
Perturbing multiplicative
functionals

Contents
7.1. Introduction

7.2. An elasticity calculation

7.3. An important special case

7.4. Multiplicative martingale

7.5. Intertemporal asset price compensations

Download PDF here

Authors: Borovicka, Jaroslav (NYU), Lars Peter Hansen (University of Chicago) and Thomas J. Sargent

(NYU) 

7.1. Introduction
Local methods open the door to intertemporal characterizations of asset valuation. Such characterizations

have direct like to first-order conditions of investors. While macroeconomists often solve models and

analyze the implied impulse response using time series characterizations expressed in term of logarithms,

for asset valuation with compensation for uncertainty exposure, it is imperative to work with levels instead of

logarithms. Given the presence of stochastic growth contributions, we are led to explore perturbations of

multiplicative functions. We introduce multiplicative perturbations which in turn lead naturally to the use of

elasticities as way to represent intertemporal compensations. This work builds on insights from [Hansen

and Scheinkman, 2012], [Borovička and Hansen, 2014], [Borovička et al., 2014], and [Borovička and

Hansen, 2016]. This chapter focuses exclusively on discrete-time specifications. In a later chapter, we

discuss continuous-time counterparts.

The manner in which risk operates upon time preference will differ, among other things, according to

the periods in the future to which the risk applies. Irving Fisher (Theory of Interest (1930))
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7.2. An elasticity calculation
We start by considering a family of positive random variables,  for  with unit expectations with a

limit . We use this family to depict date one perturbations. Let  be a multiplicative functional

and compute:

We use two interpretations of this computation:

 induces a date one change in distribution;

 induces a change in the date one exposure to uncertainty.

Both will be of interest to us going forward. The first one allows us to construct a type of impulse response

function where we change the initial distribution of a shock. The second defines a family of alternative cash

flows for which we may deduce compensations. We introduce the positive scalar  in order that we can

preform local characterizations in terms of derivatives of the form:

(7.1)

which is in the form of a semi-elasticity. The denominator scaling by  on the right-side scales the

computation to offset growth in the  process. Notice also that

since . Given this, we refer to computation (7.1) as an elasticity.

7.3. An important special case
Write the evolution of the multiplicative functional as:

and the proportional perturbation expressed in logarithms as
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where  is a multivariate standard normally distributed random vector that is independent of . Clearly,

 and by properties of the log-normal distribution:

The vector  gives a possibly state-dependent way to select among the different possible shocks.

Provided that we can differentiate inside the expectation operator, we find that

(7.2)

Under the first interpretation of this family of perturbations, we change the distribution of  from being a

multivariate, standard normal to a normal with mean  and an identity as the covariance matrix. That

is, we perturb the shock distribution by including a nonzero mean for the date one shock vector. Under the

second interpretation, we change the evolution of  by setting:

With this construction, we have changed the exposure to  of the multiplicative functional, an impact that

persists over time. Since we look at limits as  declines to zero, the third term becomes dominated by the

second.

We now investigate what happens at the one-period horizon and what happens with the horizon becomes

arbitrarily long. For , note that  is conditional log normal with a conditional expectation:

Differentiating the logarithm with respect to  and evaluating this derivative at zero gives:

To study the long-horizon counterpart, It is revealing to use the martingale factorization to represent the

shock elasticities. Recall that

logN1(r) = rπ(X0) ⋅ W1 −
1

2
|π(X0)|2(r)2

W1 X0

N1(0) = 1,

E [N1(r) ∣ X0 = x] = 1.

π

ϵm(x, t) = π(x) ⋅
E [( Mt

M0
)W1 ∣ X0]

E [( Mt

M0
) ∣ X0]

W1

rπ(X0)

logM

logM1 − logM0 = κ1(X0) + κ2(X2) ⋅ W1 + rπ(X0) ⋅ W1 −
1

2
|π(X0)|2(r)2.

W1

r

t = 1 M1/M0

exp [κ1(x) −
1

2
r

2|π(x)| +
1

2
|π(x) + rπ|2]

r

ϵm(x, 1) = π(x) ⋅ κ2(x).



where  is a multiplicative martingale. With this factorization, we use the Law of Iterated Expectations to

write

(7.3)

Notice that the random variable on the left is positive has expectation one conditioned on . Under

stochastic stability under the change of probability measure induced by the martingale , the random

variable on the right converges to  as  tends to . Substituting this calculation into formula (7.2) and

applying Law of Iterated expectations gives:

(7.4)

These calculations suggest defining the limiting elasticity as:

The expectation is under the change in probability measure induced by the increment to martingale

component of . Formally, the convergence to this limit requires more than point-wise or almost sure

convergence of relative densities in (7.3) for the conditional expectations to converge, but these conditions

are often satisfied in applications.

We now revisit Example 6.6. That is, consider  constructed with a stationary 

process and an additive  process described by the VAR
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where  is a stable matrix and  is a sequence of independent and identically

normally distributed random vectors with mean zero and covariance matrix . For this example, we

showed that

We compute

Observe that by properties of the log-normal distribution

This random variable induces a change in distribution for the standard normally distributed

random vector  by endowing it with a conditional mean:

and the identity as the covariance matrix.

Thus
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which coincide the impulse responses from standard analyses of a vector-autoregressive system

where  selects the shock of interest. These elasticities are constant. For many asset value

analysis also feature stochastic volatility, which can be accommodated or approximated within a

class of quadratic models that have computationally attractive properties. See [Borovička and

Hansen, 2014] for characterization of elasticities in a class of quadratic time series models.

This special case featured shocks with normal distributions. The methods described in the previous section

are more generally applicable as long as a researcher is willing to posit an interesting family of probabilistic

perturbations.

7.4. Multiplicative martingale
When  is a martingale ( ), it follows from right side of (7.1) and the Law of Iterated Expectations

that

and is thus constant as a function of . For such a process, we sometimes find a second type of

elasticity to be of interest. Suppose we perturb the process at date  instead of date one, giving rise to:

(7.5)

These second elasticities will cease to be constant as a function of , capturing a different intertemporal

aspect of valuation. Perturbations at intermediate dates are also possible.

7.5. Intertemporal asset price compensations
As in the previous section, we work with proportional representations of risk compensations. We extend the

limiting characterizations by filling in the intertemporal components through perturbations in the cash flow.

Thus the objects of interest are:
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where  is the cash-flow payout process and  is the cumulative stochastic discount factor process. We

compute elasticities by differentiating with respect to  Notice that the third term contributed by the

stochastic discount factor does not depend on  and drops out of the computation. The following formula

gives the risk compensations by horizon where each of terms are special cases of 

The term,  is the exposure elasticity for the stochastic payoff. Recall that this elasticity can also be

viewed as an impulse response for the payout process  based on altering the conditional mean of the date

one shock process. While there may be no direct empirical counterpart to these elasticities, they can be

viewed as “building blocks” for intertemporal asset prices, they can be computed directly for fully specified

models of asset valuation.

We will report such elasticities in the next chapter when analyzing a canonical asset pricing model with

production. We also will explore stochastic counterparts to closely related impulse response functions in a

later chapter.
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