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10.1. Introduction
Impulse-response methods have been used by economists since [Frisch, 1933] and in other disciplines. For

nonlinear stochastic models, impulse responses are themselves stochastic. Alternative approaches have

been suggested in economics including [Gallant et al., 1993], [Koop et al., 1996], and [Gourieroux and

Jasiak, 2005]. This chapter provides stochastic responses in both discrete and continuous time for marginal

changes in state variables and shocks. The vast literature on vector autoregressions views these responses

as ends in and of themselves. Identified shocks as exogenous inputs into a dynamical system in effect

‘cause’ movements in the vector time series of interest. Such measurements, while interesting, can have

rather indirect connections to hypothetical interventions related to perspective policy changes that are at

the heart of structural models. Builders of dynamic stochastic equilibrium models use the construct of

‘structural’ in the sense of [Marschak, 1953], [Hurwicz, 1966], and [Lucas, 1976]. They allow for

investigating how a dynamical system changes when one portion of it is altered. For us, these stochastic

responses are central inputs into marginal valuations that we will use for a variety of purposes. In

subsequent chapters, we provide extensive discussions of two types of such applications. The first type

provides asset-pricing type representations for endogenous variables including various forms of capital.

These include policy relevant variables such as the social cost of climate change and the social value of

research and development. The second type generates what we call shock elasticities that help us

characterize the building blocks for exposures to uncertainty and prices of those exposures.
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10.2. Discrete time
We first consider a discrete-time specification.

10.2.1. Discrete-time Markov dynamics

We start with Markov process

(10.1)

where there are  components of  is scalar, and  is  dimensional.

10.2.2. Discrete-time variational dynamics

Let  denote the first variational process for , and let  denote the first variational process for . These

variational processes are the ingredients to stochastic impulse responses to small changes in the underlying

state variables. We compute them by “differentiating” in a generalized sense that accommodates the

underling stochastic structure. To obtain a recursive representation for  we differentiate (10.1) and

apply the chain rule:

(10.2)

In this calculation,  and  are stochastic as they inherit the stochastic dependence of  and

 By differentiating the process at a given calendar date, we are allowing for date  variables to change

as a function of date  information.

To obtain alternative stochastic (local) impulse response functions, we initialize  to be one of the

coordinate vectors that depends on one of the initial states that we want to perturb. Then  is the

date  state vector stochastic response to the perturbation of the initial value of the component.

To perturb  we can set  and  then  and  for all . Alternatively, if we

initialize  be a coordinate vector and  then the response  will be a stochastic process. The

outcome of the coordinate vector initialization is a stochastic local impulse response to a marginal change in

a particular state variable.
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The evolution of the variational processes is nonstochastic if  and  are constant as is true

when  and  are affine in . Otherwise, variational processes are stochastic.

Consider the following quadratic specification:

where  and  are symmetric. A simple calculation shows:

10.3. Continuous-time dynamics
We now consider the continuous-time counterpart for Brownian motion shocks.

10.3.1. Markov diffusion dynamics
As a part of a more general derivation, we begin with state dynamics modeled as a Markov diffusion:

where  is now a -dimensional standard Brownian motion. We denote the filtration (family of

specifications of conditioning information events)  constructed from the Brownian

motion and any pertinent date zero information.

10.3.2. Variational process

Following [Borovička et al., 2014], we construct marginal impulse response functions using what are called

variational processes. We build the dynamics for what is called the first variational,  by following the
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Remark 10.1
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construction in [Fournie et al., 1999]. The first variational process tells the marginal impact on future  of a

marginal change in one of the initial states analogous to the  process that we constructed in discrete time.

Thus this process has the same number of components as . By initializing the process at one of the

alternative coordinate vectors, we again isolate an initial state of interest.[1].

The drift for the  component of  is

and the coefficient on the Brownian increment is

for  a hypothetical realization of  and  a hypothetical realization of  where  denotes vector or

matrix transposition. The implied evolution of the process  is[2]

With the appropriate stacking, the drift for the composite process  is:

(10.3)

and the composite matrix coefficient on  is given by

(10.4)

Let  be the scalar variational process associated with  Then
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Analogous to the discrete-time outcome, the variational dynamics depend explicitly on the original diffusion

dynamics. As in discrete time, by initializing the vector  at a coordinate vector, the resulting processes

give marginal responses to a corresponding state vector.

Consider the case of linear dynamics:

Then

Thus

and

Given the underlying linearity, the local responses coincide with global responses.

In the calculations that follow, let  be the variational process for which  is a coordinate vector with a

one in position  From the composite processes

Also we will have cause to do a forward shift  of these process by which we shift the time units on all of

the variables used in the the construction and the initialization period forward  time periods.

Λ0

.
μ(x) = Ax σ(x) = B

ν(x) = Dx ς(x) = F

μa(x,λ) = [ ]

σa(X,λ) = [ ].

Ax

Aλ

B

0

Λt = exp (At)Λ0,

Δt = ∫
t

0

DΛudu + Δ0

= [∫
t

0

D exp (Au)du]Λ0 + Δ0

= −A−1 [I − exp (At)]Λ0 + Δ0.

Λj Λ
j

0

j.

Λa = [ ].Λ1 . . . Λn

S
τ

τ

Example 10.2



10.3.3. Responses to initial shocks

So far, we have characterized stochastic responses to initial changes in the state variables. From these, we

deduce vector of responses to the initial shocks:

Under nonlinearity, these responses will be stochastic just as with the state variable perturbations.

For the special case of linear dynamics given in Example ,

which are the continuous-time counterparts of the familiar impulse responses.

With Markov diffusions, we also have a state-dependent counterpart to a moving-average representation

that is well known from linear time series models. The resulting formula is known as the Haussmann-Clark-

Ocone representation and is given by

Note that we form conditional expectations of time shifted stochastic responses to form the random

coefficients in the moving-average representations as given by  and .

When the responses turn out not to be stochastic, as in the case of the Remark 2 example, the conditional

expectations and the shift are inconsequential. In this case, we recover the familiar convolution formulas for

moving-average representations.

Many empirical researchers estimate directly what macroeconomists call Jorda projections. These

are implemented by regressing a forward sequence of a scalar process on current variable and a

shock or particular interest. One can interpret the ambition as wanting to infer impulse responses

from direct regressions of future variables on the initial ones. One can view the ambition as a way

to measure impulse responses. For instance, the aim could be to infer:

Φ = Λaσ(X0) Ψ = Λaσ(X0) + ς(X0)

Φt = exp (At)B
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[1]

[2]

by regressing  and  on a measured shock of interest and including additional variables to

purge some of the variation in the measured shock. Many applied papers will include cross terms

that are pre-determined in advance of the shock to accommodate a form of nonlinearity. For this

to be coherent, as our analysis makes clear, one has to think through how the nonlinearity

compounds within the stochastic system. The shock of interest can alter other variables that in

turn influence the variable of interest in future time periods. Our use of variational processes

captures this perspective when the ambition is to measure local impacts.

Our initial condition for  differs from [Fournie et al., 1999] in a superficial way. They treat  as a

matrix with an identity as the initialization. In this way, they consider all of the states of interest

simultaneously. We take  to be a vector and characterize the marginal initial responses one at a time

by letting the initial condition be any one of the coordinate vectors.

Since we are working with an instantaneous evolution with Brownian increments, we are implicitly

appealing to a formalism known as Malliavin calculus.
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