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8.1. Introduction
Local methods open the door to intertemporal characterizations of asset valuation. Such characterizations
have direct like to first-order conditions of investors. While macroeconomists often solve models and
analyze the implied impulse response using time series characterizations expressed in term of logarithms,
for asset valuation with compensation for uncertainty exposure, it is imperative to work with levels instead
of logarithms. Given the presence of stochastic growth contributions, we are led to explore perturbations
of multiplicative functions. We introduce multiplicative perturbations which in turn lead naturally to the
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use of elasticities as way to represent intertemporal compensations. This work builds on insights from
[Hansen and Scheinkman, 2012], [Borovička and Hansen, 2014], [Borovička et al., 2014], and [Borovička
and Hansen, 2016]. This chapter focuses exclusively on discrete-time specifications. In a later chapter, we
discuss continuous-time counterparts.

8.2. An elasticity calculation
We start by considering a family of positive random variables,  for  with unit expectations with
a limit . We use this family to depict date one perturbations. Let  be a multiplicative
functional and compute:

We use two interpretations of this computation:

 induces a date one change in distribution;

 induces a change in the date one exposure to uncertainty.

Both will be of interest to us going forward. The first one allows us to construct a type of impulse
response function where we change the initial distribution of a shock. The second defines a family of
alternative cash flows for which we may deduce compensations. We introduce the positive scalar  in
order that we can preform local characterizations in terms of derivatives of the form:

(8.1)

which is in the form of a semi-elasticity. The denominator scaling by  on the right-side scales the
computation to offset growth in the  process. Notice also that

since . Given this, we refer to computation (8.1) as an elasticity.

8.3. An important special case
Write the evolution of the multiplicative functional as:
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and the proportional perturbation expressed in logarithms as

where  is a multivariate standard normally distributed random vector that is independent of .
Clearly,  and by properties of the log-normal distribution:

The vector  gives a possibly state-dependent way to select among the different possible shocks.

Provided that we can differentiate inside the expectation operator, we find that

(8.2)

Under the first interpretation of this family of perturbations, we change the distribution of  from being
a multivariate, standard normal to a normal with mean  and an identity as the covariance matrix.
That is, we perturb the shock distribution by including a nonzero mean for the date one shock vector.
Under the second interpretation, we change the evolution of  by setting:

With this construction, we have changed the exposure to  of the multiplicative functional, an impact
that persists over time. Since we look at limits as  declines to zero, the third term becomes dominated by
the second.

We now investigate what happens at the one-period horizon and what happens with the horizon
becomes arbitrarily long. For , note that  is conditional log normal with a conditional
expectation:

Differentiating the logarithm with respect to  and evaluating this derivative at zero gives:
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To study the long-horizon counterpart, It is revealing to use the martingale factorization to represent the
shock elasticities. Recall that

where  is a multiplicative martingale. With this factorization, we use the Law of Iterated Expectations to
write

(8.3)

Notice that the random variable on the left is positive has expectation one conditioned on . Under
stochastic stability under the change of probability measure induced by the martingale , the random
variable on the right converges to  as  tends to . Substituting this calculation into formula (8.2) and
applying Law of Iterated expectations gives:

(8.4)

These calculations suggest defining the limiting elasticity as:

The expectation is under the change in probability measure induced by the increment to martingale
component of . Formally, the convergence to this limit requires more than point-wise or almost sure
convergence of relative densities in (8.3) for the conditional expectations to converge, but these
conditions are often satisfied in applications.

We now revisit Example 7.7. That is, consider  constructed with a stationary 
process and an additive  process described by the VAR
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where  is a stable matrix and  is a sequence of independent and identically
normally distributed random vectors with mean zero and covariance matrix . For this example,
we showed that

We compute

Observe that by properties of the log-normal distribution

This random variable induces a change in distribution for the standard normally distributed
random vector  by endowing it with a conditional mean:

and the identity as the covariance matrix.
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which coincide the impulse responses from standard analyses of a vector-autoregressive system
where  selects the shock of interest. These elasticities are constant. For many asset value
analysis also feature stochastic volatility, which can be accommodated or approximated within a
class of quadratic models that have computationally attractive properties. See [Borovička and
Hansen, 2014] for characterization of elasticities in a class of quadratic time series models.

This special case featured shocks with normal distributions. The methods described in the previous
section are more generally applicable as long as a researcher is willing to posit an interesting family of
probabilistic perturbations.

8.4. Multiplicative martingale
When  is a martingale ( ), it follows from right side of (8.1) and the Law of Iterated
Expectations that

and is thus constant as a function of . For such a process, we sometimes find a second type of
elasticity to be of interest. Suppose we perturb the process at date  instead of date one, giving rise to:

(8.5)

These second elasticities will cease to be constant as a function of , capturing a different intertemporal
aspect of valuation. Perturbations at intermediate dates are also possible.

8.5. Intertemporal asset price compensations
As in the previous section, we work with proportional representations of risk compensations. We extend
the limiting characterizations by filling in the intertemporal components through perturbations in the cash
flow. Thus the objects of interest are:

where  is the cash-flow payout process and  is the cumulative stochastic discount factor process. We
compute elasticities by differentiating with respect to  Notice that the third term contributed by the
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stochastic discount factor does not depend on  and drops out of the computation. The following formula
gives the risk compensations by horizon where each of terms are special cases of 

The term,  is the exposure elasticity for the stochastic payoff. Recall that this elasticity can also be
viewed as an impulse response for the payout process  based on altering the conditional mean of the
date one shock process. While there may be no direct empirical counterpart to these elasticities, they can
be viewed as “building blocks” for intertemporal asset prices, they can be computed directly for fully
specified models of asset valuation.

We will report such elasticities in the next chapter when analyzing a canonical asset pricing model with
production. We also will explore stochastic counterparts to closely related impulse response functions in a
later chapter.
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