for  satisfying:

Call this collection . Thus the ’s in  are expressed as densities relative to a baseline prior distribution.

Introduce a convex function  to construct a divergence between a probability represented with  and

the baseline probability. Restrict  to be a convex function with  and  (normalization). As

a measure of divergence, form

υ1 = 1, υ2 = .5. ur(θ1) = .9–π(θ1) = .51

π(θ2) = .49,

dπ(θ). dπ(θ) = n(θ)dπ(θ) n ≥ 0

∫
Θ

n(θ)dπ(θ) = 1.

N n N

ϕ n ≠ 1

ϕ ϕ(1) = 0 ϕ′′(1) = 1

∫
Θ

ϕ[n(θ)]dπ(θ) ≥ 0.
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Of course, many such divergences could be built. Three interesting ones use the convex functions:

The divergence implied from the third choice is commonly used in applied probability theory and information

theory. It is called Kullback-Leibler divergence or relative entropy.

8.7. Robust Bayesian preferences and ambiguity
aversion
Since the Bayesian ranking of prize rules depends on the prior distribution, we now explore how to proceed if

the decision maker does not have full confidence in a specific prior. This leads naturally to an investigation of

prior sensitivity. A decision or policy problem provides us with an answer to the question: sensitive to what.

One way to investigate prior sensitivity is to approach it from the perspective of robustness. A robust decision

rule then becomes one that performs well under alternative priors of interest. To obtain robustness

guarantees, we are naturally led to minimization, providing us with a lower bound on performance. As we will

see, prior robustness has very close ties to preferences that display ambiguity aversion. Just as risk aversion

induces a form of caution in the presence of uncertain outcomes, ambiguity aversion induces a caution

because of the lack of confidence in a single prior.

We explore prior robustness by using a version of variational preferences( [Maccheroni et al., 2006])

for  and a convex function  such that  and  The penalty parameter 

reflects the degree of ambiguity aversion. An arbitrarily large value of  approximates subjective expected

utility. Relatively small values of , inducing relatively large degrees of ambiguity aversion.

Axiomatic developments of decision theory in the presence of risk typically do not produce the

functional form for the utility function. That requires additional considerations. An analogous

observation applies to the axiomatic development of variational preferences by [Maccheroni et al.,

2006]. Their axioms do not inform as to the how to capture the cost associated with search over

alternative priors.

ϕ(n) = − logn

ϕ(n) = n2−1
2

ϕ(n) = n logn

min
n∈N

∫
Θ

(∫
X

U [γ(x), θ]ℓ(x|θ)dτ(x))n(θ)dπ(θ) + ξ1 ∫
Θ

ϕ1[n(θ)]dπ(θ)

ξ1 > 0 ϕ1 ϕ1(1) = 0 ϕ1
′′(1) = 1. ξ1

ξ1

ξ1

Remark 8.2

Remark 8.3
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The variational preferences of [Maccheroni et al., 2006] also include preferences with a constraint

on priors:

The more restrictive axiomatic formulation of [Gilboa and Schmeidler, 1989] supports a

representation with a constraint on the set of priors. In this case we use standard Karush-Kuhn-

Tucker multipliers to model the preference relation:

8.7.1. Relative entropy divergence

Suppose we use  to construct our divergence measure. Recall the construction of the risk function

Solve the Lagrangian:

This problem separates in terms of the choice of , and can be solved  by . The first-order conditions

are:

Solving for :

Thus

∫
Θ

ϕ1[n(θ)]dπ(θ) ≤ κ.

max
ξ1≥0

min
n∈N

∫
Θ

(∫
X

U [γ(x), θ]ℓ(x|θ)dτ(x)))n(θ)dπ(θ) + ξ1 [∫
Θ

ϕ1[n(θ)]dπ(θ) − κ].

n logn

U(γ ∣ θ) = ∫
X

U [γ(x), θ]ℓ(x ∣ θ)dτ(x)
–

min
n
∫

Θ

U(γ ∣ θ)n(θ)dπ(θ) + ξ1 ∫
Θ

logn(θ)n(θ)dπ(θ) + λ∫
Θ

[n(θ) − 1]dπ(θ)
–

n(θ) θ θ

U(γ ∣ θ) + ξ1 + ξ1 logn(θ) + λ = 0.
–

logn(θ)

logn(θ) = −
1

ξ1
U(γ ∣ θ) − 1 −

λ

ξ1

–

file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id350
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id350
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id350
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id191


Imposing the integral constraint on  gives the solution:

provided that the denominator is finite. This solution induces what is known as exponential tilting. The

baseline probabilities are tilted towards lower values of . Plugging back into the minimization problem

gives:

(8.10)

This minimized objective is known to depict be a special case of smooth ambiguity preferences initially

proposed by [Klibanoff et al., 2005], although these authors provide a different motivation for their ambiguity

adjustment. The connection we articulate opens the door to more direct link to challenges familiar to

statisticians and econometricians wrestling with how to analyze and interpret data. Indeed [Cerreia-Vioglio et

al., 2013] also adopt a robust statistics perspective when exploring smooth ambiguity aversion preferences.

They use constructs and distinctions of the type we explored in Chapter 1:Laws of Large Numbers and

Stochastic Processes in characterizing what is and is not learnable from the Law of Large Numbers.

8.7.2. Robust Bayesian decision problem

We extend Decision Problem (8.1) to include prior robustness by introduce a special case of a two-player,

zero-sum game:

(8.11)

Notice that in this formulation, the minimization depends on the choice of the decision rule . This is to be

expected as the prior with the most adverse consequences for the expected utility should plausibly depend

on the potential course of action under consideration.

n(θ) ∝ exp [−
1

ξ1
U(γ ∣ θ)].
–

n

n∗(θ) =
exp [− 1

ξ1
U(γ ∣ θ)]

∫
Θ

exp [− 1
ξ1
U(γ ∣ θ)]dπ(θ)

,

–

–

U(γ ∣ θ)
–

−ξ1 log∫
Θ

exp [−
1

ξ1
U(γ ∣ θ)]dπ(θ).
–

max
γ∈Γ(Δ)

min
n∈N

∫
Θ

(∫
X

U [γ(x), θ]ℓ(x|θ)dτ(x))n(θ)dπ(θ) + ξ1 ∫
Θ

ϕ1[n(θ)]dπ(θ).

δ

Game 11.4
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For a variety of reasons, it is of interest to investigate a related problem in which the order of extremization is

exchanged:

(8.12)

Notice that for a given , the inner problem is essentially just a version of the Bayesian problem (8.1). The

penalty term

is additively separable and does not depend on . In this formulation, we solve a Bayesian problem for each

possible prior, and then minimize over the priors taking account of the penalty term. Provided that the outer

minimization problem over  has a solution,  the implied decision rule,  solves a Bayesian decision

problem. As we know from section Constructing admissible decision rules, this opens the door to verifying

admissibility.

The two decision games: (8.11) and (8.12) essentially have the same solution under a Minimax Theorem. That

is the implied value functions are the same and  from Game (8.12) solves Game (8.11) and gives the

robust decision rule under prior ambiguity. This result holds under a variety of sufficient conditions. Notice

that the objective for Game (8.11) is convex in . A well known result due to [Fan, 1952] verifies the Minimax

Theorem when the objective satisfies a generalization of concavity with a convex constraint set . While we

cannot always justify this exchange, there are other sufficient conditions that are also applicable.

A robust Bayesian advocate along the lines of [Good, 1952], view the solution, say  from Game (8.12) as a

choice of a prior to be evaluated subjectively. It is often referred as a “worst-case prior’’, but an object that is

of interest in its own right. For an application of this idea in economics see [Chamberlain, 2000].[6] Typically,

 can be computed as part of an algorithm for finding a robust decision rule, and is arguably worth

serious inspection. While we could just view robustness considerations as a way to select a prior, the

(penalized) worst-case solutions can instead be viewed as a device to implement robustness. While they are

worthy of inspection, just as with the baseline prior probabilities, the worst-case probabilities are not intended

to be a specification of a fully confident input of subjective probabilities and are dependent on the utility

function and constraints imposed on the decision problem.

min
n∈N

max
γ∈Γ(Δ)

∫
Θ

(∫
X

U [γ(x), θ]ℓ(x|θ)dτ(x))n(θ)dπ(θ) + ξ1 ∫
Θ

ϕ1[n(θ)]dπ(θ).

n

ξ1 ∫
Θ

ϕ1[n(θ)]dπ(θ)

δ

n n∗, δn∗ ,

δn∗ ,

n

Δ

n∗,

n∗(θ)dπ(θ)

Game 11.5
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8.7.2.1. A simple statistical application reconsidered

We again use the model selection example to illustrate ambiguity aversion in the presence of a relative

entropy cost of a prior deviating from the baseline. Since the Minimax Thoerem applies, we focus our attention

on admissible decision rules parameterized by thresholds of the form (8.8). With this simplification, we use

formula (8.10) and solve the scalar maximization problem:

Two limiting cases are of interest. When , the objective collapses the subjective expected utility:

for  chosen so that the tangency condition

is satisfied.

When , the cost of deviating from the baseline prior is zero. As long as the baseline prior assigns

positive probability to both values of , the minimization for a given threshold  assigns probability one to

lowest risk with an objective:

Graphically, the objective for any point to the left of the 45 degree line from the origin equals the outcome of a

vertically downward movement to that same line. Analogously, the objective for any point to the right of the 45

degree line from the origin equals the outcome of a horizontally leftward movement to that same line. Thus

the maximizing threshold choice of  is obtained at the intersection of the 45 degree line and the boundary of

the risk set. Along the 45 degree line, the choice of prior is inconsequential because the two risks are the

same. Nevertheless, the “worst-case” prior is determined by slope of the risk curve at the intersection point.

Recall that we defined this prior after exchanging orders of extremization. Figures Fig. 8.3 and Fig. 8.4

illustrate this outcome for the two risk curves on display in Figures Fig. 8.1 and Fig. 8.2.

max
r

−ξ1 log(exp [−
1

ξ1
u1(r)]π(θ1) + exp [−

1

ξ1
u2(r)]π(θ2))––

ξ1 → ∞

u1(r)π(θ1) + u2(r)π(θ2)––

r

(
υ2

υ1
) exp(−r) =

π(θ1)

π(θ2)

ξ1 → 0

θ r

min{u1(r),u2(r)}––

r



Fig. 8.3 The blue curve gives the upper boundary of the feasible set of risks. The utility function parameters

are given by  The implied worst-case prior is given by  and  as

implied by the slope of the tangent line at the intersection with the 45 degree line from the origin.

υ1 = υ2 = 1. π(θ1) = .5 π(θ2) = .5,
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Fig. 8.4 The blue curve gives the upper boundary of the feasible set of risks. The utility function parameters

are given by  and  The implied worst-case prior is given by  and  as

implied by the slope of the tangent line at the intersection with the 45 degree line from the origin.

For positive values of  the implied worst-case priors are between the baseline  ( ) and the worst-

case without restricting the prior probabilities ( ). Observe that the worst-case priors depend on the

utility weights,  and . See Figures Fig. 8.5 and Fig. 8.6 as illustrations.

υ1 υ2 = .5. π(θ1) = .22 π(θ2) = .78,

ξ1, π ξ = ∞

ξ = 0

υ1 υ2
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Fig. 8.5 Minimizing prior probabilities for  as a function of  when the baseline prior probabilities are

 and  and the utility parameters are 

θ1 1/ξ1

π(θ1) = .68 π(θ2) = .32 υ1 = υ2 = 1.
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Fig. 8.6 Minimizing prior probabilities for  as a function of  when the baseline prior probabilities are

 and  and the utility parameters are  and 

The two-model example dramatically understates the potential value of ambiguity aversion as a way to study

prior sensitivity. In typical applied problems, the subjective probabilities are imposed on a much richer

collection of alternative models including families of models indexed by unknown parameters. In such

problems the outcome is more subtle since the minimization isolates dimensions along which prior sensitivity

has the most adverse impacts on the decision problem and perhaps most worthy of further consideration.

This can be especially important in problems where baseline priors are imposed “as a matter or convenience.”

8.8. Using ambiguity aversion to represent concerns
about model misspecification
Two prominent statisticians remarked on how model misspecification is pervasive:

θ1 1/ξ1

π(θ1) = .51 π(θ2) = .49 υ1 = 1 υ2 = .5.

“Since all models are wrong, the scientist must be alert to what is importantly wrong. It is inappropriate to

be concerned about mice when there are tigers abroad.” - Box (1976).
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Other scholars have made similar remarks. Robust control theorists have suggested one way to address this

challenge, an approach that we build on in the discussion that follows. Motivated by such sentiments,

[Cerreia-Vioglio et al., 2025] extend decision theory axioms to accommodate misspecification concerns.

8.8.1. Basic approach

To focus on the misspecification of specific model, we fix  but vary the likelihood function as a way to

investigate likelihood sensitivity. We then replace  with  satisfying:

and denote the set of all such  as .

Observe that  can be viewed as the ratio of two densities. Consider two alternative probability

densities (with respect to  for shock/signal probabilities:  and  and let:

where we assume  for . Then by construction:

and

We use density ratios to capture alternative models as inputs into divergence measures. Let  be a convex

function such that  and  (normalization). Instead of imposing the divergence over the

probabilities over the parameter space, to explore misspecification, impose it over the  space:

“… it does not seem helpful just to say that all models are wrong. The very word ‘model’ implies

simplification and idealization. The idea that complex physical, biological or sociological systems can be

exactly described by a few formulae is patently absurd. The construction of idealized representations

that capture important stable aspects of such systems is, however, a vital part of general scientific

analysis and statistical models, especially substantive ones …” - Cox (1995).

θ

ℓ mℓ

∫
X

m(x ∣ θ)ℓ(x ∣ θ)dτ(x) = 1,

m′s M

m(x ∣ θ)

dτ(x) ℓ(x ∣ θ)
~
ℓ(x ∣ θ)

m(x ∣ θ) =

~
ℓ(x ∣ θ)

ℓ(x ∣ θ)

ℓ(x ∣ θ) > 0 x ∈ X

m(x ∣ θ)ℓ(x ∣ θ) =
~
ℓ(x ∣ θ),

∫
X

m(x ∣ θ)ℓ(x ∣ θ)dτ(x) = ∫
X

~
ℓ(x ∣ θ)dτ(x) = 1.

ϕ2

ϕ2(1) = 0 ϕ2
′′(1) = 1

X
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We use this divergence to limit or constrain our search over alternative probability models. In this approach we

deliberately avoid imposing a prior distribution over the space of densities (with respect to .

Preferences for model robustness ranks alternative prize rules, , by solving:

(8.13)

for a penalty parameter  The parameter, , dictates the strength of the restraint in an exploration of

possible model misspecifications.

8.8.2. Relative entropy divergence
This approach to model misspecification has direct links to robust control theory in the case of relative

entropy divergence. Suppose that  (relative entropy). Then by imitating previous

computations, we find that the outcome of the minimization in (8.13) is

Robust control emerged from the study of optimization of dynamical systems. The use of the

relative entropy divergence showed up prominently in [Jacobson, 1973] and later in [Whittle, 1981],

[Petersen et al., 2000] and many other related papers as a response to the excessive simplicity of

assuming shocks to dynamical systems that were iid and mean zero with normal distributions.

[Hansen and Sargent, 1995] and [Hansen and Sargent, 2001] showed to how to reformulate the

insights from robust control theory to apply to dynamical economic systems with recursive

formulations and [Hansen et al., 1999] used this ideas in an initial empirical investigation.

When we use relative entropy as a measure of divergence, we have the ability to factor likelihoods in

convenient ways. Recall that partitioning of  where the decision rule can only depend on  and the

prize rule on the entire  vector. As in (8.2), factor  and  as:

Add to this a factorization of ,

∫
X

ϕ2 [m(x ∣ θ)]dτ(x).

dτ(x))

γ

min
m∈M

∫
X

(U [γ(x), θ]m(x ∣ θ) + ξ2ϕ2[m(x ∣ θ)])ℓ(x ∣ θ)dτ(x).

ξ2 > 0. ξ2

ϕ2(m) = m logm

−ξ2 log∫
X

exp [−(
1

ξ2
)U [γ(x), θ]]ℓ(x ∣ θ)dτ(x)

x = (w, z) z

x ℓ(⋅ ∣ θ) τ

dτ(x) = dτ2(w)dτ1(z)

ℓ(x ∣ θ) = ℓ2(w ∣ z, θ)ℓ1(z ∣ θ).

m(⋅ ∣ θ)

Remark 8.4
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(8.14)

Let  denote the set of  that satisfy the relevant integral constraint in (8.14), and similarly let

 be the set of  that satisfy the relevant integral constraint.

Using these factorizations, the relative entropy may be written as:

where the second term only features integration over  because  does not depend on  and 

integrates to one with respect to  for all . In particular,

(8.15)

Rewrite the expected utility function in (8.13) with an inner integral:

(8.16)

Notice that both the formulas (8.15) and (8.16) scale linearly in  and that the additional relative

entropy term depends only on . Thus we can use a conditional objective when solving for robust decision

rule :

(8.17)

m(x ∣ θ) = m2(w ∣ z, θ)m1(z ∣ θ)

∫
W

m2(w ∣ θ, z)ℓ2(w ∣ θ, z)dτ2(w) = 1

∫
Z

m1(z ∣ θ)ℓ1(z ∣ θ)dτ1(z) = 1

M1 m1(z ∣ θ) ≥ 0

M2 m2(w ∣ z, θ) ≥ 0

∫
Z

∫
W

log[m2(w ∣ z, θ)]m(x ∣ θ)ℓ(x ∣ θ)dτ(x)

+ ∫
Z

log[m1(z ∣ θ)]m1(z ∣ θ)ℓ1(z ∣ θ)dτ1(z)

z log[m1] w m2ℓ2

τ2 z

∫
Z

∫
W

log[m2(w ∣ z, θ)]m(x ∣ θ)ℓ(x ∣ θ)dτ(x)

= ∫
Z

[∫
W

log[m2(w ∣ z, θ)]m2(w ∣ z, θ)ℓ2(w ∣ z, θ)dτ2(w)]

× m1(z ∣ θ)ℓ1(z ∣ θ)dτ1(z).

∫
Z

[∫
W

U (Ψ [δ(z),w, z], θ)m2(w ∣ z, θ)ℓ2(w ∣ z, θ)dτ2(w)]

× m1(z ∣ θ)ℓ1(z ∣ θ)dτ1(z)

m1(z ∣ θ)

z

δ

max
δ(z)∈Δ(z)

min
m2∈M2

∫
W

U (Ψ [δ(z),w, z], θ)m2(w ∣ z, θ)ℓ2(w ∣ z, θ)dτ2(w)

+ ξ2 ∫
W

log[m2(w ∣ z, θ)]m2(w ∣ z, θ)ℓ2(w ∣ z, θ)dτ2(w)

Game 11.6



where constraint set  satisfies the separability constraint (8.3).

8.8.3. Robust prediction under misspecification

A decision rule is chosen to forecast

where the probability distribution over the ’s is a standard normal. The admissible forecast rules express  as

a function of the data . A prize rule gives the implied forecast error, . Take the utility

function to be:

We find the robust forecasting rule by solving Game (8.17). We first solve the inner minimization problem

which is given by:

To compute this objective, two exponentials contribute to this objective: one from the normal density for 

and the other from the decision maker objective scaled by: . Adding together the logarithms of these

two components:

where

Δ

f(w, z) = f1(z) + f2(z)w

w δ

z γ(x) = f(x) − δ(z)

−
1

2
γ(x)2 = −

1

2
[f(x) − δ(z)]2.

−ξ2 logE(exp [(
1

2ξ2
)[f1(z) + f2(z)w − δ(z)]2] ∣ z, θ).

w

−1/ξ2

(
1

2ξ2
)[f1(z) + f2(z)w − δ(z)]2 −

1

2
w2

=
1

2
[(

1

ξ2
)[f2(z)]2 − 1]w2 +

1

ξ2
f2(z)[f1(z) − δ(z)]w +

1

2ξ2
[f1(z) − δ(z)]2

= −
1

2
pr(w − m)2 +

1

2
pr(m)2 +

1

2ξ2
[f1(z) − δ(z)]2

= [−
1

2
pr(w − m)2 +

1

2
log pr] +

1

2

[f1(z) − δ(z)]2

ξ2 − [f2(z)]2
−

1

2
log pr

pr
def
= 1 − (

1

ξ2
)[f2(z)]2

m
def
=

f2(z)[f1(z) − δ(z)]

ξ2 − [f2(z)]2
.



The first term in the square brackets is the logarithm of a normal density with mean  and precision  except

for a constant term, one that is contributed by the standard normal density. This same normal distribution is

the “worst-case” distribution for forecasting rule . For the objective to be finite, we need that

Given this calculation, the outcome of the minimization problem can be rewritten as

Maximizing with respect to  implies that  with the resulting objective function given by:

where the inequality follows from the concavity of the  function.

Thus for this example the robust prediction is to set  equal to the conditional mean under the baseline

distribution. Robustness considerations only alter the final objective, and not the decision rule. This

calculation, however, relies heavily on the normal baseline distribution.

8.9. Robust Bayes with model misspecification
To relate to decision theory, think of a statistical model as implying a compound lottery. Use  as

a lottery conditioned on  and think  as a lottery over . Initially we thought of the first as a source of

“risk” and it gave rise to what statisticians call a risk function: the expected utility (or loss) conditioned on the

unknown parameter. In the Anscombe-Aumann metaphor, this is the “roulette wheel”. The distribution, ,

is subjective probability input and the “horse race” in the Anscombe-Aumann metaphor. The potential

misspecification of likelihoods adds skepticism of the risk contribution to the compound lottery. As

statisticians like Box and Cox observed, potential model misspecification arguably should be a pervasive

concern.

8.9.1. Approach one
Form a convex, compact constraint set of prior probabilities, . Represent preferences over  using:

m pr

δ(z)

ξ2 > [f2(z)]2

−(
ξ2

2
)

[f1(z) − δ(z)]2

ξ2 − [f2(z)]2
+

ξ2

2
log [1 − (

1

ξ2
)[f2(z)]2].

δ(z) δ(z) = f1(z)

−
ξ2

2
log [1 − (

1

ξ2
)[f2(z)]2] <

1

2
f2(z)2

log

δ(z)

ℓ(x ∣ θ)dτ(x)

θ dπ(θ) θ

dπ(θ)

N ⊂ No γ



8.9.2. Approach two

Represent preferences over  with:

Note that this approach uses a scaled version of a joint divergence over  as reflected in the term

The associated decision problem is:

(8.18)

In Section Robust prediction under misspecification we studied a prediction problem under

misspecification and established the conditional expectation under the base-line model is “robust.”

Now suppose there is parameter uncertainty in the sense that we have multiple specifications of the

pair  for . For starters, for each  the ex ante contribution to the

decision maker objective conditioned on a model is:

min
n∈No

min
m∈M

∫
Θ

(∫
X

U [γ(x), θ]m(x ∣ θ)ℓ(x ∣ θ)dτo(x))n(θ)dπ(θ)

+ ξ2 ∫
Θ

(∫
X

ϕ2[m(x ∣ θ)]ℓ(x ∣ θ)dτ(x))n(θ)dπ(θ)

γ

min
n∈N

min
m∈M

∫
Θ

(∫
X

U [γ(x), θ]m(x ∣ θ)ℓ(x ∣ θ)dτ(x))n(θ)dπ(θ)

+ ξ2 ∫
Θ

(∫
X

ϕ2[m(x ∣ θ)]ℓ(x ∣ θ)dτ(x))n(θ)dπ(θ)

+ ξ1 ∫
Θ

ϕ1[n(θ)]dπ(θ)

(m,n),

ξ2 ∫
Θ

(∫
X

ϕ2[m(x ∣ θ)]ℓ(x ∣ θ)dτ(x))n(θ)dπ(θ) + ξ1 ∫
Θ

ϕ1[n(θ)]dπ(θ)

max
γ∈Γ

min
n∈N

min
m∈M

∫
Θ

(∫
X

U [γ(x), θ]m(x ∣ θ)ℓ(x|θ)dτ(x))n(θ)dπo(θ)

+ ξ2 ∫
Θ

(∫
X

ϕ2[m(x ∣ θ)]ℓ(x ∣ θ)dτ(x))n(θ)dπ(θ)

+ ξ1 ∫
Θ

ϕ1[n(θ)]dπ(θ).

(f1(z ∣ θ), f2(z ∣ θ)) θ ∈ Θ θ

Game 11.6
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This objective adjusts for likelihood (or model) uncertainty but not prior uncertainty. The conditional

expectation uses the probability measure; . Since  is unknown, the decision rule,

 is infeasible to implement. Game (8.18) provides an algorithm for deducing the

robust decision rule with

Consider the special case in which  and use this common parameter to scale a relative entropy

divergence. Then the combined robustness cost to preferences is measured by  multiplying the relative

entropy of the joint distribution  relative to the baseline

 and given by:

Joint densities can be factored in alternative ways. In solving the robust decision problem, a different

factorization is more convenient. We focus on the case in which  and the decision rule,  depends

only on . Form three contributions of the joint density under the baseline:

Notice that the last term in the factorization depends only on  whereas the decision rule conditions on  We

now explore likelihood misspecification using  satisfying:

and posterior misspecification using  where

−ξ2 logE(exp [(
1

2ξ2
)[f1(z ∣ θ) + f2(z ∣ θ)w − δ(z)]2] ∣ θ).

ℓ(x ∣ θ)dτ(x). θ

δ(z) = f1(z ∣ θ)

max
δ∈Δ

min
n∈N

− ξ2 ∫
θ

logE(exp [(
1

2ξ2
)[f1(z ∣ θ) + f2(z ∣ θ)w − δ(z)]2] ∣ θ)n(θ)dπ(θ)

+ ξ1 ∫
Θ

log[n(θ)]n(θ)dπ(θ).

ξ1 = ξ2 = ξ,

ξ

m(x ∣ θ)n(θ)ℓ(x ∣ θ)dτ(x)dπ(θ)

ℓ(x ∣ θ)dτ(x)dπ(θ)

∫
Θ

(∫
X

log[m(x ∣ θ)]m(x ∣ θ)ℓ(x ∣ θ)dτ(x))n(θ)dπ(θ)

+∫
Θ

log[n(θ)]n(θ)dπ(θ)

x = (w, z) δ,

z

ℓ(x ∣ θ)dτ(x)dπ(θ) = ℓ2(w ∣ z, θ)ℓ1(z ∣ θ)dτ2(w)dτ1(z)dπ(θ)

= ℓ2(w ∣ z, θ)dτ2(w)dπ̄(θ ∣ z) [∫ ℓ1(z ∣ θ)dπ(θ)]dτ1(z).

z, z.

m2(w ∣ z, θ)

∫
W

m2(w ∣ z, θ)ℓ2(w ∣ z, θ)dτ2(w) = 1

n̄(θ ∣ z)



Additionally, we may alter the density

in an analogous way. While this latter exploration will have a nondegenerate outcome, it will have no impact on

the robustly optimal choice of . We may instead focus on a conditional counterpart to Game (8.18). The logic

behind this is entirely analogous to the argument we provided for the conditional version of the Bayesian

decision problem. The objective for conditional robust game with the same solution as the ex ante game is:

where constraint set  satisfies the separability constraint (8.3).

Thus the decision maker may proceed with constructing a robustly optimal decision rule taking as input the

posterior distribution defined on a parameter space  as computed by a statistician. The decision maker

explores the robustness of the posterior and density for the shocks conditioned on 

Finally, suppose that  does not depend on . This provides a further simplification. In this case, instead of

working with the factorization:

we use

where

∫
Θ

n̄(θ ∣ z)dπ̄(θ ∣ z) = 1.

∫
Θ

ℓ1(z ∣ θ)dπ(θ)

δ

max
δ(z)∈Δ(z)

min
n̄∈N

min
m2∈M2

∫
Θ

(∫
W

U (Ψ[δ(z),w, z], θ)m2(w ∣ z, θ)ℓ2(w ∣ z, θ)dτ2(w))n̄(θ ∣ z)dπ̄(θ ∣ z)

+ ξ∫
Θ

(∫
W

log[m2(w ∣ z, θ)]m2(w ∣ z, θ)ℓ2(w ∣ z, θ)dτ2(w))n̄(θ ∣ z)dπ̄(θ ∣ z)

+ ξ∫
Θ

log[n̄(θ ∣ z)]n̄(θ ∣ z)dπ̄(θ ∣ z)

–

Δ

Θ

(z, θ).

U θ

ℓ2(w ∣ z, θ)dτ2(w)dπ̄(θ ∣ z)

d~π(θ ∣ w, z)ℓ̄2(w ∣ z)dτ2(w)

Game 11.7



 is posterior distribution formed using data on both  and . Statisticians call  a predictive

density, in this case defined on the space  of shocks. With this alternative factorization, the minimization

step has no incentive to explore the misspecification of  and instead focuses exclusively on the

potential misspecification of the predictive density. This leads to the following construction of a robust

decision rule:

where constraint set  satisfies the separability constraint (8.3).

[Chamberlain, 2020] features this as a way to formulate preferences with uncertainty aversion.

In many applications it will be of considerable interest to allow for  in which case the simplifications

implied by some of these alternative factorizations will not be applicable. Indeed we find it valuable and

revealing to differentiate prior robustness and likelihood robustness.[7]

8.10. A dynamic decision problem under commitment
So far, we have studied static decision problems. This formulation can accommodate dynamic problems by

allowing for decision rules that depend on histories of data available up until the date of the decision. While

there is a “commitment” to these rules at the initial date, the rules themselves can depend on pertinent

information only revealed in the future. Recall from Chapter 1, that we use an ergodic decomposition to

identify a family of statistical models that are dynamic in nature along with probabilities across models that are

necessarily subjective as they are not revealed by data.

We illustrate how we can use the ideas in this “static” chapter to study a macro-investment problem with

parameter uncertainty.

Consider an example of a real investment problem with a single stochastic option for transferring goods from

one period to another. This problem could be a planner’s problem supporting a competitive equilibrium

outcome associated with a stochastic growth model with a single capital good. Introduce an exogenous

stochastic technology process that has an impact on the growth rate of capital as an example of what we call

a structured model. This stochastic technology process captures what a previous literature in macro-finance

has referred to as “long-run risk.” For instance, see [Bansal and Yaron, 2004].[8]

ℓ̄2(w ∣ z)
def
= ∫

Θ

ℓ2(w ∣ z, θ)dπ̄(θ ∣ z),

dπ̄(θ ∣ x) z w ℓ̄2(⋅ ∣ z)

W

d~π(θ ∣ x),

max
δ(z)∈Δ(z)

min
m̄2(w∣z)∈M2

∫
W

U (Ψ[δ(z),w, z])m̄2(w ∣ z)ℓ̄2(w ∣ z)dτ2(w)

+ ξ∫
W

log[m̄2(w ∣  z)]m̄2(w ∣ z)ℓ̄2(w ∣ z)dτ2(w)

–

Δ

ξ1 ≠ ξ2,

Game 11.8
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We extend this formulation by introducing an unknown parameter  used to index members of a

parameterized family of stochastic technology processes. The investor’s exploration of the entire family of

these processes reflects uncertainty among possible structured models. We also allow the investor to

entertain misspecification concerns over the parameterized models of the stochastic technology.

The exogenous (system) state vector  used to capture fluctuations in the technological opportunities has

realizations in  and the shock vector  has realizations in . We build the exogenous technology process

from the shocks in a parameter dependent way:

for a given initial condition .

For instance, in long-run risk modeling one component of  evolves as a first-order autoregression:

and another component is given by:

At each time  the investor observes past and current values  of the technology

process, but does not know  and does not directly observe the random shock vector .

Similarly, we consider a recursive representation of capital evolution given by:

where consumption  and investment  are constrained by an output relation:

for a pre-specified initial condition . The parameter  captures the productivity of capital. By design this

technology is homogeneous of degree one, which opens the door to stochastic growth as assumed in long-

run risk models.

Both  and  are constrained to be functions of  at each date  reflecting the observational constraint

that  is unknown to the investor in contrast to the history  of the technology process.[9] Preferences are

defined over consumption processes.

In this intertemporal setting, we consider an investor who solves a date  commitment problem. We pose this

as a static problem with consumptions and investments that depend on information as it gets realized.[10]

Form the risk function

θ

Zt

Z Wt W

Zt+1 = ψ (Zt,Wt+1, θ)

Z0

Zt

Z 1
t+1 = aθZ

1
t + b

1
θ ⋅ Wt+1

Z 2
t+1 = dθ + c

2
θ ⋅ Wt+1

t Z
t = {Z0,Z1, . . . ,Zt}

θ Wt

Kt+1 = Ktφ (It/Kt,Zt+1)

Ct ≥ 0 It ≥ 0

Ct + It = αKt

K0 α

It Ct Z
t t

θ Z
t

0



While the initial conditions  and  are known, the parameter vector  is not.

Include divergences, one for the parameter  and the other for the potential misspecification in the dynamics

as reflected in the shock distributions. The latter divergence will necessarily be dynamic in nature. We will use

positive random variables with unit expectations as a way to introduce changes in probabilities. Introduce a

positive martingale  for an altered probability. Let  and let  depend on state

variables and shocks up to period  along with . We use the random variable  to alter date  probabilities

conditioned on . The martingale property ensures that the altered probabilities implied by 

agree with the altered probabilities implied by  as an implication of the Law of Iterated Expectations. Let

the intertemporal divergence be:

as a measure of divergence and scale this by a penalty parameter, . We purposefully discount the relative

entropies in the same way as we discount the utility function and the computations condition on . We then

use a second divergence over the parameter vector  with a penalty parameter 

In this model, the investor or planner will actively learn about . The potential model misspecifications are not

linked over time and presumed not to be learnable. This model formulation presumes a preference for prior

and likelihood robustness. Unfortunately it does not have a convenient recursive formulation, making it

challenging to solve.

8.11. Recursive counterparts
We comment briefly on recursive counterparts. We have seen in the previous chapter how to perform

recursive learning and filtering. Positive martingales also have a convenient recursive structure. Write:

and  is initialized to be one.

By the Law of Iterated Expectations:

(1 − β)E [
∞

∑
t=0

βtυ(Ct) ∣ K0,Z0, θ].

K0 Z0 θ

θ

{Mt : t ≥ 0} M0 = 1 Mt

t θ Mt t

K0,Z0, θ Mt+1

Mt

(1 − β)E(
∞

∑
t=0

βtMt+1 logMt+1 ∣ K0,Z0, θ)

ξ2

θ

θ ξ1.

θ

logMt+1 =
t

∑
j=0

logMj+1 − logMj

M0

[ ( ) ]



(8.19)

Using this calculation and applying “summation-by-parts” (implemented by changing the order of

summation) gives:

In this formula,

is relative entropy pertinent to the transition probabilities between date  and . With this formula, we

form a discounted objective with date  contribution to confront potential likelihood misspecification:

where date  minimizing choice variable is  subject to  The ratio

 is used when computing the conditional expectation of next periods continuation value needed to

rank current period actions.

Our discounting of relative entropy has important consequences for exploration of potential

misspecification. From (8.19), it follows that the sequence

E (Mt+1 logMt+1 ∣ A0) = E [Mt+1 (
t

∑
j=0

logMj+1 − logMj) ∣ A0]

= E [
t

∑
j=0

Mj+1 (logMj+1 − logMj) ∣ A0]

= E [
t

∑
j=0

Mj(
Mj+1

Mj
) (logMj+1 − logMj) ∣ A0]

= E(
t

∑
j=0

MjE [(
Mj+1

Mj

) (logMj+1 − logMj) ∣ Aj] ∣ A0).

(1 − β)E(
∞

∑
t=0

βtMt+1 logMt+1 ∣ A0)

= (1 − β)
∞

∑
t=0

βtE(
t

∑
j=0

MjE [(
Mj+1

Mj

) (logMj+1 − logMj) ∣ Aj] ∣ A0)

=
∞

∑
t=0

βtE(MtE [(
Mt+1

Mt

) (logMt+1 − logMt) ∣ At] ∣ A0)

E [(
Mt+1

Mt
) (logMt+1 − logMt) ∣ At]

t t + 1

t

υ(Ct) + βξ2E [(
Mt+1

Mt

) (logMt+1 − logMt) ∣ At]

t Mt+1/Mt ≥ 0 E (Mt+1/Mt ∣ At) = 1.

Mt+1/Mt
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(8.20)

is increasing in . Observe that

(8.21)

gives an upper bound on

for each . This follows from monotonicity since

Taking limits as  gives the bound of interest.

If the discounted limit in (8.21) is finite, then the increasing sequence (8.20) has a finite limit. It

follows from a version of the Martingale Convergence Theorem (see [Barron, 1990]), that there is

limiting random nonnegative variable  such that  and

Observe that in the limiting case when  and the resulting relative entropy measure is finite, the

altered probability must imply Law of Large Numbers that agrees with the baseline probability. In this

sense only transient departures from the baseline probability are part of the misspecification

exploration. By including discounting in the manner described, we expand the family of alternative

probabilities in a substantively important way.

As an alternative calculation, consider a different discount factor scaling:

The limiting version of this measures allows for substantially larger set of alternative probabilities

and results in limiting characterization that is used in Large Deviation Theory as applied in dynamic

settings.

{E (Mt logMt ∣ A0) : t ≥ 0}

t

lim
β↑1

(1 − β)E(
∞

∑
t=0

βtMt+1 logMt+1 ∣ A0)

E (Ms+1 logMs+1 ∣ A0)

s ≥ 0

(1 − β)E(
∞

∑
t=0

βtMt+1 logMt+1 ∣ A0) ≥ (1 − β)
∞

∑
t=s

βtE (Mt+1 logMt+1 ∣ A0)

= βsE (Ms+1 logMs+1 ∣ A0)

β ↑ 1

M∞ E (M∞ ∣ A0) = 1

Mt = E (M∞ ∣ At).

β ↑ 1

(1 − β)
∞

∑
t=0

βtE(MtE [(
Mt+1

Mt

) (logMt+1 − logMt) ∣ At] ∣ A0)
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[1]

[2]

To explore potential misspecification [Chen et al., 2020] suggest other divergences with convenient

recursive structures. A discounted version of their proposal is

for a convex function  where this function equals one when evaluated at one and its second

derivative at one is normalized to be one.

8.12. Implications for uncertainty quantification
Uncertainty quantification is a challenge that pervades many scientific disciplines. The methods we describe

here open the door to answering the “so what” aspect of uncertainty measurement. So far, we have

deliberately explored examples that are low-dimensional to illustrate results. While these are pedagogically

revealing, the methods we described have all the more potency in problems with high-dimensional

uncertainty. By including minimization as part of the decision problem, we isolate the uncertainties that are of

most relevance to the decision or policy problem. This may open the door to incorporating sharper prior

inputs or to guiding future efforts aimed at providing additional evidence relevant to the decision-making

challenge. Furthermore, there may be multiple channels by which uncertainty can impact the decision

problem. As an example consider an economic analysis of climate change. There is uncertainty in i) the global

warming implications of increases in carbon emissions, ii) the impact of global warming on economic

opportunities, and iii) the prospects for the discovery of new, clean technologies that are economically viable.

A direct extension of the methods developed in this chapter provide a (non-additive) decomposition of the

channels of uncertainty. By modifying the penalization, uncertainty in each channel could be activated

separately in comparison to activating uncertainty in all channels simultaneously. Comparing outcomes of

such computations reveals which channel of uncertainty is most consequential to the structuring of a prudent

decision rule.[11]

This chapter draws heavily on a paper with the same title that was recently published in the Journal of

Applied Econometrics by Hansen and Sargent entitled Risk, ambiguity and misspecification.

The term likelihood can have multiple meanings. We shall use it to represent a probability density of

prize-relevant outcomes, which we refer to as repercussions, conditioned on parameters. Distinguishing

likelihood functions from subjective priors is fundamental to Bayesian formulations of statistical learning.

See [de Finetti, 1937], who recommended exchangeability as a more suitable assumption than iid

(independent and identically distributed) to model situations in which a decision maker wants to learn.

Putting subjective probabilities over parameters that index likelihood functions for iid sequences of

random vectors generates exchangeable sequences of random variables.

(1 − β)E [
t

∑
j=0

βtE [Mtϕ2 (Mt+1/Mt) ∣ At] ∣ A0]

ϕ2
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[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

We put “behavioral” in quotes to emphasize that most economic models are about agents’ behaviors,

including models that impose the rational expectations and common knowledge assumptions that

“behavioral” economists want to drop. “Behavioral” economics sometimes means work that is linked

more or less informally to psychology.

Although we provide no formal links to psychology here, we think that a promising research plan would

explore connections between so-called behavior distortions and the inferential challenges that economic

decision makers confront. As is often assumed in behavioral models, degrees of confidence could differ

across economic agents.

Statistical decision theory typically works with loss function which corresponds to negative of our the

utility functions used here. This same observation carries over to their construction of risk functions.

Chamberlain uses a constraint on the family of prior distribution, consistent with the axiomatic

formulation of [Gilboa and Schmeidler, 1989].

[Hansen and Miao, 2018] present a class of continuous-time diffusion models for which this distinction is

particularly important. For an initial discussion of this distinction with links to other decision formulations,

see [Hansen and Sargent, 2007].

While this contribution and some of the papers they cite, assume an endowment economy, their insights

extend to a model with production.

Note that the endogenous state variable, , reveals no new information in addition to current and past

values of the technology process. This means that there is no incentive for the investor to experiment in

this setting.

By posing this as a date  commitment problem, we deliberately avoid dynamic consistency

considerations.

[Cappelli et al., 2021] develop a related proposal with a similar ambition.
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