
Exploring Recursive Utility

Contents
9.1. Introduction

9.2. Recursive utility valuation process

9.3. Continuous-time limit

9.4. Small noise expansion of dynamic stochastic equilibria

9.5. Incorporating preferences with enhanced uncertainty concerns

9.6. Stochastic discount factor approximation

9.7. Solving a planner’s problem with recursive utility

9.8. Solving models

9.9. Appendix A: Solving the planner’s problem

9.10. Appendix B: Approximation formulas (approach one)

9.11. Appendix C: Approximation formulas (approach two)

9.12. Appendix D: Parameter values

Download PDF here Authors: Jaroslav Borovicka (NYU), Lars Peter Hansen (University of Chicago) and

Thomas J. Sargent (NYU) 

9.1. Introduction
We explore the recursive utility preference specification of [Kreps and Porteus, 1978] and [Epstein and Zin,

1989] including versions of them proposed by [Hansen and Sargent, 2001] and [Anderson et al., 2003] that

capture concerns about model misspecification as in. We deploy two distinct approximation approaches. One

approach builds on a characterization by [Duffie and Epstein, 1992] and uses a continuous-time limiting

approximation to a discrete-time specification in which underlying shocks are normally distributed, though our

detailed derivations differ from those of [Duffie and Epstein, 1992]. We represent the limiting approximation with

a Brownian motion information structure. Our second approximation m allows macroeconomic uncertainty to

have first-order implications. We show how to explore model implications for (nonstandard) first- and second-

order approximations to equilibria of dynamic stochastic models. We modify first- and second-order

approximations routinely used in the macroeconomics literature in ways designed to focus on macroeconomic

uncertainty. Our approximations apply to production-based macro-finance models with opportunities to invest

in different kinds of capital. Both of our approximation approaches capture adjustments for uncertainty with a

change in probability measure, one that differs from one that leads the so-called risk neutral distribution widely

used to price derivative claims. Such a change of measure plays a big role in specifications of preferences like
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those in [Hansen and Sargent, 2001] and [Anderson et al., 2003] that build on a robust control literature initiated

by [Jacobson, 1973] and [Whittle, 1981].

Our approximations allow macroeconomic uncertainty to have first-order implications. We assume risk averse

economic decision makers with recursive utility preferences or closely related preferences that also express

concerns about model misspecification. We show how to explore model implications for (nonstandard) first and

second-order approximations to equilibria of dynamic stochastic models. We modify first and second order

approximations routinely used in the macroeconomics literature in ways that focus on macroeconomic

uncertainty. Our uncertainty adjustments are captured by a change in probability measure. Furthermore, our

approximations apply to production-based macro-finance models with opportunities to invest in diverse forms

of capital. We use this framework to advance our understanding of alternative preference specifications and

their implications for production and asset pricing.

We extend work by [Schmitt-Grohé and Uribe, 2004] and [Lombardo and Uhlig, 2018] in ways that highlight

consequences of uncertainty. We design approximations to make implied stochastic discount factors reside

within an exponential linear quadratic class, a class that gives rise tractable formulas for asset valuation over

alternative investment horizons. See, for instance, [Ang and Piazzesi, 2003] and [Borovička and Hansen, 2014].

The class is also useful for studying production-based macro-finance models with opportunities to invest in

different forms of capital.

We of course recognize that nonlinearities in some models are more accurately captured by global

solution methods.

9.2. Recursive utility valuation process
We construct continuation value and stochastic discount processes, important constituents of many dynamic

stochastic models in macroeconomics and finance.

9.2.1. Basic recursion
A homogeneous of degree one representation of recursive utility is

(9.1)

where

(9.2)

Vt = [(1 − β)(Ct)
1−ρ + β(Rt)

1−ρ]
1

1−ρ

Rt = (E [(Vt+1)1−γ ∣ At])
1

1−γ

.

Note
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Value  defined in equation (9.1) is a homogeneous of degree one function of  and ; equation (9.2)

defines  as a homogeneous of degree one function of another function of .

In equation (9.1),  is a subjective discount factor and  is the elasticity of intertemporal substitution,

while  in equation (9.2) describes attitudes towards risk.

Continuation values are determined only up to an increasing transformation. For computational and conceptual

reasons, it is useful to work with the transformation . Recursions for  expressed in terms of the

logarithm of consumption  are

(9.3)

where

(9.4)

The right side of recursion (9.3) is the logarithm of a constant elasticity of substitution (CES) function of

 and .

The limit of  as  approaches  is expected logarithmic utility:

We shall construct small noise expansions of  and  separately, then assemble them appropriately. Before

doing so, we offer a reinterpretation of our recursions (9.3)-(9.4).

9.2.2. Preference for robustness
When , (9.4) emerges as an indirect utility function for a robust control problem in which  serves as a

penalty parameter on entropy of a baseline model relative to an alternative model. The penalty parameter

constrains a set of alternative probability models that a decision maker considers when evaluating consumption

processes. This interpretation of (9.4) as an indirect utilty function from a minimization problem originated in

[Hansen and Sargent, 1995], which built [Jacobson, 1973] and [Whittle, 1981].

Vt Ct Rt

Rt Vt+1

0 < β < 1 1
ρ

γ

V̂t = logVt V̂t

Ĉt

V̂t =
1

1 − ρ
log [(1 − β) exp[(1 − ρ)Ĉt] + β exp [(1 − ρ)R̂t]]

R̂t =
1

1 − γ
logE [exp((1 − γ)V̂t+1) ∣ At].

exp(Ĉt) exp(R̂t)

R̂t γ 1

lim
γ↓1

R̂t = lim
γ↓1

logE (exp [(1 − γ)V̂t+1]|At)

1 − γ
= E(V̂t+1|At).

V̂t R̂t

γ > 1 1
γ−1

Remark 9.1
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Let the random variable  satisfy  so that it is a likelihood ratio. Think of replacing

the expected continuation value  by

(9.5)

where  is a parameter that penalizes departures of  from unity as measured by relative entropy.

Conditional entropy relative to an alternative conditional probability induced by applying change of measure

 is

The inequality follows from Jensen’s inequality because the function  is convex. Relative entropy is

evidently zero when .

Relative entropy measures a discrepancy between two probability distributions. Think of  as a relative

conditional likelihood ratio of an alternative model vis-a-vis a baseline model. Then  is

an expected (conditional) log-likelihood ratio of the alternative model when the expectation is taken using the

alternative probability model. A small expected log likelihood indicates a small discrepancy between two models,

i.e., two probability distributions.

To solve minimization problem (9.5), we attach a Lagrange multiplier  to the conditional expectation

constraint and form a Lagrangian that we want to minimize with respect to the random variable  and

maximize with respect to . This extremization problem separates across states, so to minimze with

respect to  we can solve a set of minimum problems

where  is a potential realization of  and  is a realization of  First-order necessary

conditions are:

which implies the minimizer

and the minimized objective

Nt+1 ≥ 0 E (Nt+1 ∣ At) = 1

E(V̂t+1 ∣ At)

min
Nt+1≥0,E(Nt+1|At)=1

E(Nt+1V̂t+1 ∣ At)+ ξE (Nt+1 logNt+1 ∣ At),

ξ Nt+1

Nt+1

E (Nt+1 logNt+1 ∣ At) ≥ 0.

n logn
Nt+1 = 1

Nt+1

E (Nt+1 logNt+1 ∣ At)

ℓ
N

ℓ
N

min
n

nv + ξn logn + ℓ(n − 1),

n Nt+1 v Vt+1.

v + ξ + ξ logn + ℓ = 0,

n∗ = exp [−
1
ξ

(v + ℓ + ξ)],

Remark 9.2



To determine  we pose

whose first-order necessary condition is

The maximizing  is

and the minimized objective function is

The minimizing  is

(9.6)

The minimizer (9.6) of problem (9.5) evidently shifts probabilities toward low continuation values. [Bucklew,

2004] called this a stochastic version of Murphy’s law. Notice that the minimized objective satisfies

where earlier we described  by equation (9.4) after we set .

It follows from (9.6) that

−ξ exp [−
1
ξ

(v + ℓ + ξ)] − ℓ.

ℓ,

max
ℓ

−ξE(exp [−
1
ξ
(V̂t+1 + ℓ + ξ)] ∣ At) − ℓ

E(exp [−(
1
ξ
)V̂t+1] ∣ At) exp [−(

ℓ + ξ

ξ
)] − 1 = 0.

ℓ

ℓ∗ = ξ logE(exp [−(
1
ξ
)V̂t+1] ∣ At) − 1

−ξ logE(exp [−(
1
ξ
)V̂t+1] ∣ At).

Nt+1

N ∗
t+1 =

exp(− 1
ξ V̂t+1)

E [exp(− 1
ξ V̂t+1) ∣ At]

.

−ξ logE [exp(−
1
ξ
V̂t+1) ∣ At] = R̂t

R̂t ξ = 1
γ−1

N ∗
t+1 = exp [−

1
ξ
(V̂t+1 − R̂t)].
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The random variable  will appear often below.

9.2.3. Stochastic discount factor process
A stochastic discount factor (SDF) process  describes a consumer’s attitudes about small

changes in uncertainty. SDF processes have several uses. First, they contain shadow prices that tell how a

consumer’s attitudes about uncertainty shape marginal valuations of risky assets. Second, they shape first-

order necessary conditions for optimally choosing financial and physical investments. Third, they underlie

tractable formulas for equilibrium asset prices. Fourth, they can help construct Pigouvian taxes that ameliorate

externalities under uncertainty. Fifth, they can help evaluate effects of small (local) changes in government

policies.

To deduce an SDF process, we positing that a date zero value of a risky date  consumption payout  is

(9.7)

To compute the ratio  that appears in formula (9.7) we evaluate the slope of an indifference curve that runs

through both a baseline consumption process  and a perturbed consumption process

We think of  as parameterizing an indifference curve, so  expresses how much current period

consumption must be reduced to keep a consumer on the same indifference curve after we replace  by

. We set  defined in equation (9.7) equal to the slope of that indifference curve:

For recursive utility, a one-period increment in the stochastic discount factor process is

(9.8)

where

(9.9)

N ∗
t+1

S = {St : t ≥ 0}

t χt

πt
0(χt) = E [(

St

S0
)χt A0].∣St

S0

{Ct}∞
t=0

(C0 − P0(q),C1,C2, … ,Ct + qχt,Ct+1, . . . ).

q P0(q)
Ct

Ct + qχt πt
0(χt)

πt
0(χt) =

d

dq
P0(q)

q=0
.∣St+1

St
=β(

Ct+1

Ct
)

−ρ

exp [(1 − γ)(V̂t+1 − R̂t)] exp [(ρ − 1)(V̂t+1 − R̂t)]

=βN ∗
t+1 exp(Ŝt+1 − Ŝt),

Ŝt+1 − Ŝt

def
= −ρ(Ĉt+1 − Ĉt)+ (ρ − 1)(V̂t+1 − R̂t)



and  induces the change of probability measure that equation (9.6) presents as the outcome of a robust

valuation problem. We will use the second line in (9.8) in what follows. We will think of  as a subjective discount

factor adjustment,  as a change-of-measure adjustment for uncertainty, and  as an

adjustment for the elasticity of intertemporal substitution. We interpret the twisted transition probability measure

induced by  as an adjustment for uncertainty in valuation.

The recursive structure of preferences makes the time  period stochastic discount factor  be the product of

the respective one-period stochastic discount factor increments. Similarly, we can compound one-period

transition uncertainty measures into multiple time-horizon measures of uncertainty.

To verify formula (9.8), we compute a one-period intertemporal marginal rate of substitution. Given the

valuation recursions (9.3) and (9.4), we construct two marginal utilities familiar from CES and

exponential utility:

From the certainty equivalent formula, we construct the marginal utility of the next-period logarithm of

the continuation value:

where the  superscript is used to denote the next-period counterpart. In addition, the next-period

marginal utility of consumption is

Putting these four formulas together using the chain rule for differentiation gives a marginal rate of

substitution:

Now let , ,  and  to obtain the formula for the one-period

stochastic discount factor (9.8).

N ∗
t+1

β

N ∗
t+1 exp(Ŝt+1 − Ŝt)

N ∗
t+1

t
St

S0

mc = (1 − β)(c)−ρ exp [(ρ − 1)v̂]

mr̂ = β exp[(1 − ρ) (r̂ − v̂)]

mv̂+ = exp [(1 − γ) (v̂+ − r̂)]

+

mc+ = (1 − β)(c+)−ρ exp [(ρ − 1)v̂+]

(mr)(mv+)(mc+)
mc

= β(
c+

c
)

−ρ

exp [(1 − γ) (v̂+ − r̂)] exp [(ρ − 1) (v̂+ − r̂)].

v̂+ = V̂t+1 c+ = Ct+1 Ct = c r̂ = R̂t

Remark 9.3



9.3. Continuous-time limit
We now explore a continuous-time limit that approximates a discrete-time specification. Since we continue to

work with normal shocks, the continuous-time counterpart to these shocks are Brownian increments. The

continuation value in continuous time will evolve as:

for some drift (local mean),  and some local shock exposure vector , where  is a

multivariate Brownian motion. The scaling for the local evolution coefficients by  is done for convenience,

where the continuation value process is presumed to be positive. As in discrete time, it is convenient to work

with the logarithm of the continuation value process (a strictly increasing transformation). The implied evolution

is

where  This adjustment follows from the well known Ito’s formula.

9.3.1. Discrete-time approximation

To study the utility recursion, start with a discrete-time specification:

where  and  is instantaneous subjective rate of discount. Consider the time derivative of

the second recursion:

by local log normality. We turn now to the first recursion and compute time derivatives in three steps. First, we

evaluate the term inside the logarithm as  tends to zero :

dVt = Vtμ
V
t dt + Vtσ

V
t ⋅ dWt

Vtμ
V
t Vtσ

V
t {Wt : t ≥ 0}
Vt

dV̂t = μ̂V
t dt + σV

t ⋅ dWt

μ̂t = μV
t − 1

2 ∣ σV
t ∣2.

1
1 − ρ

log [(1 − βϵ) exp [(1 − ρ)(Ĉt − V̂t)]+ βϵ exp [(1 − ρ)(R̂t − V̂t)]] = 0

R̂t − V̂t =
1

1 − γ
logE(exp [(1 − γ)(V̂t+ϵ − V̂t)] ∣ At)

βϵ = exp(−δϵ) δ > 0

d

dϵ
(R̂t − V̂t)

ϵ=0
=

d

dϵ

1
1 − γ

logE(exp [(1 − γ)(V̂t+ϵ − V̂t)] ∣ At)
ϵ=0

= μ̂V
t +

(1 − γ)
2

|σV
t |2

= μV
t −

γ

2
|σV

t |2.∣ ∣ϵ



This term is in the denominator as implied by the derivative with respect to a logarithm. Second, we differentiate

the term inside the logarithm with respect to  as contributed by :

Third, we differentiate the term inside the logarithm with respect to  as contributed by

Putting together the derivative components together gives:

(9.10)

Notice that this relation imposes a restriction across the local mean,  and local variance,  of the

continuation value. [Duffie and Epstein, 1992] refer to  as a variance multiplier where larger values of  imply a

more substantial adjustment for local volatility. As in discrete-time, the  is interesting special case

represented as;

9.3.2. Robustness to misspecification

To investigate an aversion to model misspecification in continuous time, we now treat the distribution of

 as uncertain. We allow for probability measures that entertain possible Brownian motions with

local means or drifts that are history dependent.

We start by considering positive martingales  parameterized by alternative 

processes with the same dimension as the underlying Brownian motion.

The martingales have local evolutions:

lim
ϵ↓0

exp [(1 − ρ)(R̂t − V̂t)] = 1.

ϵ βϵ

δ exp [(1 − ρ)(Ĉt − V̂t)]− δ.

ϵ

d

dϵ
exp [(1 − ρ)(R̂t − V̂t)] = μ̂V

t +
(1 − γ)

2
|σV

t |2.

0 =
δ [( Ct

Vt
)

1−ρ

− 1]

1 − ρ
+ μ̂V

t +
(1 − γ)

2
|σV

t |2

=
δ [( Ct

Vt
)

1−ρ

− 1]

1 − ρ
+ μV

t −
γ

2
|σV

t |2.

μV
t |σV

t |2

γ γ

ρ = 1

0 = −δ(V̂t − Ĉt)+ μ̂V
t +

(1 − γ)
2

|σV
t |2.

{Wt : t ≥ 0}

{MH
t : t ≥ 0} {Ht : t ≥ 0}
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and we initialize them at . Observe that by applying Ito’s formula,  evolves as:

We use these martingales as relative densities or likelihood ratios.

Write the discrete-time counterpart as

Let  be a realized  and  be a realization . Then  contributes

 to the log-likelihood. The standard normal density for  contributes

. Put there two components together, we have a log-likelihood:

The altered conditional density has mean , which is the realized value of  with the same conditional

covariance matrix as before. Moreover, the conditional expectation of

which measures the statistical divergence or relative entropy between original and altered conditional

probabilities.

For the continuous-time limit, under the  change of probability measure:

where  is a standard Brownian motion. Thus the potential changes of probability measures induce a local

means or drift  processes to the Brownian motion. The continuous-time counterpart to conditional relative

entropy at time  is 

We may justify focusing on drift distortions for Brownian increments because of our imposition of absolute

continuity of the alternative probabilities with respect to the baseline specification of a multivariate standard

Brownian motion. This is an implication of the Girsanov Theorem.

dMH
t = MH

t Ht ⋅ dWt,

MH
0 = 1 logMH

d logMH
t = −

1
2

|Ht|
2
dt + Ht ⋅ dWt.

logMH
t+ϵ − logMH

t = −
ϵ

2
|Ht|

2 + Ht ⋅ (Wt+ϵ − Wt)

w Wt+ϵ − Wt h Ht logMt+ϵ − logMt

− ϵ
2 h

′h + h ⋅ w √ϵ (Wt+ϵ − Wt)
− 1

ϵ
w′w − log(2πϵ)

−
ϵ

2
h′h + h ⋅ w −

1
2ϵ

w′w − log(2πϵ) = −
1
2ϵ

(w − ϵh)′(w − ϵh) − log(2πϵ).

ϵh ϵHt

E[(
MH

t+ϵ

MH
t

) (logMH
t+ϵ − logMH

t ) ∣ At] =
ϵ

2
|Ht|

2,

H

dWt = Htdt + dW̃ H
t

W̃ H

H

t 1
2 |Ht|

2.



We are now in a position to deduce a robustness adjustment in continuous time. Consider formula (9.10) when

 modified for a potential change in the probability measure

Modify this equation to include minimization over  subject to a relative entropy penalty 

The minimizing solution is

with a minimized objective

Notice that this agrees with formula (9.10) for . The explicit link is entirely consistent with our

discrete-time equivalence result. By taking the continuous-time limit, we are able to focus our misspecification

analysis on changing local means of the underlying Brownian increments.

9.3.3. Uncertainty pricing

For the purposes of valuation, we compound the equilibrium version of  to give a exponential

martingale:

provided that the constructed process is a martingale.[1] With this construction we interpret  as the vector

of local uncertainty prices that give compensations for exposure to Brownian increment uncertainty. These

compensations are expressed as changes in conditional means under the baseline distribution as is typical in

continuous-time asset pricing.

γ = 1

0 =
δ [( Ct

Vt
)

1−ρ

− 1]

1 − ρ
+ μ̂V

t + σV
T ⋅ Ht

Ht
ξ
2 |Ht|2 :

0 = min
Ht

δ [( Ct

Vt
)

1−ρ

− 1]

1 − ρ
+ μ̂V

t + σV
t ⋅ Ht +

ξ

2
Ht ⋅ Ht.

H ∗
t = −

1
ξ
σV
t

0 =
δ [( Ct

Vt
)

1−ρ

− 1]

1 − ρ
+ μ̂V

t −
1
2ξ

σV
t

2∣ ∣γ − 1 = 1/ξ

{H ∗
t : t ≥ 0}

M ∗
t = exp(∫

t

0
H ∗

τ dWτ −
1
2
∫

t

0
|H ∗

τ |2
dτ)

−H ∗
t



9.4. Small noise expansion of dynamic stochastic
equilibria
We next consider a different type of characterization that sometimes gives good approximations for dynamic

stochastic equilibrium models. While the approximations build from derivations in [Schmitt-Grohé and Uribe,

2004] and [Lombardo and Uhlig, 2018], and we extend them in a way that features the uncertainty contributions

more prominently and are reflected even in first-order contributions. By design, the implied approximations of

stochastic discount factors used to represent market or shadow values reside within the exponential linear

quadratic class. This class is known to give tractable formulas for asset valuation over alternative investment

horizons. See, for instance, [Ang and Piazzesi, 2003] and [Borovička and Hansen, 2014]. Moreover, they are

applicable to production-based macro-finance models with investment opportunities in alternative forms of

capital.

While these approximations are tractable for the reasons described, researchers may be concerned about some

more fundamental aspects of uncertainty that are disguised by these methods. Indeed, for some models

nonlinearities are more accurately captured by global solution methods. Nevertheless, the approximations still

provide further understanding of the preferences and their implications for asset pricing in endowment and

production economies.

9.4.1. Approximate state dynamics

We follow [Lombardo and Uhlig, 2018] by considering the following class of stochastic processes indexed by a

scalar perturbation parameter :[2]

(9.11)

Here  is an -dimensional stochastic process and  is an i.i.d.~normally distributed random vector with

conditional mean vector  and conditional covariance matrix . We parameterize this family so that  gives

the model of interest.

We denote a zero-order expansion  limit as:

(9.12)

and assume that there exists a second-order expansion of  around :

(9.13)

q

Xt+1 (q) = ψ [Xt (q), qWt+1, q].

X n {Wt+1}
0 I q = 1

q = 0

X 0
t+1 = ψ (X 0

t , 0, 0),

Xt q = 0

Xt ≈ X 0
t + qX 1

t +
q2

2
X 2

t
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where  is a first-order contribution and  is a second-order contribution. In other words, the stochastic

processes ,  are appropriate derivatives of  with respect to the perturbation parameter 

evaluated at 

In the remainder of this chapter, we shall construct instances of the second-order expansion (9.13) in which the

generic random variable  is replaced, for example, by the logarithm of consumption, a value function, and so

on. I

Processes  have a recursive structure: first compute the stochastic process  then the

process  next (it depends on ), and finally the process  (it depends on both  and ).

In this chapter, we use a prime  to denote a transpose of a matrix or vector. When we include  in a partial

derivative of a scalar function it means that the partial derivative is a row vector. Consistent with this convention,

let , the  entry of , denote the row vector of first derivatives with respect to the vector , and similarly

for . Since  is scalar,  is the scalar derivative with respect to . Derivatives are evaluated at , which in

many examples is invariant over time, unless otherwise stated. This invariance follows when we impose a steady

state on the deterministic system.

The first-derivative process obeys a recursion

(9.14)

that we can write compactly as the following a first-order vector autoregression:

We assume that the matrix  is stable in the sense that all of its eigenvalues are strictly less than one in

modulus.

It is natural for us to denote second derivative processes with double subscripts. For instance, for the double

script used in conjunction with the second derivative matrix of , the first subscript without a prime ( ) reports

the row location; second subscript with a prime ( ) reports the column location. Differentiating recursion (9.14)

gives:

(9.15)

X 1
t X 2

t

X j j = 0, 1, 2 X q

q = 0.

Xt

X
j
t , j = 0, 1, 2 X 0

t ,
X 1

t X 0
t X 2

t X 0
t X 1

t

′ x′

ψi
x′ ith ψx′ x

ψi
w′ q ψi

q q X 0
t

X 1
t+1 = X 1

t + Wt+1 +

⎡⎢⎣ψ1
x′

ψ2
x′

⋮
ψn
x′

⎤⎥⎦ ⎡⎢⎣ψ1
w′

ψ2
w′

⋮
ψn
w′

⎤⎥⎦ ⎡⎢⎣ψ1
q

ψ2
q

⋮
ψn

q

⎤⎥⎦X 1
t+1 = ψx′X 1

t + ψw′Wt+1 + ψq

ψ′
x

ψi ′

′



Recursions (9.14) and (9.15) have a linear structure with some notable properties. The law of motion for  is

deterministic and is time invariant if (9.11) comes from a stationary  process. The dynamics for  are

nonlinear only in  and . Thus, the stable dynamics for  that prevail when  is a stable matrix imply

stable dynamics for .

Perturbation methods have been applied to many rational expectations models in which partial

derivatives of  with respect to  are often zero.[3] However, derivatives of  with respect to  are not

zero in production-based equlibrium models with the robust or recursive utility specifications that we

shall study here.

Let  denote consumption and  the logarithm of consumption. Suppose that the logarithm of consumption

evolves as:

Approximate this process by:

(9.16)

where

X 2
t+1 = ψx′X 2

t + + 2 +

+ 2 + 2 + .

⎡⎢⎣X 1′

t ψ
1
xx′X

1
t

X 1′

t ψ
2
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1
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⋮

X 1′
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n
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ψ2
qx′X

1
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1
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⋮
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ψ2
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⋮
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{Xt} X 2

X 1 Wt+1 X 1 ψx

X 2
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C Ĉ

Ĉt+1 − Ĉt = κ(Xt, qWt+1, q).

Ĉt+1 − Ĉt ≈ Ĉ 0
t+1 − Ĉ 0

t + q(Ĉ 1
t+1 − Ĉ 1

t )+
q2

2
(Ĉ 2

t+1 − Ĉ 2
t )

Ĉ 0
t+1 − Ĉ 0

t = κ(X 0
t , 0, 0) := ηc0

Ĉ 1
t+1 − Ĉ 1

t = κx′X 1
t + κw′Wt+1 + κq

Remark 9.4



In models with endogenous investment and savings, the consumption dynamics and some of the state

dynamics will emerge as the solution to a dynamic stochastic equilibrium model. We use the approximating

processes (9.13) and (9.16) as inputs into the construction of an approximating continuation value process and

its risk-adjusted counterpart for recursive utility preferences.

9.5. Incorporating preferences with enhanced
uncertainty concerns
To approximate the recursive utility process, we deviate from common practice in macroeconomics by letting

the risk aversion or robust parameter in preferences depend on 

The aversion to model misspecification or the aversion to risk moves inversely with the parameter  when we

embed the model of interest within a parameterized family of models. In effect, the variable  is doing double

duty. Reducing  limits the overall exposure of the economy to the underlying shocks. This is offset by

letting the preferences include a greater aversion to uncertainty. This choice of any expansion protocol has

significant and enlightening consequences for continuation value processes and for the minimizing  process

used to alter expectations. It has antecedents in the control theory literature, and it has the virtue that implied

uncertainty adjustments occur more prominently at lower-order terms in the approximation.

9.5.1. Order-zero
Write the order-zero expansion of (9.3) as

where the second equation follows from noting that randomness vanishes in the limit as  approaches .

For order zero, write the consumption growth-rate process as

Ĉ 2
t+1 − Ĉ 2

t = κx′X 2
t + X 1

t

′
κx,x′X 1

t + 2κq,x′X 1
t + κqq

+ 2X 1
t

′
κxw′Wt+1 + Wt+1

′κww′Wt+1 + 2κqw′Wt+1.

q :

ξ = qξo γ − 1 =
γo − 1

q

q

q

q > 0

N

V̂ 0
t =

1
1 − ρ

log [(1 − β) exp[(1 − ρ)Ĉ 0
t ] + β exp [(1 − ρ)R̂0

t ]]

R̂0
t = V̂ 0

t+1,

q 0

Ĉ 0
t+1 − Ĉ 0

t = η0
c .



The order-zero approximation of (9.3) is:

We guess that  and will have verified the guess once we solve:

This equation implies

(9.17)

Equation (9.17) determines  as a function of  and the preference parameters , but not the risk

aversion parameter  or its robust counterpart . Specifically,

(9.18)

In the limiting  case,

9.5.2. Order-one

We temporarily take  as given. We construct a first-order approximation to the nonlinear utility

recursion (9.3)

(9.19)

where

V̂ 0
t − Ĉ 0

t =
1

1 − ρ
log [(1 − β) + β exp [(1 − ρ)(V̂ 0

t+1 − Ĉ 0
t+1 + η0

c)]]

V̂ 0
t − Ĉ 0

t = η0
v−c

exp [(1 − ρ)(η0
v−c)] = (1 − β) + β exp [(1 − ρ)(η0

v−c)] exp [(1 − ρ)η0
c].

exp [(1 − ρ)(η0
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1 − β

1 − β exp [(1 − ρ)η0
c ]

.

η0
v−c η0

c ρ,β
γ ξ

η0
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log(1 − β) − log (1 − β exp [(1 − ρ)η0
c])

1 − ρ
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η0
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β

1 − β
)η0

c .

R̂1
t − Ĉ 1

t

V̂ 1
t − Ĉ 1

t = λ(R̂1
t − Ĉ 1

t )



Notice how the parameter  influences the weight  when , in which case the log consumption process

displays growth or decay. The condition  restricts the subjective discount rate,  relative to the

consumption growth rate  since

When , the subjective discount rate has a positive lower bound in contrast to the case in which .

To facilitate computing some useful limits we construct:

(9.20)

(9.21)

which we assume remain well defined as  declines to zero, with limits denoted by  and . Importantly,

Taking limits as  declines to zero:

Subtracting  from both sides gives:

λ =[
β exp [(1 − ρ) (η0

v−c + η0
c)]

(1 − β) + β exp [(1 − ρ) (η0
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c)]
]
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c ]
]
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c]
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c ]
]
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ρ λ ηc ≠ 0
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c < − logβ.

ρ < 1 ρ ≥ 1
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Ĉ 1
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(9.22)

Substituting formula (9.22) into the right side of (9.19) gives the recursion for the first-order continuation value:

(9.23)

We produce a solution by “guess and verify.” Suppose that

(9.24)

It follows from (9.23) that

(9.25)

Deduce the second equation by observing that

is distributed as a log normal. The solutions to equations (9.25) are:

The continuation value has two components. The first is:

and the second component is a constant long-run risk adjustment given by:
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t+1 − Ĉ 1
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t =

(
λ

1 − γo
) logE(exp [(1 − γo) [(V̂ 1

t+1 − Ĉ 1
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2.∣ ∣Remark 9.5



This second term is the variance of

(9.26)

conditioned on  scaled by .

The formula for  depends on the parameter . Moreover,  has a well-defined limit as  tends to

unity as does the variance of (9.26). This limiting variance:

converges to the variance of the martingale increment of .

Consider the logarithm of the uncertainty-adjusted continuation value approximated to the first order.

Note that from (9.24),

Substitute this expression into formula (9.22) and use the formula for the mean of random variable

distributed as a log normal to show that

Associated with the first-order approximation, we construct:

Equation (9.22) is a standard risk-sensitive recursion applied to log-linear dynamics. For instance, see [Tallarini,

2000]’s paper on risk-sensitive business cycles and [Hansen et al., 2008]’s paper on measurement and

inference challenges created by the presence of long-term risk.[4] Both of those papers assumed a logarithmic

one-period utility function, so that for them  Here we have instead obtained the recursion as a first-order

E[
∞

∑
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λj (Ĉ 1
t+j − Ĉ 1

t+j−1) ∣ At+1] = (1 − λ)E[
∞

∑
j=1

λj (Ĉ 1
t+j − Ĉ 1

t ) ∣ At+1]

At
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N 0
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.

ρ = 1.
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approximation without necessarily assuming log utility. Allowing for  to be different than one shows up in both

the order zero and order one approximations, as reflected in (9.18) and (9.23), respectively. In accordance to

(9.23), for the first-order approximation the parameter  when . But otherwise, it is different.

Equation (9.22) also is very similar to a first-order approximation proposed in [Restoy and Weil, 2011]. Like

formula (9.22), [Restoy and Weil, 2011] allow for  In contrast, our equation has an explicit constant term

coming from the uncertainty adjustment, and we have explicit formula for  that depends on preference

parameters and the consumption growth rate.

The calculation reported in Remark 9.7 implies that

As a consequence, under the change in probability measure induced by  has a mean

given by

and with the same covariance matrix given by the identity. This is an approximation to robustness

adjustment expressed as an altered distribution of the underlying shocks. It depends on 

as well as the state dynamics as reflected by  and by the shock exposure vectors  and . As

we will see, this change of measure plays a role in the higher-order approximation, but it also gives a

low-order representation of the implied shadow or market one-period compensation for exposure to

uncertainty. It captures the following insight from “long-run risk” models: investor concerns of long-

term uncertainty impacts short-term asset valuation. In contrast to the “long-run risk” literature, our

analysis opens the door to a different interpretation. Instead of aversion to risk it reflects an aversion to

the misspecification of to models or simplified perspectives on macroeconomic dynamics.

As we noted in Remark Remark 9.6,  is approximately the martingale component

of the logarithm of consumption when  is close to one. In section:var we showed that the variance of

this component is challenging to estimate, a point originally made by [Hansen et al., 2008]. This

finding is part of the reason that we find it important to step back from rational expectations and limit

investors confidence in the models they use for decision making.

9.5.3. Order two
Differentiating equation (9.3) a second time gives:

ρ

λ = β ρ = 1

ρ ≠ 1.
λ

logN 0
t+1 = (1 − γo)(V̂ 1

t+1 − R̂1
t) = (1 − γo) (υ1

′ψw′ + κw′)Wt+1

−
(1 − γo)2

2
|υ1

′ψw′ + κw′ |2

N 0
t+1, Wt+1

μ0 def
= (1 − γo)(υ1

′ψw′ + κw′)′

= (
1
ξo
)(υ1

′ψw′ + κw′)
′

γo − 1 = 1
ξo

υ1 ψw′ κw′

(υ1
′ψw′ + κw′)Wt+1

λ
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Equivalently,

Rewrite transformations (9.20) and (9.21) as

Differentiating twice with respect to  and evaluated at  gives:

Differentiating (9.21) with respect to  gives:

and thus

(9.27)

where subtracting  from  gives:

(9.28)

Substituting this formula into (9.27) gives:
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t )

2
.
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t )
2
.
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dq
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dq
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dq
∣ At)
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.
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t = 2R̃1

t = 2E (N 0
t+1Ṽ

1
t+1 ∣ At) = E (N 0

t+1V̂
2
t+1 ∣ At),

Ĉ 2
t R̂2

t

R̂2
t − Ĉ 2

t = E [N 0
t+1 (V̂

2
t+1 − Ĉ 2

t+1)+ (Ĉ 2
t+1 − Ĉ 2

t ) ∣ At].



(9.29)

Even if the second-order contribution to the consumption process is zero, there will be nontrivial adjustment to

the approximation of  because  is different from zero. This term vanishes when  and

its sign will be different depending on whether  is bigger or smaller than one.

9.6. Stochastic discount factor approximation
We approximate  in formula (9.8) as

where

We now consider two different approaches to approximating .

9.6.1. Approach 1

Write

V̂ 2
t − Ĉ 2

t = λE(N 0
t+1 [(V̂

2
t+1 − Ĉ 2

t+1)+ (Ĉ 2
t+1 − Ĉ 2

t )] ∣ At)

+ (1 − ρ)(1 − λ)λ(R̂1
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t )
2
.

V̂ − Ĉ (R̂1 − Ĉ 1)
2

ρ = 1,

ρ
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1
2
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t ]
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def
= logβ − ρη0

c
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t

def
= −Ĉ 1
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t+1 − Ĉ 1
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t )

N ∗
t+1

N ∗
t+1 =

exp [(1 − γo)Ṽt+1]
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Form the ``first-order’’ approximation:

We combine a first-order approximation of  with a second-order approximation of :

which preserves the quadratic approximation of . Note that If we were to use a second-order

approximation of , it would push us outside the class of exponentially quadratic stochastic discount

factors.

9.6.2. Approach 2

Next consider an alternative modification of Approach 1 whereby:

(9.30)

and  is used in conjunction with

By design, this approximation of  will have conditional expectation equal to one in contrast to the

approximation used with Approach 1. With a little bit of algebraic manipulation, it may be shown that this

approximation induces a distributional change for  with a conditional mean that is affine in  and an

altered conditional variance matrix that is constant over time.

logN ∗
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def
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To understand better this choice of approximation, consider the family of random variables (indexed by )

The corresponding family of exponentials has conditional expectation one and the  member is the

proposed approximation for  Differentiate the family with respect to :

Thus this family of random variables has the same first-order approximation in  as the one we derived

previously for .

As a change of probability measure, this approximation will induce state dependence in the conditional mean

and will alter the covariance matrix of the shock vector. We find this approach interesting because it links back

directly to the outcome of the robustness formulation we described in Section 3.1.

9.7. Solving a planner’s problem with recursive utility
The [Bansal and Yaron, 2004] example along with many others building connections between the macro

economy and asset value take aggregate consumption as pre-specified. As we open the door to a richer

collection of macroeconomic models, it becomes important to entertain more endogeneity, including investment

and other variables familiar to macroeconomics.

Write a triangular system with stochastic growth as:

(9.31)

where  is a date  decision vector for the planner. Define  In addition, we impose

(9.32)

where the first equation is a vector of static constraints and the second constructs the measure of consumption

that enters preferences.

We extend the approximations by using a co-state formulation. There are two essentially equivalent

interpretations of these co-states. One is they function as a set of Lagrange multipliers on the state evolution

equations. The other is that they are partial derivatives of value functions. The co-state equations are forward-

q

(1 − γo)(Ṽ 0
t+1 + qṼ 1

t+1)− logE(exp [(1 − γo)(Ṽ 0
t+1 + qṼ 1

t+1)] ∣ At).

q = 1
N ∗

t+1. q

Ṽ 1
t+1 −

E(exp [(1 − γo)Ṽ 0
t+1]Ṽ

1
t+1 ∣ At)

E(exp [(1 − γo)Ṽ 0
t+1] ∣ At)

= Ṽ 1
t+1 − R̃1

t .

q

logN ∗
t+1

Xt+1 (q) = ψx [Dt (q),Xt (q), qWt+1, q]
logGt+1 (q) − logGt (q) = ψg [Dt (q),Xt (q, ), qWt+1, q],

Dt t Ĝt = logGt.

0 = ϕ[Dt(q),Xt(q)]

Ĉt (q) = κ [Dt (q),Xt (q)] + Ĝt (q).
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looking, linking next period’s co-state vector to this period’s co-state vector. Given the recursive utility structure,

we must include the implied value functions in the computations as they enter the relations of interest.

The first-order conditions for  are:

(9.33)

where  and  are the co-states, or the implicit multipliers one for each the state evolutions and

 is a multiplier on the first static constraint in (9.32). Recall that 

used for making an uncertainty adjustment in valuation.

In addition, we solve a forward-looking co-state equation given by

(9.34)

The approximation formulas, (9.22), (9.23), (9.28), (9.29), that we deduced previously for  and

 have and immediate counterparts for  and , from which can build an approximation

of 

From recursive utility updating equation:

Dividing by both sides of the equation by  gives

From the relation, we see that  for  satisfies the second block of co-state equation (9.34). In

fact, this is the solution of interest.

D

(1 − β) exp [(1 − ρ)(Ĉt − V̂t)]κd(Dt,Xt) + ϕd′(Dt,Xt)′MSt

+ β exp [(1 − ρ)(R̂t − V̂t)]E (N ∗
t+1ψ

x
d′(Dt,Xt, qWt+1, q)′MXt+1 ∣ At)

+ β exp [(1 − ρ)(R̂t − V̂t)]E (N ∗
t+1ψ

g

d′(Dt,Xt, qWt+1, q)′MGt+1 ∣ At)

= 0.

MXt+1 MGt+1

MSt N ∗
t+1 = exp [(1 − γ)(V̂t+1 − R̂t)]

[ ] = (1 − β) exp [(1 − ρ)(Ĉt − V̂t)] [ ] + [ ]

+ β exp [(1 − ρ)(R̂t − V̂t)]×

E(N ∗
t+1 [ ] [ ] ∣ At).

MXt

MGt

κx(Dt,Xt)
1

ϕx(Dt,Xt)′MSt

0

ψx
x′(Dt,Xt, qWt+1, q)′ ψ

g
x′(Dt,Xt, qWt+1, q)′

0 1

MXt+1

MGt+1

V̂t − Ĉt

R̂t − Ĉt V̂t − Ĝt R̂t − Ĝt

R̂t − V̂t.

exp [(1 − ρ)V̂t] = (1 − β) exp [(1 − ρ)Ĉt]+ β exp [(1 − ρ)R̂t].

exp [(1 − ρ)V̂t]

1 = (1 − β) exp [(1 − ρ)(Ĉt − V̂t)]+ β exp [(1 − ρ)(R̂t − V̂t)].

MGt = 1 t ≥ 0



9.7.1. An example economy with long-run uncertainty

Consider an AK model with recursive utility and adjustment costs.

The exogenous state dynamic capture both long-run uncertainty in the mean growth rate and the overall

volatility in the economy.

(9.35)

The state variable,  is included to capture stochastic volatility. The discrete-time dynamics for 

approximate a continuous-time version of what is called a square root process due to Feller. Let

With these exogenous dynamics, we obtain the following zero and first-order approximations:

and

We impose the resource constraint:

The endogenous state dynamics are given by:

Z1,t+ϵ − Z1,t = − ν1Z1,t + exp(
1
2
Z2,t)σ1Wt+1

Z2,t+1 − Z2,t = − ν2 [1 − μ2 exp (−Z2,t)]

−
1
2

|σ2|2 exp (−Z2,t) + exp(−
1
2
Z2,t)σ2Wt+1.

Z2,t {exp(Z2,t)}

Xt = [ ].
Z1,t

Z2,t

Z 0
1,t = 0 exp (Z 0

2,t) = μ2,

Z 1
1,t+1 − Z 1

1,t = − ν1Z
1
1,t +√

1
μ 2

σ1Wt+1

Z 1
2,t+1 − Z 1

2,t = − ν2Z
1
2,t +√

1
μ2

σ2Wt+1.

Ct + It = αKt.

K̂t+1 − K̂t = [
1
ζ

log(1 + ζ
It

Kt

) + νkZ1,t − ιk]

−
1
2

|σk|2 exp (Z2,t) + exp(
1
2
Z2,t)σkWt+ϵ



where . The planner choice variable . Rewrite the current-period resource

constraints as:

(9.36)

Express the first-order conditions for the consumption-capital and investment-capital ratios as:

(9.37)

It is convenient to rewrite the first-order conditions for the consumption-capital ratio as:

which in turn implies that

More generally, we will seek to approximate , as we expect the multiplier  to be positive.

Notice that these first-order conditions do not depend on the co-state process . We may solve

this planner’s problem using (9.37) and up-dating the continuation value processes and its uncertainty-adjusted

counterpart until convergence. When ,  drops out of the first-order conditions and both

components of  are constant since

When ,  depends on the exogenous state .

9.7.2. First-order approximation when 

We obtain the following zero and first-order approximations for the exogenous dynamics:

and

K̂t = logKt = Ĝt Dt = ( Ct

Kt
, It
Kt
)

0 = α − D1,t − D2,t

Ĉt − Ĝt = logD1,t.

0 = −MSt +
1 − β

D1,t
exp [(1 − ρ)(Ĉt − Ĝt)]

0 = −MSt + exp [(1 − ρ)(R̂t − Ĝt)](
β

1 + ζD2,t
)

logMSt + logD1,t = log(1 − β) + (1 − ρ)(Ĉt − Ĝt),

logMSt = log(1 − β) − ρ(Ĉt − Ĝt).

logMSt MSt

{MXt : t ≥ 0}

ρ = 1 R̂t − Ĝt

Dt

MSt =
1

D1,t
=

1
α − D2,t

.

ρ ≠ 1 Dt Xt

ρ = 1

Z 0
1,t = 0 exp (Z 0

2,t) = μ2,



The first-order conditions for  imply that:

Solving for  gives:

which is independent of the state, as should be expected since  From the capital evolution it follows from

the order zero approximation is

The order one approximation is then:

Stochastic volatility, as in the [Bansal and Yaron, 2004] model of consumption dynamics, will be present in the

second-order approximation.

9.7.3. Second-order approximation when 

We next consider the second-order approximations. The second-oder approximation for  does not

contribute to the planner’s solution or to the implied shadow prices and thus we drop it from the analysis. For the

remaining two state variables, we find that

where we previously noted that  evolves as first-order autoregression.

The combined approximation for  uses:

Z 1
1,t+1 − Z 1

1,t = − ν1Z
1
1,t + √μ2σ1Wt+1

Z 1
2,t+1 − Z 1

2,t = − ν2Z
1
2,t +√

1
μ2

σ2Wt+1.

D2,t

1 − β

α − D
+

β

1 + ζD
= 0.

D

D∗
2,t =

(β − 1) + βα

β + (1 − β)ζ
,

ρ = 1.

K̂ 0
t+1 − K̂ 0

t = [
1
ζ

log (1 + ζD∗
2,t) − ιk].

K̂ 1
t+1 − K̂ 1

t = νkZ
1
1,t + √μ2σkWt+1.

ρ = 1
{Z2,t}

Z 2
1,t+1 − Z 2

1,t = − ν1Z
2
1,t − μ2|σ1|2 + √μ2Z

1
2,tσ1Wt+1

K̂ 2
t+1 − K̂ 2

t = − μ2|σk|2 + √μ2Z
1
2,tσkWt+1

{Z 1
2,t}

q = 1
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The approximate dynamics for the exogenous states remains the same for  but the solution for 

becomes state dependent and the approximate dynamic evolution for capital is altered.

9.7.4. Shock elasticities
We use the shock elasticities to explore pricing implications of this recursive utility specification. In what follows,

we use exponential/linear/quadratic implementation by [Borovička and Hansen, 2014] and by [Borovička and

Hansen, 2016] with the parameter configuration given in Table 1 of [Hansen et al., 2024]. This latter reference

combines inputs from other sources including [Schorfheide et al., 2018] and [Hansen and Sargent, 2021].

Fig. 9.1 gives the shock exposure elasticities for consumption to each of the three shocks. They can be

interpreted as nonlinear local impulse responses for consumption (in levels not logarithms). The elasticities for

the growth rate shock and the stochastic volatility shock start small and increase over the time horizon as

dictated by the persistence of the two exogenous state variable processes. The elasticities for the direct shock

to capital are flat over the horizon as to be expected since the shock directly impacts log consumption in a

manner that is permanent. Notice that while elasticities for the volatility shock are different from zero, their

contribution is much smaller than the other shocks. Stochastic volatility does induce state dependence for the

other elasticities as reflected by the quantiles.[5]

Z1,t+1 − Z1,t ≈ − ν1Z1,t

−
μ2|σ1|2

2
+ √μ2σ1Wt+1 +

μ2Z2,t

2
σ1Wt+1

Z2,t+ϵ − Z2,t ≈ − ν2Z2,t +√
1
μ2

σ2Wt+1

K̂t+1 − K̂t ≈ [
1
ζ

log (1 + ζD∗) − ιk] + νkZ1,t

−
μ2|σk|2

2
+ √μ2σkWt+1 +

μ2Z2,t

2
σkWt+1.

ρ ≠ 1, D∗
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Fig. 9.1 Exposure elasticities for three shocks. 

Fig. 9.2 gives the shock price elasticities for growth-rate shock when  and . Stochastic volatility

induces state dependence in these plots as reflected by the quantiles. The recursive utility preferences are

forward-looking as reflected by the continuation-value contribution to the one-period increment to the

stochastic discount factor process (see (9.8)). This forward-looking contribution is reflected in shock price

elasticities that are relatively flat for the growth rate shock as is evident from the second column. The shock

price elasticity that is induced by uncertainty alone is flat since because the associated multiplicative functional

is a martingale.[6]

Fig. 9.2 Price elasticities for three shocks. 

Fig. 9.3 and Fig. 9.4 provide the analogous plots for Fig. 9.5 sets  which corresponds

to preferences that are time separable. The forward-looking component to the stochastic discount factor is shut

down as is evident from formula (9.8). Now the shock price elasticities and shock exposure elasticities show a

very similar trajectory except that the shock price elasticities are about eight times larger.

ρ = 1, γ = 8, β = .99.

ρ = 1 γ = 8

ρ = 1, γ = 8, β = .99.

ρ = 2/3, 3/2. ρ = γ = 8
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Fig. 9.3 Price elasticities for three shocks. 

Fig. 9.4 Price elasticities for three shocks. 

ρ = 2/3, γ = 8, β = .99.

ρ = 3/2, γ = 8, β = .99.
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Fig. 9.5 Price elasticities for three shocks. 

9.7.5. An alternative model of intertemporal
substitution/complementarity.

We now extend the preference specification of the consumers in the AK model of Section 9.7.1 to explore

implications of time nonseparability in preferences. We are motivated to do so by rather substantial previous

literetaure. An important earlier contributor is [Ryder and Heal, 1973], who solve a social planner’s problem with

stochastic growth. [Sundaresan, 1989], [Constantinides, 1990], [Heaton, 1995], and [Hansen et al., 1999]

consider asset pricing implications with internal habit persistence. These papers essentially explore

decentralizations of the planner’s problem. The latter paper considers simultaneously a recursive robustness

specification as we will do here, although for a different model specification.

To accomplish this, we introduce an additional state variable, which we will call the habit stock, . This stock

evolves as:

where  is a depreciation rate. We think of this new investment =  as measured consumption.

Notice that the sum of the coefficients on the right side of the evolution equation sum to one. This allows us to

interpret  as a geometric average of current and past values of measured consumption.

We write evolution equation in logarithms as

For numerical purposes, we transform this equation to be:

ρ = 8, γ = 8, β = .99.

Ht

Ht+1 = exp(−νh)Ht + [1 − exp(−νh)]Ih,t.

νh > 0 Ih,t

Ht+1

logHt+1 = log [exp(−νh + logHt) + [1 − exp(−νh)]Ih,t].
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where we treat  as one of the components of  and we substitute the evolution of 

to depict the evolution of this component. As previously, .

We impose the output constraint as:

where  is the investment in the capital stock. Analogous to previous formulation, we transform this equation

to be:

where  and  are the two components of .

What enters the utility function each date inside the recursive utility preference specification is the CES

aggregate:

(9.38)

for . This specification captures a form of intertemporal complementarity and intertemporal substitution in

preferences. In static demand theory,  implies perfect substitutes, and when , the preferences

display a form of complementarity as reflected in the cross price effects on demand. In the limiting case when 

approaches , preferences treat the two inputs as perfect complements and consumed in fixed proportions.

There is a different notion of intertemporal complementarity as originally defined by [Ryder and Heal, 1973].

Under this notion, increasing , keeping  fixed should decrease . (They impose other restrictions.) This

form of intertermporal complementarity can instead be captured by letting . Effectively,  is a “bad’’ not

a “good,’’ in the CES aggregator. Setting  captures a form of consumption durability.

For computational purposes, we divide both sides of (9.38)`by  and take logarithms:

(logHt+1 − logKt+1)

= logKt − logKt+1 + log [exp(−νh + logHt − logKt) + [1 − exp(−νh)](
Ih,t

Kt

)]

= − [
1
ζ

log(1 + ζ
It

Kt
) − νkZ1,t + ιk] +

1
2

|σk|2 exp (Z2,t) − exp(
1
2
Z2,t)σkWt+ϵ

+ log [exp(−νh + logHt − logKt) + [1 − exp(−νh)](
Ih,t

Kt
)]

logHt − logKt Xt logKt+1

Ĝt = logKt

Ih,t + Ik,t = αKt

Ik,t

Ih,t

Kt

+
Ik,t

Kt

= α

Ih,t

Kt

Ik,t

Kt
Dt

Ct = [(1 − λ)(Ih,t)
1−τ + λ(Ht)

1−τ]
1

1−τ

τ ≥ 0
τ = 0 τ > 1

τ

+∞

Ht Ih,t Ct

λ < 0 Ht

0 < λ ≤ 1

Kt

logCt − logKt =
1

1 − τ
log[(1 − λ)(

Ih,t

Kt

)
1−τ

+ λ exp [(1 − τ) (logHt − logKt)]]
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Consistent with the habit-persistence literature, we allow the parameter  to be negative. When  is one, this

becomes a Cobb-Douglas specification:

The asset pricing literature often features the computationally more challenging case in which 

and . The local approximation methods we describe here could give particularly poor

approximations for this parameter configuration.

For simplicity, consider the case in which . Recall that  also impacts intertemporal substitution in

preferences so by setting it to one we feature the novel contribution coming from this dynamic specification of

preferences. The first-order conditions for  are:

Consider now the special case in which  In the case the co-state  should be zero. From the first-

order conditions for , we find that

More generally,

This depicts the marginal value of  in terms of both a current marginal utility contribution and a forward-

looking piece coming from the planner internalizing the intertemporal contribution to preferences. We choose to

use  as the date  numeraire instead of , as the former is measured consumption. In light of this choice,

the logarithm of the one-period stochastic discount factor is

λ τ

logCt − logKt = (1 − λ) (log Ih,t − logKt) + λ (logHt − logKt)

τ = 0.
λ < 0

ρ = τ = 1 ρ

Dt

(1 − β)[ ]− [ ]MSt + E N ∗
t+1 MXt+1 ∣ At

+ β[ ]E (N ∗
t+1MGt+1 ∣ At) = 0.

1−λ
D1,t

0

1
1

⎡⎢⎣ ⎡⎢⎣ βKt[1−exp(−νh)]
exp(Xt+1)Kt+1

0 0

1
1+ζD2,1

0 0

⎤⎥⎦ ⎤⎥⎦0
1

1+ζD2,1

λ = 0. MXt+1

D1,t

MSt = (1 − β)(
1

D1,t
)

MSt = (1 − β)(
1 − λ

D1,t
) + E(N ∗

t+1 [ ]MXt+1 ∣ At).βKt[1−exp(−νh)]
exp(Xt+1)Kt+1

0 0

MSt

Ih,t t Ct

Ŝt+1 − Ŝt = logβ + logMSt+1 − logMSt + K̂t+1 − K̂t.

Remark 9.9



In our calculations, we approximate  since it enters this formula for the logarithmic stochastic discount

factor construction.

Figure Fig. 9.6 explores the median exposure elasticities for the investment-capital ratio as a function of the

parameter . Recall that these elasticities can be viewed as local impulse responses. The responses are

different for the two shocks. For the growth-rate shock, with habit persistence ( ), there is an immediate

decline followed by an eventual increase. In contrast, for durability (  just the opposite happens. Given

the restriction on output, the consumption/capital ratios have an offsetting response. For the direct shock to the

technology, with habit persistence, the investment-capital ratio increases and monotonically declines to zero as

a function of the investment horizon. Again, under consumption durability, the response is essentially the mirror

image of this. Figure Fig. 9.7 provides the  and  quantiles as induced by stochastic volatility for the two

shocks. Overall, we see that investment/capital and consumption/capital responses are noticeably sensitive to

the choice of .

Fig. 9.6 Investment/capital exposure elasticities for the growth and capital shocks with different values of 

logMSt

λ

λ = 1
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Fig. 9.7 Investment/capital exposure elasticities for the growth shock with different values of  and elasticity

quantiles.

We next consider the shock price elasticities for the growth shock. Fig. 9.8 reports the elasticities for three

values of  and . Recall that  is equivalent to investors having no concerns about robustness. Since

 this figure repeats earlier results and is included here for comparison. As we noted in previous

discussion, these elasticities increase in the value of  ( increase in the concern about robustness) and become

very flat for larger values of  as the martingale component to the stochastic discount factor process comes to

dominate. Fig. 9.9 considers the growth shock price elasticities when . These elasticities are similar to

the ones reported for  in Fig. 9.8, although there is small drop in the magnitudes relative the 

specifcation. Fig. 9.10 explores the same elasticities when . We now see a modest increase in the shock

price elasticities relative to the two previous figures.

Fig. 9.8 Price elasticities for the growth shock for  and different values of .

Fig. 9.9 Price elasticities for the growth shock for  and different values of .

λ
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Fig. 9.10 Price elasticities for the growth shock for  and different values of .

Overall, we see that investment/capital and consumption/capital impulse responses are noticeably sensitive to

the choice of , which should be expected given the impact of this parameter on intertemporal substitution in

preferences. In contrast,  has a small impact on the shock price elasticities. These elasticities are, however,

notably sensitive to the choice of  which is consistent with recursive utility construction of uncertainty

aversion.

[Pollak, 1970] introduced a version of external habit persistence in consumer demand function. The stock 

enters preferences as a societal or external input and not recognizable as an individual input in the current time

period. Thus there is an externality induced by this specification of preferences. [Abel, 1990] and [Campbell and

Cochrane, 1999] explore implications along with many subsequent papers explore asset pricing with external

habit persistence. Much of the latter literature abstracts from production, but there are exceptions. See for

instance, [Lettau and Uhlig, 2000]. The equilibrium solution with external habit persistence deviates from the

planner problem in that the co-state for  is now zero and the co-state equation is omitted from the equations

to be solved and approximated.

9.7.6. External habits model

λ = −10 γ

λ

λ

γ,
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Ht
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Fig. 9.11 Investment/capital exposure elasticities for the growth and capital shocks with different values of 

Please note that the axes in the left panel on the graph below are scaled 0.01 times relative to the right panel.

Fig. 9.12 Investment/capital exposure elasticities for the growth shock with different values of  and elasticity

quantiles.

9.8. Solving models
In this section, we briefly describe one way to extend the approach that builds directly on previous second-order

approaches of [Kim et al., 2008], [Schmitt-Grohé and Uribe, 2004], and [Lombardo and Uhlig, 2018]. While

such methods should not be viewed as being generically applicable to nonlinear stochastic equilibrium models,

we find them useful pedagogically and often as at least initial steps to understanding models that are arguably

“smooth.” See [Pohl et al., 2018] for a careful study of nonlinearity in asset pricing models with recursive utility.[7]

We implement these methods for second-order approximation using the following steps.

1. Solve for  deterministic model.

2. Take as given first and second-order approximate solutions for  and . Solve for the

approximate solutions for  and 

3. Compute the first-order expansion and solve the resulting equations following the previous literature for

 and  When constructing these equations, use expectations computed using the

probabilities induced by . Substitute the first-order approximation for 

4. Compute the second-order expansion and solve the resulting equations following the previous literature.

Again use the expectations induced by . In addition, make another recursive utility adjustment

expressed in terms the approximations of 

5. Return to step 2, and repeat until convergence.

λ.

λ

q = 0

Ĉt − Ĝt Ĝt+ϵ − Ĝt.

V̂t − Ĝt, V̂t+ϵ − R̂t Nt+ϵ.

Dt, Ĉt − Ĝt, Ĝt+ϵ − Ĝt.

N 0
t+ϵ R̂t − Ĝt.

N 0
t+ϵ

R̂t − Ĝt.
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Initialize this algorithm by solving the  and  which can be solved without iteration.

See the Appendices that follow for more details and formulas to use in the solution method.

As a second approach we iterate over an  given by formula (9.30) approximation restricted to induce an

alternative probability distribution. Call the approximation  with an induced distribution for  that is

normal with conditional mean  and covariance matrix .

While we discussed the approximation for resource allocation problems with recursive utility, there is a direct

extension of this approach to solve a general class stochastic equilibrium models by stacking a system of

expectational-type equations expressed in part using the recursive utility stochastic discount factor that we

derived. For resource allocation problems, we expressed the first-order conditions for the planner in utility units,

which simplified some formulas. Equilibrium models not derived from a planner’s problems typically use

stochastic discount factors expressed in consumption units when representing investment choices. The

approximation methods described in this chapter have a direct extension to such models.

9.9. Appendix A: Solving the planner’s problem
Write the system of interest, including the state equations (9.31), the consumption equation and static constraint

(9.32), the first-order conditions (9.33), and the co-state evolution (9.34) as:

where

γo = 1 ρ = 1,

N ∗
t+ϵ

Ñt+ϵ Wt+ϵ

~μt Σ̃

Xt+1 (q) = ψx [Dt (q),Xt (q), qWt+1, q],
logGt+1 (q) − logGt (q) = ψg [Dt (q),Xt (q, ), qWt+1, q],

Ĉt (q) = κ [Dt (q),Xt (q)] + Ĝt (q),
0 = ϕ[Dt(q),Xt(q)],

QtE (Nt+1Ht+1 ∣ At) + PtLt − Mt = 0



Here, for computational purposes, we use that . We solve for

 as a function of . The objects:  and  are sometimes referred to as jump

variables since we not impose initial conditions for these variables as part of a solution.

Our solution will entail an iteration. We will impose a specification for  and  and find an approximate

solution for the dynamical system. Then given this solution, we will compute a new implied solution for 

and . We then iterate this until we achieve numerical convergence. We use second-order approximations for

both steps.

9.9.1. Some steady state calculations
Observe from the recursive utility updating that:

In the steady state we view this as two equations in three variables:  and , each

of which we assume is time invariant.

We construct

Qt

def
= β exp [(1 − ρ)(R̂t − V̂t)]

Pt

def
= (1 − β) exp [(ρ − 1)(V̂t − Ĝt)]

Ht+1
def
= [ ] 

Lt

def
=

Mt

def
= + MSt.

⎡⎢⎣ψx
d′(Dt,Xt,Wt+1)′ ψ

g

d′(Dt,Xt,Wt+1)

ψx
x′(Dt,Xt,Wt+1)′ ψ

g
x′(Dt,Xt,Wt+1)′

ψx
g′(Dt,Xt,Wt+1)′ 1

⎤⎥⎦ MXt+1

MGt+1

⎡⎢⎣exp [(1 − ρ)(Ĉt − Ĝt)]
⎡⎢⎣κd(Dt,Xt)
κx(Dt,Xt)

1

⎤⎥⎦⎤⎥⎦⎡⎢⎣ 0
MXt

MGt

⎤⎥⎦ ⎡⎢⎣ϕd′(Dt,Xt)′

ϕx′(Dt,Xt)′

0

⎤⎥⎦Ĉt − V̂t = (Ĉt − Ĝt)− (V̂t − Ĝt)

Ĉt − Ĝt,Dt,MXt Xt Ĉ − Ĝ,D MX

Q1,Q2, N

Q1,Q2,
N

V̂ 0
t − Ĝ0

t =
1

1 − ρ
log [(1 − β) exp [(1 − ρ)(Ĉ 0

t − Ĝ0
t)]+ β exp [(1 − ρ)(R̂0

t − Ĝ0
t)]]

R̂0
t − Ĝ0

t = V̂ 0
t+1 − Ĝ0

t+1 + Ĝ0
t+1 − Ĝ0

t .

V̂ 0
t − Ĝ0

t , R̂
0
t − Ĝ0

t Ĝ0
t+1 − Ĝ0

t

Q0
t =β exp [(1 − ρ)(R̂0

t − V̂ 0
t )]

=β exp [(1 − ρ)(Ĝ0
t+1 − Ĝ0

t)],



and

in the steady state, and use them to construct the remaining steady-state equations:

In this equation,  and  are constructed from the formulas for  M_t$, defined previously,

by setting the shock vector to zero and treating the relevant variables as time invariant.

9.9.2.  and  derivatives

For the order one, write

To compute this contribution, we equation (9.19) to write

We then construct

To compute , we rewrite (9.23) as:

and solve this equation forward by first computing the  answer and then adjusting this answer for

 analogous to the approach described in Remark 9.5.

For the order two approximation,

P 0
t = (1 − β) exp [(ρ − 1)(V̂ 0

t − Ĝ0
t)]

Q0
tH

0
t+1 + P 0

t − M 0
t = 0.

H 0
t+1,L0

t , M 0
t Ht+1,Lt

Q P

Q1
t

def
= (1 − ρ)Q0

t (R̂
1
t − V̂ 1

t )

R̂1
t − Ĉ 1

t =
1
λ
(V̂ 1

t − Ĉ 1
t ).

R̂1
t − V̂ 1

t =(R̂1
t − Ĉt)+ (Ĉ 1

t − V̂t)

=(
1 − λ

λ
) [(V̂ 1

t − Ĝt)− (Ĉt − Ĝt)].

V̂t − Ĝt

V̂ 1
t − Ĝ1

t = (1 − λ)(Ĉ 1
t − Ĝ1

t)

+ (
λ

1 − γo
) logE(exp [(1 − γo) [(V̂ 1

t+1 − Ĝ1
t+1)+ (Ĝ1

t+1 − Ĝ1
t)]] ∣ At)

γo = 1
γo > 1



Express:

It follows from (9.29) that

which we solve this equation forward under the  implied change in probability measure. Form:

The  approximations use some of these same computations where

9.9.3.  derivatives

Form:

Q2
t

def
= (1 − ρ)2Q0

t(R̂
1
t − V̂ 1

t )
2

+ (1 − ρ)Q0
t (R̂

2
t − V̂ 2

t ).

R̂2
t − V̂ 2

t = (R̂2
t − Ĝ2

t)− (V̂ 2
t − Ĝ2

t).

V̂ 2
t − Ĝ2

t = λE(N 0
t+1 [(V̂

2
t+1 − Ĝ2

t+1)+ (Ĝ2
t+1 − Ĝ2

t)] ∣ At)

+ (1 − λ)(Ĉ 2
t − Ĝ2

t)+ (1 − ρ)(1 − λ)λ(R̂1
t − Ĝ1

t + Ĝ1
t − Ĉt)

2
,

N 0

R̂2
t − Ĝ2

t =(
1
λ
)(V̂ 2

t − Ĝ2
t)− (

1 − λ

λ
)(Ĉ 2

t − Ĝ2
t)

− (1 − ρ)(1 − λ)(R̂1
t − Ĝ1

t + Ĝ1
t − Ĉt)

2
.

P

P 0
t

def
=(1 − β) exp [(ρ − 1)(V̂ 0

t − Ĝ0
t)]

P 1
t

def
=(ρ − 1)P 0

t (V̂
1
t − Ĝ1

t)

P 2
t

def
=(ρ − 1)2P 0

t (V̂
1
t − Ĝ1

t)
2

+ (1 − ρ)P 0
t (V̂

2
t − Ĝ2

t).

N

N 0
t+1

def
= exp [(1 − γo)(Ṽ 0

t+1 − R̃0
t)] = exp [(1 − γo)(V̂ 1

t+1 − R̂1
t)]

N 1
t+1

def
=

d

dq
exp [(1 − γo)(Ṽt+1 − R̃t)]

q=0

= (1 − γo)N 0
t+1 (Ṽ

1
t+1 − R̃1

t)

= (
1 − γo

2
)N 0

t+1 (V̂
2
t+1 − R̂2

t). ∣



It may be directly verified that  and  have conditional expectations equal to zero. Express

(9.39)

In producing these representations, we use that have conditional  and  have mean zero

under the conditional probability distribution induced by 

9.10. Appendix B: Approximation formulas (approach
one)
Consider the equation:

not including the state evolution equations.

9.10.1. Order zero

The order zero approximation of the product:  is:

Thus the order zero approximate equation is:

since  has conditional expectation equal to one. We add to this subsystem the  state dynamic

equation inclusive of jump variables, and we compute a stable steady state solution.

9.10.2. Order one

The order one approximation of the product:  is:

V̂ 1
t+1 − R̂1

t =(V̂ 1
t+1 − Ĝ1

t+1)+ (Ĝ1
t+1 − Ĝ1

t)− (R̂1
t − Ĝ1

t)

V̂ 2
t+1 − R̂2

t =(V̂ 2
t+1 − Ĝ2
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t+1 − Ĝ2

t)− (R̂2
t − Ĝ2

t).

N 1
t+1 N 2

t+1

V̂ 1
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1

1 − γo
)[μ0 ⋅ (Wt+1 − μ0) +

1
2
μ0 ⋅ μ0]

V̂ 2
t+1 − R̂2

t =
1
2
(Wt+1 − μ0)

′
Υ2

2 (Wt+1 − μ0) −
1
2

tr (Υ2
2)

− (Wt+1 − μ0)
′
(Υ2

1X
1
t + Υ2

0).

V̂ 2
t+1 − R̂2

t V̂ 2
t+1 − R̂2

t

N 0
t+1.

QtE (Nt+1Ht+1 ∣ At) + PtLt − Mt = 0.

Nt+1QtHt+1 + PtLt − M0

Q0
tN

0
t+1H

0
t+1 + P 0

t L
0
t − M0 = 0

Q0
tE [N 0

t+1 (H
0
t+1) ∣ At] + L0

t+1 = Q0
tH

0
t+1 + P 0

t L
0
t − M0 = 0

N 0
t+1 q = 0

QtNt+1Ht+1 + PtLt − Mt



Thus the order one approximate equation is:

where we used the implication that 

9.10.3. Order two
The order two approximation of the product:  is:

The terms  and  have conditional expectation equal to zero. Thus the

approximating equation is:

To elaborate on the contributions in the second line, express  as

(9.40)

Then

The formula for the first of these terms follows from (9.39) and (9.40), along with fact the third central moments

of normals are zero.

Q1
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We add to this second-order subsystem, the second-order approximation of the state dynamics inclusive of the

jump variables. We substitute in the solution for the first-order approximation for the jump variables into both the

first and second-order approximate state dynamics. In solving the second-order jump variable adjustment we

use expectations induced by  zero throughout under which  is conditionally normally distributed with

mean  and covariance .

9.11. Appendix C: Approximation formulas (approach
two)
In this approach we use the same order zero approximation. For the order one approximation, we use the

formula (9.30) for  which approximates  in conjunction with:

(9.41)

From formula (9.39), it follows that under the  induced change in probability,  is normally distributed

with conditional mean

and conditional precision:

For the order two approximation, we use:

9.12. Appendix D: Parameter values
To facilitate a comparison to a global solution method, we write down a discrete-time approximation to a

continuous time version of such an economy. (See Section 4.4 of [Hansen et al., 2024] for a continuous-time

benchmark model that our discrete-time system approximates. Note that we convert the annual parameters in

that paper to quarterly time.) The parameter settings are:
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[1]

[2]

[3]

[4]

[5]

[6]

[7]

The numbers for  and  are such that, when multiplied by stochastic volatility, they match the

parameters from [Hansen and Sargent, 2021]. In particular, the constant  which scales our  to match is

 which is the 67th percentile of our  distribution. While [Hansen and Sargent, 2021] use a lower

triangular representation for the two-by-two right block of

we use an observationally equivalent upper triangular representation for most of the results. Finally, the numbers

for  and  come from [Schorfheide et al., 2018], but they are adjusted for approximation purposes as

described in Appendix A [Hansen et al., 2024]. In both cases, we use the medians of their econometric evidence

as input into our analysis.

For the extension to the habit persistence model in Section 8.7.5, we use a habit persistence of .

In general, this exponential martingale formula produces a local martingale with conditional expectations

that might decline over time. There are a variety of sufficient conditions that may be checked to verify that

the constructed process is actually a martingale with unit expectation.

[Lombardo and Uhlig, 2018] provides a discussion of how their approach builds on more general

perturbation methods as discussed by [Holmes, 2012] and [Judd, 1998].

See, for instance, [Schmitt-Grohé and Uribe, 2004].

Consistent with overall message of the paper, the [Hansen et al., 2008] predictability evidence turned out

to be “fragile” and was modified and updated in [Hansen and Sargent, 2021] Appendix B. This same

appendix suggests a way to deduce a statistical approximation to the first order dynamics of [Bansal and

Yaron, 2004] from a more general VAR representation of the consumption dynamics.

It is notable that we are looking at levels and not logarithms of consumption. The local impulse response for

the logarithms of consumption is in fact zero for the stochastic volatility shock.

We normalized the stochastic volatility shock  to be negative implying that a positive shock reduces the

stochastic volatility state variable. Under this normalization, the shock price elasticities are positive.

[Pohl et al., 2018] provide examples of when log-linear or local methods of computation fail to provide good

approximations.
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