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The Markov models provide a setting in which it is natural to study learning about states that are hidden

from a statistician or decision maker who observes only possibly noisy signals of some or all of the states.

When the state moves over time, the statistician wants to learn about a moving target.

To study such situations, this chapter presents Hidden Markov Models that start from a joint probability

distribution consisting of a Markov process and a vector of noise-ridden signals about functions of the

Markov state. The statistician observes a history of signals, but not the Markov state vector. Statistical

learning about the Markov state proceeds by constructing a sequence of probability distributions of the

Markov state conditional on histories of signals. Recursive representations of these conditional distributions

form auxiliary Markov processes that summarize all of the information about the hidden state vector that is

contained in a history of signals. A state vector in this auxiliary Markov process is a set of sufficient statistics

for the probability distribution of the hidden Markov state conditional on the history of signals. We describe

how to construct this auxiliary Markov process of sufficient statistics sequentially.

We present four examples of Hidden Markov Models that are used to learn about

1. A continuously distributed hidden state vector in a linear state-space system

2. A discrete hidden state vector

3. Unknown parameters cast as hidden invariant states

4. Multiple VAR regimes

5.1. Kalman Filter and Smoother
We assume that a Markov state vector  and a vector  of observations are governed by a linear state

space system

Xt Zt+1
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(5.1)

where the matrix  is nonsingular,  has dimension ,  has dimension  and is a signal observed

at ,  has dimension  and is a standard normally distributed random vector that is independent of

, of , and of  The initial state vector , where  is a normal distribution

with mean  and covariance matrix .[1] To include the ability to represent an unknown fixed parameter

as an invariant state associated with a unit eigenvalue in , we allow  not to be a stable matrix.

Although  is Markov,  is not.[2] We want to construct an

affiliated Markov process whose date  state is , defined to be the probability distribution of the time 

Markov state  conditional on history  and . The distribution  summarizes

information about  that is contained in the history  and . We sometimes use  to indicate

conditioning information that is “random” in the sense that it is constructed from a history of observable

random vectors. Because the distribution  is multivariate normal, it suffices to keep track only of the

mean vector  and covariance matrix  of  conditioned on  and :  and  are sufficient

statistics for the probability distribution of  conditional on the history  and . Conditioning on  is

equivalent to conditioning on these sufficient statistics.

We can map sufficient statistics  for  into sufficient statistics ) for  by

applying formulas for means and covariances of a conditional distribution associated with a multivariate

normal distribution. This generates a recursion that maps  and  into . It enables us to construct

 sequentially. Thus, consider the following three step process.

1. Express the joint distribution of  conditional on  as

2. Suppose that the distribution  of  conditioned on  and  is normal with mean  and

covariance matrix . Use the identity  to represent  as

which is just another way of describing our original state-space system (5.1). It follows that the joint

distribution of  conditioned on  and , or equivalently on , is
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Evidently the marginal distribution of  conditional on  is

This is called the predictive conditional density , i.e., the distribution of  conditional on history

 and the initial distribution .

3. Joint normality implies that the distribution for  conditional on  and  is also normal

and fully characterized by a conditional mean vector and a conditional covariance matrix. We can

compute the conditional mean by running a population regression of  on the surprise in

 defined as .[3] Having thus transformed random vectors on both sides of our

regression to be independent of past observable information, as ingredients of the pertinent population

regression, we have to compute the covariance matrices

These provide what we need to compute the conditional expectation

where the matrix of regression coefficients  is called the Kalman gain. To compute the Kalman gain,

multiply both sides by  and take expectations conditioned on 

Solving for this equation for  gives

(5.2)

We recognize formula (5.2) as an application of the population least squares regression formula associated

with the multivariate normal distribution.[4] We compute  via the recursion

(5.3)

The right side of recursion (5.3) follows directly from substituting the appropriate formulas into the right side

of  and computing conditional expectations. The matrix 

obeys the formula from standard regression theory for the population covariance matrix of the least squares
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residual . The matrix  is the covariance matrix of the  and the

remaining term describes the reduction in covariance associated with conditioning on . Thus, the

probability distribution  is

where

(5.4)

Equations (5.2), (5.3), and (5.4) constitute the Kalman filter. They provide a recursion that describes 

as an exact function of  and .

To summarize, the key idea underlying the Kalman filter is recursively to transform the space spanned by a

sequence of signals into a sequence of orthogonal signals. To elaborate, let

After we condition on ,  and  generate the same information.

The Kalman filter synthesizes  from  via a what is called a Gram-Schmidt process. Conditional on

, , where , so  is an orthogonal basis for

information contained in . Step2 computes the innovation  by constructing the predictive density,

while step3 computes the Kalman gain  by regressing  on .

Taken together, step2 and step3 present the evolution of  as a first-order Markov process.

This process is the foundation of an innovations representation and its partner the whitener. The

innovations representation is

(5.5)

The whitener system is

(5.6)

The innovations representation (5.5) and the whitener system (5.6) both take sequences

 as inputs. These can be precomputed from equations (5.2) and (5.3) before
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Remark 5.1



observing any ’s.

The covariance matrix  is presumed to be nonsingular, but it is not necessarily diagonal so that

components of the innovation vector  are possibly correlated. We can transform the

innovation vector  to produce a new shock process  that has the identity as its

covariance matrix. To do so, construct a matrix  that satisfies

The factorization on the right side is not unique. For instance, we could find solutions under which

 is either lower or upper triangular, but there are other possibilities as well. In what follows we

use one such factorization, while the analysis allows any of the possibilities. Construct;

Then

(5.7)

where 

While we may think of , it will typically not be stationary. Often a stationary

counterpart does exist, however. A necessary requirement is that  be invariant, because it does not

depend on the underlying shocks. To construct such a process, find a positive semidefinite fixed point to the

recursion (5.3) and initialize . Then  for all  and

for all  This simplifies recursive representation (5.7) by making  and  all time-invariant. One

way to obtain such a construction of  is to iterate on equation (5.3) to convergence, assuming that such a

limit does exits. With this construction, we have a Markov process representation

Zt+1

Ωt

Ut+1

Ut+1 W t+1
–

Ft
–

Ωt = Ft(Ft)
′.

––

Ft

W t+1

def
= (Ft)

−1

Ut+1
––

Xt+1 = AXt + BtW t+1

Zt+1 = H + DXt + FtW t+1

––––

–––

Bt = K(Σt)Ft.
––

{(Yt,Xt, Σt) : t ≥ 0}
–

Σt

Σ0 = Σ
–

Σt = Σ
–

t ≥ 0

K(Σt) = K(Σ) ≐ K

Ωt = DΣtD
′ + FF

′ ≐ Ω

––

––

t ≥ 1. Bt,
–

Ft
–

Ωt

Σ
–

Remark 5.2



(5.8)

Compare this to the original state space system (5.1). Key differences are

1. In the original system (5.1), the shock vector  can be of much larger dimension than the time

 observation vector , while in (5.8), the dimension  equals that of the observation

vector.

2. The state vector  in the original system (5.1) is not observed while in representation (5.8), the state

vector  is observed.

5.1.1. Likelihood process

Equations (5.2) and (5.3) together with an initial distribution  for  provide components

that allow us to construct a recursive representation for a likelihood process for . Let

 denote the density for an  dimensional, normally distributed random vector with mean 

and covariance matrix . With this notation, the density of  conditional on the hidden state  is

 where  is an  dimensional vector of real numbers used to represent potential

realizations of  The distribution of the hidden state  conditioned on history  and  and 

is . From these two components, we construct the predictive density  for

:

(5.9)

From the Kalman filter, we know that

To compute a likelihood process , factor the joint density for  into a product of

conditional density functions in which a time  density function conditions on past information and the initial

. When we evaluate densities at the appropriate random vectors  and the associated histories

 of which  are functions determined by the Kalman filter, we obtain the likelihood process:
[5]

(5.10)
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Via the Kalman filtering formulas for , this construction indicates how the likelihood process

depends on the matrices . Sometimes we regard some entries of these matrices as “free

parameters.” Because a likelihood process summarizes information about these parameters, it is the starting

point for both frequentist and Bayesian estimation procedures.

1. For fixed values of the parameters that pin down ,  is a stochastic process with

some “interesting properties.”

2. For a fixed  and a sample of observations ,  becomes a “likelihood function” when viewed as a

function of the free parameters.

John F. Muth [1960] posed and solved the following inverse optimal prediction problem: for what

stochastic process  is the adaptive expectations scheme of Milton Friedman [1957]

(5.11)

optimal for predicting future ? And over what horizon , if any, is  a good forecast?

Although Muth did not use it to solve his problem, we can convey his answers concisely using the

Kalman filter. As described above, initialize the initial covariance matrix for the Kalman filter at

 where the latter is the time-invariant solution to the covariance matrix updating equation.

Set , , and  to attain the original state-space system

Notice that the best forecast of  at the time  when the state is observed is  for any .

By the Law of Iterated Expectations, we obtain the mathematical expectation of  conditional

on  by computing . A time-invariant recursive representation of  is

where it can be verified that . Notice that

(5.12)

Comparing (5.11) to (5.12) shows that “adaptive” expectations become “rational” by setting

{Xj, Ωj}∞
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––––

0 < K < 1
–
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––––

Example 5.1
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As state variables for the key Bellman equation in his matching model, Jovanovic [1979] deployed

sufficient statistics of conditional distribution  for a univariate hidden Markov state equal to an

unknown constant match quality  drawn from a known initial distribution . The

state-space representation for Jovanovic [1979]’s model is

where  and  are scalars and  is a standardized univariate normal random variable.

We fit this model into (5.1) by setting . Evidently,

 where  and . Thus,

 and . Thus, partners to an ongoing match who observe 

eventually learn its true quality . In Jovanovic [1979]’s model, especially when  is large, early on

in a match,  can be large enough to create a situation in which the “he’s just been having a few

bad days” excuse prevails to sustain the match in hopes of later learning that it is a good one.

Jovanovic [1979] put this force to work to help explain why (a) quits and layoffs are negatively

correlated with job tenure and (b) wages rise with job tenure.

5.1.2. Kalman smoother
The Kalman filter provides recursive formulas for computing the distribution of a hidden state vector 

conditional on a signal history  and an initial distribution  for . This conditional

distribution has the form ; the Kalman filtering equations provide recursive formulas for

the conditional mean  and the conditional covariance matrix .

Knowing outcomes  from the Kalman filter provides the foundation for the Kalman smoother.

The Kalman smoother uses past, present, and future values of  to learn about current values of the state

. The Kalman smoother is a recursive algorithm that computes sufficient statistics for the distribution of

 conditional on the entire sample , namely, a mean vector, covariance matrix pair . The

Kalman smoother takes outputs  from the Kalman filter as inputs and then works backwards

on the following steps starting from .
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Example 5.2
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Reversed time regression. Write the joint distribution of  conditioned on 

as

From this joint distribution, construct the conditional distribution for , given  and .

Compute the conditional mean of  by using the population least squares formula

(5.13)

where the regression coefficient matrix is

and the residual covariance matrix equals

(5.14)

Iterated expectations. Notice that the above reverse regression includes  among the

regressors. Because  is hidden, that is more information than we have. We can condition down to

information that we actually have by instead using  as the regressor where  is the

conditional expectation of  given the full sample of data  and  is the corresponding

conditional covariance matrix. This gives us a backwards recursion for :

The law of iterated expectations implies that the regression coefficient matrices  equal the ones we

have already computed. But since we are using less information, the conditional covariance matrix increases

by . This implies the backwards recursion:
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Take  and  as terminal conditions.

5.2. Mixtures
Suppose now that  evolves as an -state Markov process with transition probability matrix .

A date  vector of signals  with density  if hidden state  is realized, meaning that  is the

th coordinate vector. We want to compute the probability that  is in state  conditional on the signal

history. The vector of conditional probabilities equals , where  is a vector of initial

probabilities and  is the available signal history up to date . We construct  recursively:

1. 

Find the joint distribution of  conditional on . Conditional distributions of  and 

are statistically independent by assumption. Write the joint density conditioned on  as:

(5.15)

where  is a column vector with  in the th component. We have expressed conditional

independence by forming a joint conditional distribution as a product of two conditional densities, one for

 and one for .

2. Find the joint distribution of  conditioned on . Since  is not observed, we form the

appropriate average of (5.15) conditioned on :

(5.16)

where  is a diagonal matrix with the entries of  on the diagonal. Thus,  encodes all

pertinent information about  that is contained in the history of signals. Conditional on ,  and

 are not statistically independent.

3. Find the distribution of  conditional on . Summing (5.16) over the hidden states gives

Thus,  is a vector of weights used to form a mixture distribution. Suppose, for instance, that  is a

normal distribution with mean  and covariance matrix . Then the distribution of 

conditioned on  is a mixture of normals with mixing probabilities given by entries of .

4. Obtain  by dividing the joint density of  conditional on  by the marginal density

for  conditioned on  and then evaluating this ratio at . In this way, we construct the density

Σ̂T = ΣT X̂T = XT
–
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∗) i Xt

i Xt i

Qt = E[Xt|Z
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(Xt+1,Zt+1) Xt Zt+1 Xt+1

Xt

(P′Xt) × (Xt)′vec {ψi(y∗)}

↑ ↑
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vec(ri) ri i

Xt+1 Zt+1

Xt+1,Zt+1 Qt Xt

Y t,Q0

P
′diag{Qt}vec {ψi(z

∗)},

diag(Qt) Qt Qt

Xt Qt Xt+1
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Zt+1 Qt

(1n)′
P

′diag{Qt}vec {ψi(y
∗)} = Qt ⋅ vec {ψi(z

∗)}.

Qt ψi

μi Σi Yt+1 − Yt

Qt Qt

Qt+1 (Zt+1,Xt+1) Qt

Zt+1 Qt Zt+1



for  conditioned . It takes the form of a vector  of conditional probabilities. Thus,

we are led to

(5.17)

Together, step 3 and step4 define a Markov process for . As indicated in step3,  is drawn from a

(history-dependent) mixture of densities . As indicated in step4, the vector  equals the exact

function of ,  described in (5.17).

5.3. Recursive Regression
A statistician wants to infer unknown parameters of a linear regression model. By treating regression

coefficients as hidden states that are constant over time, we can cast this problem in terms of a hidden

Markov model. By assigning a prior probability distribution to statistical models that are indexed by

parameter values, the statistician can construct a stationary stochastic process as a mixture of statistical

models.[6] From increments to a data history, the statistician learns about parameters sequentially. By

assuming that the statistician adopts a conjugate prior à la Luce and Raiffa [1957], we can construct explicit

updating formulas.

Consider the first-order vector autoregressive model

(5.18)

where  is an i.i.d. normal random vector with mean vector  and covariance matrix ,  is an

observable state vector, and  are matrices containing unknown coefficients. When  is a

stable matrix, the vector  is interpretable as the vector of means of the observation vector 

(conditioned on invariant events).

Suppose that  and  share the same dimensions, that  is nonsingular, and that  consists of

 and a finite number of lags . After substitution for the state vector, we

obtain a finite-order vector autoregression:

(5.19)

Xt+1 (Qt,Zt+1) Qt+1

Qt+1 = (
1

Qt ⋅ vec {ψi(Zt+1)}
)P′diag(Qt)vec {ψi(Zt+1)}

Qt+1 Zt+1

ψi Qt+1

Zt+1 Qt

Xt+1 = AXt + BWt+1

Zt+1 = H + DXt + FWt+1

Wt+1 0 I Xt

A,B,D,F,H A

H Zt+1

Zt+1 Wt+1 F Xt

Zt − H Zt−j − H, j = 0, … , ℓ − 1
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where

Our plan is to estimate the coefficients of the matrices  and . Notice that  potentially can be

recovered from  and . The matrix  is not fully identified without further a priori restrictions. What is

identified is . This identification challenge is the topic of so-called “structural vector autoregressions.” In

what follows, we impose a convenient normalization on . Other observationally equivalent ’s can be

constructed from our estimation.

5.3.1. Conjugate prior updating

In practice, priors are often selected as a matter of convenience. They are constructed with tractability in

mind. Conjugate priors are an example of this convenience. In a later chapter, we will use this one motivation

for exploring prior sensitivity. In this section, we will proceed recursively. In so doing, we will use the insight

that “today’s posterior is tomorrow’s prior.”

By following suggestions offered by Zellner [1962], Box and Tiao [1992], Sims and Zha [1999], and

especially Zha [1999], we can transform system (5.19) in a way that justifies estimating the unknown

coefficients by applying least squares equation-by-equation. Factor the matrix , where  is

lower triangular with ones on the diagonal and  is diagonal.[7] The inverse  is also lower triangular with

ones on the diagonal. Construct

(5.20)

Zt+1 = H + D + FWt+1

= H̃ + D + FWt+1

⎡⎢⎣ Zt − H

Zt−1 − H

. . .

Zt−ℓ+1 − H

⎤⎥⎦⎡⎢⎣ Zt

Zt−1

. . .

Zt−ℓ+1

⎤⎥⎦H̃
def
= H − D

⎡⎢⎣H

H

. . .

H

⎤⎥⎦H,D, F H

H̃ D F

FF′

F F

FF′ = JΔJ′ J

Δ J−1

J
−1Zt+1 = J

−1
H̃ + J

−1
D + Ut+1

⎡⎢⎣ Zt

Zt−1

. . .

Zt−ℓ+1

⎤⎥⎦
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where

so that . The  entry of  is uncorrelated with, and consequently statistically

independent of, the th components of  for . As a consequence, each equation in

system (5.20) can be interpreted as a regression equation in which the left-hand side variable in equation 

is the  component of . The regressors are a constant, , and the 

components of  for . The th equation is an unrestricted regression with a

disturbance term  that is uncorrelated with disturbances  to all other equations . The

system of equations (5.20) is thus recursive. The first equation determines the first entry of , the

second equation determines the second entry of  given the first entry, and so forth.

We can construct estimates of the coefficient matrices  and the covariance matrix

 from these regression equations, with the qualification that knowledge of  and 

determines  only up to a factorization. One such factorization is , where a diagonal matrix

raised to a one-half power can be built by taking the square root of each diagonal entry. Because matrices 

not satisfying this formula also satisfy , without additional restrictions  is not identified.

Consider, in particular, the th regression formed in this way and express it as the scalar regression model:

where  is the appropriate vector of regressors in the th equation of system (5.20). To simplify notation,

we will omit superscripts and understand that we are estimating one equation at a time. To avoid notational

confusion, we will let the left side variable of the regression be denoted . The disturbance  is a

normally distributed random variable with mean zero and variance . Furthermore,  is statistically

independent of . Information observed as of date  consists of  and . Suppose

that in addition  and  are also observed at date  but that  and  are unknown.

Let the distribution of  conditioned on , , and  be normal with mean  and precision matrix 

where . Here the precision matrix equals the inverse of a conditional covariance matrix of the

unknown parameters. At date , information we add  to the conditioning set. So we want the

distribution of  conditioned on , , and . It is also normal but now has precision 

To deduce the recursive updating conditioned on , we observe that both the date  prior distribution and

the date  conditional density for  are normal. After multiplication the two terms inside the

exponential have two terms involving  are

Ut+1 = J
−1
FWt+1

EUt+1U
′
t+1 = Δ ith Ut+1

j Zt+1 j = 1, 2, … , i − 1

i

ith Zt+1 Zt,Zt−1. . . ,Zt−ℓ+1 jth

Zt+1 j = 1, … , i − 1 i

Ut+1,i Ut+1,j j ≠ i

Zt+1

Zt+1

A,B,D,F,H

Δ = EUt+1U
′
t+1 J Δ

FF′ F = JΔ1/2

F

FF′ = JΔJ′ F

i

Z
[i]
t+1 = R

[i]
t+1

′
β[i] + U

[i]
t+1

R
[i]
t+1 i

Yt+1 Ut+1

σ2 Ut+1

Rt+1 t X0 Z t = [Z ′
t, … ,Z ′

1]′

Zt+1 Rt+1 t + 1 β σ2

β Z t X0 σ2 bt ζΛt

ζ = 1
σ2

t + 1 Zt+1

β Z t+1 X0 σ2 ζΛt+1.

ζ t

t + 1 Yt+1

β



where

(5.21)

and

(5.22)

Recursion (5.21) implies that  is a positive semidefinite matrix, which confirms that additional

information improves estimation accuracy. Evidently from recursion (5.21),  cumulates cross-products

of the regressors and adds them to an initial . The updated conditional mean  for the normal

distribution of unknown coefficients can be deduced from  via the updating equation (5.22). Solving

difference equation (5.22) backwards shows how  cumulates cross-products of  and 

and adds the outcome to an initial condition .

So far we pretended that we know  by conditioning on , which is equivalent to conditioning on its

inverse . Assume now that we don’t know  but instead summarize our uncertainty about it with a date 

gamma density for  conditioned on ,  so that it is proportional to

where the density is expressed as a function of , so that  has a chi-square density with  degrees

of freedom. The implied density for  conditioned on time  information is also a gamma density with

updated parameters:

The distribution of  conditioned on , , and  is normal with mean  and precision matrix .

The distribution of  conditioned on ,  has a gamma density, so that it is proportional to[8]

Standard least squares regression statistics can be rationalized by positing a prior that is not informative.

This is commonly done by using an “improper” prior that does not integrate to unity. [9] Setting 

effectively imposes a uniform but improper prior over . Although ’s early in the sequence are singular, we

can still update  via (5.22);  are not uniquely determined until  becomes nonsingular.

exp(ζYt+1Rt+1
′β −

ζ

2
β′Rt+1Rt+1

′β + ζbt
′Λtβ −

ζ

2
β′Λtβ)

∝ exp [ζ(β − bt+1)′Λt+1 (β − bt+1)]

Λt+1 = Rt+1Rt+1
′ + Λt

Λt+1bt+1 = [Λtbt + Rt+1Yt].

Λt+1 − Λt

Λt+1

Λ0 bt+1

Λt+1

Λt+1bt+1 Rt+1 Yt+1

Λ0b0

σ2 σ2

ζ σ t

ζ Z t X0

(ζ)
ct
2 exp(−dtζ/2),

ζ dtζ ct + 1

ζ t + 1

ct+1 = ct + 1

dt+1 = (Yt+1)2 − (bt+1)′Λt+1bt+1 + (bt)
′Λtbt + dt.

β Z t+1 X0 ζ bt+1 ζΛt+1

ζ Y t+1 X0

(ζ)
ct+1

2 exp(−dt+1ζ/2),

Λ0 = 0

β Λt

Λt+1bt+1 bt+1 Λt+1



After enough observations have been accumulated to make  become nonsingular, the implied normal

distributions for the unknown parameters become proper. When , the specification of  is

inconsequential and  becomes a standard least squares estimator. An “improper gamma” prior over 

that is often associated with an improper normal prior over  sets  to minus two and  to zero. This is

accomplished by assuming a uniform prior distribution for the logarithm of the precision  or for the

logarithm of . With this combination of priors,  becomes a sum of squared regression residuals. [10]

From the posterior of the coefficients of this transformed system we can compute posteriors of nonlinear

functions of those coefficients. We accomplish this by using a random number generator repeatedly to take

pseudo random draws from the posterior probability of the coefficients, forming those nonlinear functions,

and then using the resulting histograms of those nonlinear functions to approximate the posterior probability

distribution of those nonlinear functions. For example, many applied macroeconomic papers report impulse

responses as a way to summarize model features. Impulse responses are nonlinear functions of the .

The conjugate prior approach described above does not generate a posterior for which either the prior or

the implied posteriors for the matrix  has stable eigenvalues with probability one. We therefore modify that

approach to impose that  is a stable matrix. We do this by rescaling the posterior probability so that it

integrates to one over the region of the parameter space for which  is stable. We in effect condition on 

being stable. This is easy to implement by rejection sampling.[11]

The standard deviation of the martingale increment is a nonlinear function of parameters in . We

construct a posterior distribution via Monte Carlo simulation. We draw from the posterior of the multivariate

regression system and, after conditioning on stability of the  matrix, compute the nonlinear functions of

interest. From the simulation, we construct joint histograms to approximate posterior distributions of

functions of interest.[12]

As an illustration, in Fig. 5.1, we show posterior histograms for the standard deviations of shocks to short-

term consumption growth and of the martingale increment to consumption based on the application

described in Section An economic rationale of Chapter 4:Processes with Markovian increments. The

standard deviation of the short-term shock contribution is about one-half that of the standard deviation of

the martingale increment. Fig. 5.1 tells us that short-term risk can be inferred with much more accuracy than

is long-term risk. This evidence says that while there could be a long-run risk component to consumption, it

is poorly measured. The fat tail in the right of the distribution of the long-run standard deviation is induced

by Monte Carlo draws for which some eigenvalues of  have absolute values very close to unity. [13]

Λt+1

Λ0 = 0 b0

bt+1 σ

β c0 d0

ζ

σ2 dt+1

(A,B)

A

A

A A

(A,B)

A

A
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Fig. 5.1 Posterior density for conditional standard deviation of consumption growth.

Fig. 5.2 Posterior distribution for the standard deviation of the martingale increment.

Following Carter and Kohn [1994], we consider a Gibbs sampling approach for making inferences

about a linear state-space model with hidden states and unknown parameters. Let  denote a

stand in for the unknown parameters of the state-space model, and let  denote a stand in for the

entire collection of unknown states. All of the computations that follow condition on a time series

of observations,  although we suppress this conditioning in the notation that

θ

ϑ

Z1,Z2, . . . . ,ZT ,

Remark 5.3
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follows. The Kalman smoother gives a conditional distribution,  Given the observations

of the composite state vector,  we extend the conjugate prior method to construct 

Finally, let  denote the joint probability for , which is the target of computation.

To compute the joint distribution, form a Markov process with a one-period transition from 

to  by following the two step construction for use in simulation:

generate  using ;

generate  using 

The transition distribution for the Markov process is:

We verify that  is a stationary distribution by first computing

Note that  is the marginal distribution over  and thus

It follows that

The integral on the right side is the marginal distribution over  Finally, note that

showing that  is indeed the stationary distribution of this constructed Markov process. This

allows us to approximate  by simulating the Markov process. This approach is an example of a

numerical method called Gibbs sampling.

P(dϑ ∣ θ).

ϑ, P̃(dθ ∣ ϑ).

Q(dϑ, dθ) (ϑ, θ)

(ϑ, θ)

(ϑ+, θ+)

ϑ+ P(dϑ+ ∣ θ)

θ P̃(dθ+ ∣ ϑ+).

P̃(dθ+ ∣ ϑ+)P(dϑ+ ∣ θ).

Q

∫
ϑ,θ

P̃(dθ+ ∣ ϑ+)P(dϑ+ ∣ θ)Q(dϑ, dθ)

= P̃(dθ+ ∣ ϑ+)∫
θ

P(dϑ+ ∣ θ)∫
ϑ

Q(dϑ, dθ).

∫ϑQ(dϑ, dθ) θ

P(dϑ+ ∣ θ)∫
ϑ

Q(dϑ, dθ) = Q(dϑ+, dθ).

∫
θ

P(dϑ+ ∣ θ)∫
ϑ

Q(dϑ, dθ) = ∫
θ

Q(dϑ+, dθ)

ϑ+.

P(dθ+ ∣ ϑ+)∫
θ

Q(dϑ+, dθ) = Q(dϑ+, dθ+),

Q

Q



5.4. VAR Regimes
Following [Sclove, 1983] and [Hamilton, 1989], suppose that there are multiple VAR regimes

 for , where indices  are governed by a Markov process with transition

matrix . In regime  we have

(5.23)

where  is an i.i.d. sequence of  random vectors conditioned on , and  is

nonsingular.

We can think of  and a regime indicator  jointly as forming a Markov process. When regime  is

realized,  equals a coordinate vector with one in the  coordinate and zeros at other coordinates. We

study a situation in which regime indicator  is not observed. Let  denote an -dimensional vector of

probabilities over the hidden states  conditioned on , , and , where  is the date zero vector of

initial probabilities for . Equivalently,  is .

The vector of conditional probabilities  solves a filtering problem. We describe the solution of this

problem by representing  as a Markov process via the following four steps.

1. Find the joint distribution for  conditioned on . Conditional distributions of

 and  are statistically independent by assumption. Conditioned on ,  conveys no

information about  and thus the conditional density of  is given by entries of .

Conditioned on ,  is normal with mean  and covariance matrix . Let

 be the normal density function for  conditioned on  when  is in regime .

We can write the joint density conditioned on  as:

where  is a column vector with  in the  entry. We have imposed conditional independence by

forming a joint conditional distribution as a product of two conditional densities, one for  and one for

.

2. Find the joint distribution of  conditioned on . Since  is not observed, we

form the appropriate average of the above conditioned on the :

(Ai,Bi,Di,Fi) i = 1, 2, . . . ,n i

P i

Xt+1 = AiXt + BiWt+1

Yt+1 − Yt = DiXt + FiWt+1,

{Wt+1}∞
t=0 N (0, I) X0 Fi

Xt Zt i

Zt ith

Zt Qt n

Zt Y t X0 Q0 Q0

Z0 Qt E(Zt|Y
t,X0,Q0)

Qt

(Xt,Qt)

(Zt+1,Yt+1 − Yt) (Zt,Xt)

Zt+1 Yt+1 Zt Xt

Zt+1 Zt+1 P′Zt

Zt = i Yt+1 − Yt DiXt Fi(Fi)
′

ψi(y
∗,Xt) Yt+1 − Yt Xt Zt i

(Zt,Xt)

(P′Zt) × (Zt)
′vec {ψi(y

∗,Xt)}

↑ ↑

Zt+1  density Yt+1 − Yt  density

 

vec(ri) ri ith

Zt+1

Yt+1 − Yt

(Zt+1,Yt+1 − Yt) (Xt,Qt) Zt

Y t,X0,Q0
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where  is a diagonal matrix with components of  on the diagonal. Thus,  encodes all

pertinent information about the time  regime  that is contained in ,  and . Notice that conditional

on , random vectors  and  are not statistically independent.

3. Find the distribution of  conditioned on . Summing the above over hidden states

gives

Thus, the distribution for  conditioned on  is a mixture of normals in which, with

probability given by the  entry of , , is normal with mean  and covariance matrix

. Similarly, the conditional distribution of  is a mixture of normals.

4. Obtain  by dividing the joint density for  conditioned on  by the

marginal density for  conditioned on . Division gives the density for 

conditioned , which in this case is just a vector  of conditional probabilities.

Thus, we are led to the recursion

(5.24)

Taken together, steps (3) and (4) provide the one-step-transition equation for Markov state .

As indicated in step (3),  is a mixture of normally distributed random variables. As argued in step (4) the

vector  is an exact function of , , and  that is given by the above formula (5.24).

Let  and , where ,  and  are

consumption, business income and dividends, respectively. We estimate (5.23) using Gibbs

sampling with 2 regimes.

P
′diag{Qt}vec {ψi(y

∗,Xt)}

diag{Qt} Qt Qt

t Zt Y t X0 Q0

(Xt,Qt) Yt+1 − Yt Zt+1

Yt+1 − Yt (Xt,Qt)

(1n)′
P

′diag{Qt}vec {ψi(y
∗,Xt)} = Qt ⋅ vec {ψi(y

∗,Xt)}.

Yt+1 − Yt (Xt,Qt)

ith Qt Yt+1 − Yt DiXt

Fi(Fi)
′ Xt+1

Qt+1 (Yt+1 − Yt,Zt+1) (Xt,Qt)

Yt+1 − Yt (Xt,Qt) Zt+1

(Yt+1 − Yt,Xt,Qt) Qt+1

Qt+1 = (
1

Qt ⋅ vec {ψi(Yt+1,Xt)}
)P′diag(Qt)vec {ψi(Yt+1,Xt)}.

(Xt+1,Qt+1)

Yt+1

Qt+1 Yt+1 Qt Xt

Xt = [log (Bt/Ct), log (Dt/Ct)] Yt = logCt Ct Bt Dt

Example 5.3



Fig. 5.3 Log business income less consumption  (purple) and log dividends less

consumption  (green).

log (Bt/Ct)

log (Dt/Ct)





Fig. 5.4 The log growth rates of consumption, business income and dividends are shown as

solid lines in each panel. The stationary means (  and ) are shown as dotted

lines in black (high) and red (low). The median smoothed probability of being in the low-mean

regime is shown in shaded green. The stationary mean is  (the observed stationary

means are  for consumption;  for business income and  for

dividends). The half-life for high mean state is 46 quarters; for the low mean state it is 2 quarters.

The correlation matrices for ,  and  is

1.276% 0.667%

1.2480%

0.8185% 0.7336% 1.0921%

Δ logCt Δ logBt Δ logDt

⎛⎜⎝1.000 0.158 −0.173

1.000 0.013

1.000

⎞⎟⎠



Fig. 5.5 The residual square of log growth rates of consumption, business income and dividends

are shown as solid lines in each panel. Five-quarter window moving average is applied. The

median smoothed probability of being in the high-volatility regime is shown in shaded green.

The half-life for the low volatility state is 26 quarters; for the high volatility state it is 2 quarters.



Fig. 5.6 Smoothed probabilities of being in the high-mean and low-volatility regimes.
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Fig. 5.7 The posterior distributions for the unconditional means and volatilities for 

across the two states. Sampling 20000 draws from the posterior and burning the first 5000

draws.

Many expositions of Kalman filtering assume that . We shall study some interesting examples

in which .

The process  is also Markov.

This amounts to dividing the joint distribution for  conditioned on  by the marginal

density for  conditional on .

Presentations of multivariate regression theory often report the transpose of this matrix. Those

presentations pre-multiply coefficients by regressors whereas as Kalman filtering representations post-

multiply by regressors.

The logarithm of time  component of  is evidently

This stochastic process is not ergodic, being a mixture of statistical models like those described by

Proposition 1.3. In the present setting, conditioning on invariant events means knowing parameters, an

assumption incompatible with posing a statistical learning problem.

This factorization can be implemented as a Cholesky decomposition.

A decision-maker who does not know the underlying parameters in the matrices 

continues to have a Markov decision problem except that  must now be included along with

the state vector .

Such a procedure can result in estimators that are inadmissible.

Box and Tiao [1992] discuss improper priors that include the specification for the regression model

here.

Another approach that we don’t use here would be to modify how we construct the likelihood function.

Currently, the likelihood function conditions on the initial . We could instead impose that  is

described by the stationary distribution associated with a stable  matrix.

We could also have used change in variables formulas to deduce posterior distributions of interest, but

that would have involved substantial pencil and paper work and require additional numerical

computation.

Bounding absolute values of these eigenvalues to be less than a pre-specified number strictly less

than one would thin the right tail. Doing that amounts indirectly to imposing a particular prior on the size

of long-run risk.

Δ logCt
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BF ′ ≠ 0

{Xt, t = 0, 1, 2, …}

(Xt+1,Zt+1) Qt

Zt+1 Qt

j Lt
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–
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