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Earlier chapters have why we like statistical models that generate stationary stochatic processes: stationarity

brings a law of large numbers that helps us make inferences about model parameters. However, logarithms of

many economic time series appear not to be stationary. Instead they grow systematically. This situation

motivates us to study models that generate stochastic processes with stationary increments. Multivariate

versions of such models possess stochastic process versions of balanced growth paths. Applied

econometricians sometimes study permanent shocks that contribute to stochastic growth. We shall describe

how to pose central limit theory in terms of processes with stationary increments.

The mathematical formulation in this chapter opens the door to studying these topics using a unified set of

tools. In this chapter we return to the mathematical formulation used in Chapter 1:Laws of Large Numbers and

Stochastic Processes, while in the next chapter we will assume a Markov structure.

3.1. Basic setup
We adopt assumptions from Section Inventing an Infinite Past of Chapter 1 that allow an infinite past. and

again let  be a subsigma algebra of  and

The event collection  can include invariant events as well as past information.

Let  be a scalar measurement function that is  measurable. Assume that  is  measurable, and

consider a scalar process  with stationary increments :

A F

At = {Λt ∈ F : Λt = {ω ∈ Ω : St(ω) ∈ Λ} for some Λ ∈ A}.

A

X A = A0 Y0 A0

{Yt : t = 0, 1, . . . } {Xt}
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(3.1)

for . Let

and

We can interpret the above equations as providing two contributions to the  process. Thus,

component  is unpredictable and represents new information about  that arrives at date .

Component  is the trend rate of growth or decay in  conditioned on the invariant events. In the

following sections, we present a full decomposition of a stationary increment process that will be useful both

in connecting to sources of permanent versus transitory shocks and to central limit theorems.

3.2. A martingale decomposition
A special class of stationary increment processes called additive martingales interests us.

The process  is said to be an additive martingale relative to

 if for 

 is  measurable, and

 .

Notice that by the Law of Iterated Expectations, for a martingale , best forecasts satisfy:

for . Under suitable additional restrictions on the increment process , we can deploy a

construction of Gordin [1969] to construct a martingale component to the  process.[1]

Let  denote the set of all scalar random variables  such that  and such that[2]

Yt+1 − Yt = Xt+1

t = 0, 1, …

η = E (Xt+1|I),

Ut+1 = Xt+1 − E (Xt+1|At).

{Yt : t ≥ 0}

Ut+1 Yt+1 t + 1

η {Yt : t ≥ 0}

{Y m
t : t = 0, 1, . . . }

{At : t = 1, 2, . . . } t = 0, 1, . . .

Y m
t At

E (Y m
t+1|At) = Y m

t

{Y m
t : t ≥ 0}

E (Y m
t+j ∣ At) = Y m

t

j ≥ 1 {Xt : t ≥ 0}

{Y m
t : t = 0, 1, . . . }

H X E(X 2) < ∞

Ht =
∞

∑
j=0

E(Xt+j − η|At)

Definition 3.1
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is well defined as a mean-square convergent series. Convergence of the infinite sum on the right side limits

temporal dependence of the process . For example, it can exclude so-called long memory processes.[3]

Construct the one-period ahead forecast of  conditioned on date  information:

Notice that

where

(3.2)

Since  is a forecast error,

Assembling these parts, we have

(3.3)

Let

Since  is  measurable, the equality

implies that the process  is an additive martingale.

For a given stationary increment process, , express the martingale increment as

(3.4)

{Xt}

Ht+1 t

H +
t = E (Ht+1 ∣ At)

Xt − η = Ht − H +
t = Gt + (H +

t−1 − H +
t )

Gt

def
= Ht − H +

t−1 = Ht − E (Ht ∣ At−1).

Gt

E (Gt+1|At) = 0.

Yt+1 − Yt = Xt+1 = η + Gt+1 + H +
t − H +

t+1.

Y m
t

def
=

t

∑
j=1

Gj.

Y m
t At

E (
t+1

∑
j=1

Gj ∣ At) =
t

∑
j=1

Gj

{Y m
t : t ≥ 0}

{Yt : t ≥ 0}



So the increment to the martingale component of  provides new information about the limiting

optimal forecast of  as .

By accumulating equation (3.3) forward, we arrive at:

If  is in , the stationary increments process  satisfies the additive

decomposition

The stationary increment process,  is the martingale component with , The

component  is stationary. The other components are constant over time.

Proposition 3.1 decomposes a stationary-increment process into a linear time trend, a martingale, and a

transitory component. A permanent shock is the increment to the martingale. The martingale and transitory

contributions are typically correlated. Some decompositions methods go one-step further by adjusting the

decomposition to remove the correlation between these two components as we will illustrate in an example

that. follows.

With this mathematical structure in place, we construct an an operator  that maps an admissible increment

process in  into the innovation in a martingale component. Let  be the set of all random variables  with

finite second moments that satisfy the conditions that i)  is  measurable and that ii)  where

. Define 

for  given by for . Both  and  are linear spaces of random variables and  is a linear

transformation. The operator  plays a prominent role in some of the analysis that follows.

3.3. Permanent shocks
In this construction, we impose a moving-average structure on the underlying time series.

Specifically, consider again the Example 1.8 moving-average process:

Gt =
∞

∑
j=0

[E (Xt+j ∣ At) − E (Xt+j ∣ At−1)]

= lim
j→∞

[E (Yt+j|At) − E (Yt+j|At−1)].

{Yt : t ≥ 0}

Yt+j j → +∞

X H {Yt : t = 0, 1, . . . }

Yt = tη + Y m
t − H +

t + Y0 + H +
0 .

trend martingale stationary invariant

  

{Y m
t : t ≥ 0}, Y m

0 = 0

{H +
t }

D

H G G

G A E(G1|A) = 0

Gt = G ∘ S
t

D : H → G

D(X) = G

G = G0 t = 0 G H D

D

Proposition 3.1
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(3.5)

Use this  process as the increment for  in formula (3.1). New information about the

unpredictable component of  for  that arrives at date  is

Summing these terms over  gives

where

provided that the coefficient sequence  is summable, a condition that restricts temporal

dependence of the increment process . Indeed, it is possible for  or for it not to be well

defined while

ensuring that  is well defined. This possibility opened the door to the literature on long-memory processes

that allow for  to be infinite as discussed in Granger and Joyeux [1980] and elsewhere.

In what follows, we presume that  is finite. This sum of the coefficients  in moving-average

representation (3.5) for the first difference  of  tells the

permanent effect of  on current and future values of the level of , i.e., the effect on .

Models of Blanchard and Quah [1989] and Shapiro and Watson [1988] build on this property.

The variance of the random variable  conditioned on the invariant events in  is . The

overall variance of  is given by

where  is the Euclidean norm. To form a permanent-transitory shock decomposition, construct the scalar

permanent shock as:

Xt =
∞

∑
j=0

αj ⋅ Wt−j.

{Xt} {Yt : t ≥ 0}

Xt+j j ≥ 0 t

E (Xt+j ∣ At) − E (Xt+j ∣ At−1) = αj ⋅ Wt

j

Gt = α(1) ⋅ Wt

α(1) =
∞

∑
j=0

αj

{αj : j ≥ 0}

{Xt} α(1) = ∞

∞

∑
j=0

|αj|
2 < ∞

Xt

α(1)

α(1) {αj : j ≥ 0}

Yt+1 − Yt = Xt+1 {Yt : t = 0, 1, . . . . }

Wt+1 Y limj→+∞ Yt+j

α(1) ⋅ Wt+1 I |α(1)|2

Xt

∞

∑
j=0

|αj|
2 ≠ |α(1)|2.

|⋅|
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where we introduce an additional scaling so the permanent shock has variance one. Form

which by construction will be uncorrelated with . Since the covariance matrix of  will be singular,

the components of  can be expressed as linear combinations of a vector of transitory shocks with unit

variances.

3.4. Central limit approximation
In this section, we produce a central limit approximation for temporally dependent processes originally due to

[Gordin, 1969]. We view Gordin’s result as an application of Proposition Proposition 3.1.

To form a central limit approximation, construct the following scaled partial sum that nets out trend growth

where

From Billingsley [1961]’s central limit theorem for martingales

where  denotes weak convergence, meaning convergence in distribution. Clearly,  and

 both converge in mean square to zero.

For all stationary increment processes  represented by  in 

W
p
t+1 = (

1

|α(1)|
)α(1) ⋅ Wt+1

W tr
t+1 = Wt+1 − (

1

|α(1)|
)α(1)W

p
t+1

W
p
t+1 W tr

t+1

W tr
t+1

1

√t
(Yt − ηt) =

1

√t
Y m

t −
1

√t
H +

t +
1

√t
(H +

0 + Y0)

Y m
t =

t

∑
j=1

Gj

1

√t
Y m

t ⇒ N (0, E [D(X)2|I])

⇒ {(1/√t)H +
t }

{(1/√t)(H +
0 + Y0)}

Yt : t = 0, 1, 2, . . . X H

1

Proposition 3.2
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Furthermore,

This finding has a straightforward extension to a multivariate counterpart of  through the study of all linear

combinations.

Observe that the variance in the central limit approximation is the variance of the martingale difference:

Consider the moving-average example in Section Permanent shocks. Then

(3.6)

which are typically distinct. The first of these computations is the variance pertinent for the central limit

approximation.

3.5. Cointegration
Linear combinations of stationary increment processes  and  have stationary increments. For real-

valued scalars  and , form

where

The increment in  is

1

√t
(Yt − ηt) ⇒ N (0, E [D(X)2|I]).

E [D(X)2 ∣ I] = lim
t→∞

E [(
1

√t
(Yt − tη))

2

∣ I].

X

E [D(X)2 ∣ I] ≠ E [(X)2 ∣ I].

E [D(X)2 ∣ I] =
∞

∑
j=0

αj

2

E [(X)2 ∣ I] =
∞

∑
j=0

|αj|
2,∣ ∣Y 1

t Y 2
t

r1 r2

Yt = r1Y 1
t + r2Y 2

t

Y 1
t+1 − Y 1

t = X 1
t+1

Y 2
t+1 − Y 2

t = X 2
t+1.

{Yt : t = 0, 1, …}



[1]

[2]

[3]

[4]

[5]

and

The Proposition 3.1 martingale component of  is the corresponding linear combination of the

martingale components of  and . The Proposition 3.1 trend

component of  is the corresponding linear combination of the trend components of

 and .

Proposition 3.1 sheds light on the cointegration concept of Engle and Granger [1987] that is associated with

linear combinations of stationary increment processes whose trend and martingale components are both

zero. Call two processes cointegrated if there exists a linear combination of them that is stationary.[4] That

situation prevails when there exist real-valued scalars  and  such that

where the ’s correspond to the trend components in Proposition 3.1. These two zero restrictions imply that

the time trend and the martingale component for the linear combination  are both zero.[5] When 

and , the stationary increment processes  and  share a common growth component.

This notion of cointegration provides one way to formalize balanced growth paths in stochastic environments

through determining a linear combination of growing time series for which stochastic growth is absent.

Also see Hall and Heyde [1980].

The random variable  somewhat resembles an “undiscounted” version of the resolvent operator that

plays an important role in the analysis of Markov processes in Chapter 2:Markov Processes.

See, for instance, Granger and Joyeux [1980], Geweke and Porter-Hudak [1983] and Robinson [1994].

The Box and Tiao [1977] ‘‘canonical correlation’’ approach to linear time series analysis anticipated, at

least partially, the co-integration restrictions of time series econometricians and macroeconomists.

The cointegration vector  is determined only up to scale.

Xt+1 = r1X 1
t+1 + r2X 2

t+1

Y0 = r1Y 1
0 + r2Y 2

0 .

{Yt : t ≥ 0}

{Y 1
t : t = 0, 1, . . . } {Y 2

t : t = 0, 1, . . . }

{Yt : t = 0, 1, …}

{Y 1
t : t = 0, 1, …} {Y 2

t : t = 0, 1, …}

r1 r2

r1η1 + r2η2 = 0

r1D(X 1) + r2D(X 2) = 0,

η

Yt r1 = 1

r2 = −1 Y 1
t Y 2

t

Ht

(r1, r2)
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