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Chapter 4:Processes with Markovian increments described additive functionals of a Markov process. This
chapter describes exponentials of additive functionals that we call multiplicative functionals. We can use
them to model stochastic growth, stochastic discounting, belief distortions and their interactions. After
adjusting for geometric growth or decay, a multiplicative functional contains a martingale component
that turns out to be a likelihood ratio process that is itself a special type of multiplicative functional called
an exponential martingale. By simply multiplying random variables of interest by the multiplicative
martingale prior to computing conditional expectations under a baseline probability, we construct an
alternative probability measure. It functions as a relative density that alters the baseline probability
measure. For an initial application of multiplicative functionals to asset valuation and investor preferences,
see [Anderson et al., 2003]. We will explore these and other applications in discussions that follow. We will
see that multiplicative functionals has several applications. They allow us to characterize components of
stochastic growth and stochastic discounting that persist over long time horizons. They show how
macroeconomic shocks with long-term impacts are reflected in asset pricing. They provide a tractable
modeling tool for models in which investors have subjective beliefs that may deviate from a baseline
probability and allow for measuring their magnitudes using statistical discrimination measures. We will
encounter several other applications of multiplicative functionals, including models of returns and positive
cash flows that compound over multiple horizons, cumulative stochastic discount factors are used to
long-horizon, risk-return tradeoffs.

Challenges in navigating long-term uncertainty.
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7.1. Geometric growth and decay
To construct a multiplicative functional, we start with an underlying Markov process  that has a
stationary distribution , and we suppose that  and  depend only on date zero information
summarized by 

Let  be an additive functional that as in Chapter 4 is described by

where  is the time  component of a Markov state vector satisfying  and
 is the time  value of a martingale difference process ( ) of

unanticipated shocks. We say that  is a multiplicative
functional parameterized by .

An additive functional grows or decays linearly, so the exponential of an additive functional grows or
decays geometrically. We construct a multiplicative functional recursively by

(7.1)

We may solve for 

When  is zero, so is  In this case, the random variable,  is not uniquely defined by (7.1). Our
decision to set it to unity is simply a convenient normalization. In light of (7.1), we refer to  as the
multiplicative increment of the process .

Chapter 4 stated a Law of Large Numbers and a Central Limit Theorem for additive functionals. In this
chapter, we use other mathematical tools to analyze the limiting behavior of multiplicative functionals.

7.2. Special multiplicative functionals
We define the three primitive multiplicative functionals.

X

Q Y0 X0

A0.

Y
def
= {Yt}

Yt+1 − Yt = κ(Xt,Wt+1),

Xt t Xt+1 = ϕ(Xt,Wt+1)

Wt+1 t + 1 E (Wt+1 ∣ At) = 0

M
def
= {Mt : t ≥ 0} = {exp(Yt) : t ≥ 0}

κ

Mt+1 = Nt+1Mt.

Nt+1,

Nt+1 = {
Mt+1

Mt
, Mt > 0

1, Mt = 0

Mt Mt+1. Nt+1,

N

M

Definition 7.1

Example 7.1
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Suppose that  is constant and that  is a Borel measurable function of . Then

This process grows or decays geometrically.

Suppose that

Then

(7.2)

so that

A multiplicative functional that satisfies (7.2) is called a multiplicative martingale. We denote

such a process as  because it is appropriate to view it as likelihood ratio process. We will
have more to say about this in some of the discussion that follows. It will often be convenient to
initialize this process at 

Suppose that  where  is a Borel measurable function. The associated
additive functional satisfies

and is parameterized by  with initial condition
.

When the process  is stationary and ergodic, multiplicative functional Example 7.1 displays expected
growth or decay, while multiplicative functionals Example 7.2 and Example 7.3 do not. Multiplicative
functional Example 7.3 is stationary, while Example 7.1 and Example 7.2 are not.

κ = η M0 X0

Mt = exp (tη)M0.

E [exp [κ (Xt,Wt+1)] ∣ At] = 1.

E (Mt+1|At) = Mt

E (Nt+1|At) = 1

M
def
= L

M0 = L0 = 1.

Mt = exp [h(Xt)] h

Yt+1 − Yt = logMt+1 − logMt

= h(Xt+1) − h(Xt)

= h [ϕ(Xt,Wt+1)] − h(Xt)

κ(Xt,Wt+1) = h [ϕ(Xt,Wt+1)] − h(Xt)

Y0 = h(X0)

{Xt}

Example 7.2

Example 7.3



We can construct other multiplicative functionals simply by multiplying instances of these primitive ones.
Soon we shall reverse that process by taking an arbitrary multiplicative functional and (multiplicatively)
decomposing it into instances of our three types of multiplicative functionals. Before doing so, we explore
multiplicative martingales in more depth.

7.3. Multiplicative martingales
We can use multiplicative martingales to represent alternative probability models. We can characterize an
alternative model with a set of implied conditional expectations of all bounded random variables, 
that are measurable with respect to . The constructed conditional expectation is

(7.3)

We want multiplication of  by  to change the baseline probability to an alternative probability
model. To accomplish this, the random variable  must satisfy:

1. ;

2. ;

3.  is  measurable.

Property 1 is satisfied because conditional expectations map positive random variables  into positive
random variables that are  measurable. Properties 2 and 3 are satisfied because  is the multiplicative
increment of a multiplicative martingale. The resulting process  can be viewed as a likelihood ratio or
Radon-Nikodym derivative process for the alternative probability measure relative to the baseline
measure.

Representing an alternative probability model in this way is restrictive. For instance, if a nonnegative
random variable has conditional expectation zero under the baseline probability, it will also have zero
conditional expectation under the alternative probability measure, an indication of absolute continuity of
the implied probability measure with respect to the baseline measure. Two models that violate absolute
continuity can be distinguished with probability one from only finite samples. To avoid this degenerate
outcome, likelihood-based statistically inference typically imposes this form of absolute continuity.

Given the multiplicative construction, the implied alternative conditional probability measure over 
periods uses the random variable

to compute the  time-period-ahead conditional expectation. With this construction, the -period
conditional expectation may be computed by iterating on the one-period conditional expectations in

Bt+1,

At+1

E (Nt+1Bt+1 ∣ At).

Bt+1 Nt+1

Nt+1

Nt+1 ≥ 0

E (Nt+1 ∣ At) = 1

Nt+1 At+1

Bt+1

At N

L

τ

τ

∏
j=1

Nt+j

τ τ



accordance with the Law of Iterated expectations.

Multiplicative martingales provide a way to model diverse subjective beliefs of private agents or policy-
makers within dynamic, stochastic equilibrium models when these beliefs are allowed to depart from the
model builder’s model. As [Hansen and Scheinkman, 2009] show, they also offer a way to value
cumulative returns. Let  be a multiplicative process that measures a cumulative return between date 
and date zero. Let  be a corresponding equilibrium discount factor between these same two dates. That

 is a multiplicative martingale follows from equilibrium restrictions on one-period returns. That is,

where  is the one-period stochastic discount factor and  is the one-period gross return.
For the application, we construct

Here are some examples of multiplicative martingales constructed from some standard probability
models.

Consider a baseline Markov process having transition probability density  with respect to a
measure  over the state space 

Let  denote some other transition density that we represent as

where we assume that  implies that  for all  and  in .
Construct the multiplicative increment process as:

Rt t

St

L = RS

E [( St+1

St
)(Rt+1

Rt
) ∣ At] = 1,

St+1/St Rt+1/Rt

Nt+1 =
St+1Rt+1

StRt

πo

λ X

Po(dx
+|x) = πo(x

+ ∣ x)λ(dx+)

π

π(x+ ∣ x)λ(dx+) = [
π(x+ ∣ x)

πo(x+ ∣ x)
]πo(x

+ ∣ x)λ(dx+)

πo(x
+ ∣ x) = 0 π(x+ ∣ x) = 0 x+ x X

Nt+1 =
π(Xt+1 ∣ Xt)

πo(Xt+1 ∣ Xt)
.

Example 7.4

Example 7.5
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Let an alternative model for a vector  be a vector autoregression:

where  is a stable matrix,  is an i.i.d. sequence of  random vectors
conditioned on  and  is a square, nonsingular matrix. Assume that a baseline model for 
has the same functional form but different settings  of its parameters. Construct 
as the one-period conditional log-likelihood ratio

Notice how the matrices  of the baseline model and parameters  of the
alternative model both appear.

Because  is a nonsingular square matrix, model Example 7.5 has the same number of shocks,
i.e., entries of , as there are components of . A more general setting would be a hidden
Markov state model like one presented in Section Kalman Filter and Smoother of Chapter
Hidden Markov Models that has a time-invariant representation with an ``information state
vector’’ constructed as a way to condition on an infinite past of an observation vector.

We can elicit a limiting behavior of multiplicative martingales by applying Jensen’s inequality to the
concave function  depicted in Fig. 7.1 based on

where we normalize .

X

Xt+1 = AXt + BWt+1

A {Wt+1 : t ≥ 0} N (0, I)

X0, B X

(Ao,Bo) Nt+1

logNt+1 = −
1

2
(Xt+1 − AXt)

′(BB′)−1
(Xt+1 − AXt)

+
1

2
(Xt+1 − AoXt)

′(BoBo
′)−1

(Xt+1 − AoXt)

−
1

2
log det (BB′) +

1

2
log det (BoBo

′)

(Ao,Bo) (A,B)

B

W X

logL

E (logLt ∣ A0) ≤ 0

L0 = 1

Remark 7.1

file:///C:/Users/faisalquaiyyum/Chicago%20Booth%20Dropbox/Faisal%20Quaiyyum/QuantMFR/_build/html/book/5_hidden_markov.html#sec-kfilter
file:///C:/Users/faisalquaiyyum/Chicago%20Booth%20Dropbox/Faisal%20Quaiyyum/QuantMFR/_build/html/book/5_hidden_markov.html#chap-learn


Fig. 7.1 Jensen’s Inequality. The logarithmic function is a concave function that equals zero when evaluated at
unity. The line segment lies below the logarithmic function.An interior average of endpoints of the straight
line lies below the logarithmic function.

Moreover, by Jensen’s inequality,

for  satisfying . Note that

This implies that under the baseline model the log-likelihood ratio process  is a supermartingale relative
to the information sequence .

From the Law of Large Numbers as described Chapter 1:Laws of Large Numbers and Stochastic Processes
, a population mean is well approximated by a sample average from a long time series. That opens the
door to discriminating between two models. Under the baseline model, the log likelihood ratio process
scaled by  converges to a negative number. If the baseline model, actually generates the data, the
expected log likelihood ratio constructed with data will (at least eventually) be negative except in the
degenerate case in which  with probability one. Such a calculation justifies discriminating
between the two models by calculating  and checking if it is positive or negative. This procedure
amounts to an application of the method of maximum likelihood. Sometimes

is used as a measure of statistical divergence.

Suppose now that we reverse the roles of the baseline and alternative probability measures.

E (logNt+1 ∣ At) ≤ logE (Nt+1 ∣ At) = 0.

Nt+1 Lt+1 = Nt+1Lt.

E (logLt+1 ∣ At) = logLt + E (logNt+1 ∣ At) ≤ logLt.

L

{At : t ≥ 0}

1/t

Nt+1 = 1

logLt

−E (logNt+1 ∣ At) ≥ 0
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The conditional relative entropy of a martingale increment is defined to be:

This entity is sometimes referred as Kullback-Leibler divergence. To understand why conditional relative
entropy is nonnegative, observe that multiplication of  by  changes the conditional
probability distribution for which the conditional expectation of  is calculated from the baseline
model to the alternative model. The function  is convex and equal to zero for . Therefore,
Jensen’s inequality implies that conditional relative entropy is nonnegative and equal to zero when

 conditioned on .
Notice that

Thus  is a submartingale. The expression

and is a measure of relative entropy over a -period horizon. Relative entropy is often used to analyze
model misspecifications and also appears in statistical characterizations of “large deviations” for Markov
processes and in information theory.

Consider a simple version of likelihood-based model identification. Suppose that a decision-
maker does not know whether a baseline or alternative model generates the data. Attach a
subjective prior probability  to the baseline probability model and probability  on the
alternative. Let  be a likelihood ratio process with  reflecting information available at date .
Date  posterior probabilities for the baseline and alternative probability models are:

When  converges to a negative number under the baseline probability, the first
probability converges to one. But when  converges to a positive number under the
alternative probability, the second probability converges to one. When the data are generated
by the baseline probability model, the Law of Large Numbers implies the former; and when the

E (Nt+1 logNt+1 ∣ At) ≥ 0.

logNt+1 Nt+1

logNt+1

n logn n = 1

Nt+1 = 1 At

E (Lt+1 logLt+1 ∣ At) = LtE (Nt+1 logNt+1 ∣ At) + Lt logLt

≥ Lt logLt.

L logL

E (Lt logLt ∣ A0) ≥ 0,

t

πo 1 − πo

L Lt t

t

πo

Lt(1 − πo) + πo

and
Lt(1 − πo)

Lt(1 − πo) + πo

.

1
t

logLt

1
t

logLt

Definition 7.2

Remark 7.2



data are generated by the alternative probability model, the Law of Large Numbers implies the
latter. This shows that model selection based on posterior probabilities will eventually determine
which model generated the data, the baseline model or the alternative model. This analysis can
be extended to situations in which some other model generates the data.

The tools provided here open the door to the economic analysis of asset pricing models in
which investors have so-called “subjective” beliefs. These beliefs could deviate from a baseline
probability, sometimes motivated via rational expectations. Much of the behavioral finance
literature appeals to insights from psychology to motivate such distortions. The tools here can
complement such analyses by providing ways to think about the complexity of the environment
within which investors reside. In the behavioral finance literature, you will often read about over
and under reaction, but over and under reaction relative to what? The data generating process
may itself be very difficult for investors to learn about and for econometricians to isolate. So
should that be the relevant benchmark or baseline to measure belief distortions? Moreover,
presumable so called distortions are more likely to persist when statistical challenges for the
investors and econometricians are substantial. Tools from probability and statistics thus are
pertinent for the study belief impacts on asset prices.

These tools are also pertinent to the study of models in which investors have heterogeneous
beliefs. [Alchian, 1950] and [Friedman, 1953], among others, have argued that investors with
distorted beliefs will eventually be driven out of the market by investors with more accurate
perceptions of the future because of the relative success of the latter type of investors. This has
been one argument for imposing rational expectations in asset pricing models. [Kogan et al.,
2006] refine this view by breaking a simple link between survival and price impact of the
investors with distorted beliefs. [Borovička, 2020] goes further by characterizing families of
investor preferences for which the investors with the distorted beliefs survive in the long run.
These latter two contributions feature differences in how investors look at stochastic growth. A
continuous-time counterpart to the martingale representation for belief distortions that we
describe and characterize in this chapter are featured in both the [Kogan et al., 2006] and the
[Borovička, 2020] papers.

7.4. Factoring a multiplicative functional
Following [Hansen and Scheinkman, 2009] and [Hansen, 2012], we factor a multiplicative functional into
three multiplicative components having the primitive types Example 7.1, Example 7.2, Example 7.3.

Remark 7.3

Remark 7.4
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As in definition Definition 7.1, let  be an additive functional, and let . Apply a one-period
operator  defined by

(7.4)

to bounded Borel measurable functions  of the Markov state. By applying the Law of Iterated
expectations, a two-period operator iterates  twice to obtain:

(7.5)

with corresponding definitions of -period operators . The family of operators is a special case of what
is called a ``semi-group.’’ The domain of the semigroup can typically be extended to a larger family of
functions, but this extension depends on further properties of the multiplicative process used to construct
it.

We next derive a revealing representation of this semigroup by factoring the multiplicative functional 
in an interesting way. We achieve this by applying what is referred to in mathematics as Perron-Frobenius
theory based on the following equation:

Eigenvalue-eigenfunction Problem: Solve

(7.6)

for an eigenvalue  and a positive eigenfunction .

Consistent with Perron-Frobenius theory, call the positive eigenvalue, the principal eigenvalue, and the
associated positive eigenvector, the** principal eigenfunction**, of the operator .

Use the principal eigenvalue and eigenvector, and define:

Note that we constructed  so as to have a conditional expectation equal to unity. Using  as a
martingale increment process, build

Y M = exp(Y )

M

Mf(x)
def
= E [exp(Yt+1 − Yt)f(Xt+1) ∣ Xt = x]

= E [(Mt+1

Mt
)f(Xt+1)|Xt = x].

f

M

M
2f(x)

def
= E [exp(Yt+2 − Yt)f(Xt+2) ∣ Xt = x]

= E [(Mt+2

Mt

)f(Xt+2) ∣ Xt = x],

j M
j

M

M~e(x) = exp (~η)~e(x)

exp(~η) ~e

M

Ñt+1

def
= exp(−~η)

Mt+1
~e(Xt+1)

Mt
~e(Xt)

= exp [~κ(Xt,Wt+1)],

Ñt+1 Ñ

L̃t+1 = Ñt+1L̃t, L̃0 = 1.



Let  be a multiplicative functional. Suppose that the principal eigenvalue-eigenfunction
Problem has a solution with principal eigenfunction . Then the multiplicative functional is
the product of three components that are instances of the primitive functionals in examples
Example 7.1, Example 7.2, and Example 7.3:

(7.7)

where  is a multiplicative martingale.

The factorization of a multiplicative functional described in Theorem 7.1 is a counterpart to the Chapter 4
Proposition 4.1 decomposition of an additive functional. We used the Proposition 4.1 martingale to
identify the permanent component of an additive functional in Chapter 4. In this chapter, we shall use the
multiplicative martingale isolated by Theorem 7.1 to represent a change of probability measure, but one
that will help us understand long-term risk return tradeoffs.

Models in which  is a finite-state Markov chain are givea direct computation in which the principal
eigenvalue calculation reduces to finding an eigenvector of a matrix with all positive entries.

The stochastic process  is governed by a finite-state Markov chain on state space
, where  is the  vector whose components are all zero except for  in the

 row. The transition matrix is  where . We represent the
Markov chain as

where ,  denotes the transpose of , and  is an  vector
process that satisfies , which is therefore a martingale-difference sequence
adapted to . Think of  as the vector of errors when forecasting 
based on current information.

Let  be an  matrix whose  entry  is an additive contribution to the growth that
 experiences when  and . The stochastic process  is governed by

the additive functional

M
~e(X)

Mt

M0
= exp (~ηt)L̃t [

~e(X0)
~e(Xt)

]

L̃t

X

X

{s1, s2, … , sn} si n × 1 1

ith P, pij = Prob(Xt+1 = sj|Xt = si)

Xt+1 = P
′Xt + Wt+1

E(Xt+1|Xt) = P
′Xt P

′
P Wt+1 n × 1

E(Wt+1|Xt) = 0

Xt,Xt−1, … ,X0 Wt+1 Xt+1

G n × n (i, j) gij

Yt+1 − Yt Xt+1 = sj Xt = si Y

Yt+1 − Yt = (Xt)
′
GXt+1 = (Xt)

′
GP

′Xt + (Xt)
′
GWt+1

Theorem 7.1

Example 7.6
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Let . Define a matrix  whose  element is  The stochastic
process  is governed by the multiplicative functional:

(7.8)

Associated with this multiplicative functional is the principal eigenvalue problem

To convert this to a linear algebra problem, write the  entry of  as . Since  always
assumes the value of one of the coordinate vectors ,

when  and . This allows us to rewrite the principal eigenvalue problem as

or

(7.9)

where  and  is entry  of . We want the largest eigenvalue and the one
associated with a positive eigenvector of (7.9).

After solving the principal eigenvalue problem, compute

(7.10)

and form the matrix . We have now constructed a matrix  that behaves as a transition
matrix for a different finite-state Markov chain. Its entries are nonnegative, and

We can use this matrix for form increments  in a positive multiplicative martingale
process :

M = exp(Y ) M (i, j)th mij = exp(gij).

M

Mt+1

Mt

= exp [(Xt)
′
GXt+1] = (Xt)

′
MXt+1.

E [Mt+1

Mt

~e ⋅ Xt+1|Xt = x] = exp (~η)~e ⋅ x.

jth ~e ~ej Xt

si, i = 1, … ,n

(Xt)
′
MXt+1 = mij

Xt = si Xt+1 = sj

∑
j

pijmij
~ej = exp(~η)~ei

M̃~e = exp(~η)~e

m̃ij

def
= pijmij

~ei i ~e

l̃ij = exp (−~η)m̃ij

~ej
~ei

L̃ = [̃lij] L̃

n

∑
j=1

l̃ij = 1.

(Xt)
′L̃Xt+1

{L̃t}



To achieve a Theorem 7.1 representation of the multiplicative functional , use formula (7.10)
for  to get  This allows us to write (7.8) as

(7.11)

Using the previous example, note that the matrix  could be inferred from the so-called Arrow
prices. Specifically, given prices of all of the state contingent claims for next period, we can infer
the column of  associated with the current state. By observing prices for all of the current
states, all of the columns of . We only need to know  to pose and solve the principal
eigenvalue problem and hence to construct transition probabilities as given by (7.10), but not
the ’s and the . This gives us a way to. recover a transition probabilities from asset prices in
the language of [Ross, 2015]. Notice, in particular, that the ’s and ’s cannot be inferred
uniquely from the ’s. In particular, the Arrow prices are insufficient to identify the transition
probabilities. Ross imposed restrictions on ’s that implied that the recovered probabilities are
actually the ’s. In general, the recovered probabilities will differ from the baseline transition
probability matrix. We will have more to say about this difference and investigate why the
recovered probabilities remain interesting. See [Borovička et al., 2016] for an extended
discussion of this claim.

The following log-linear, log-normal specification displays relevant mechanics of the multiplicative
factorization with direct connection to the corresponding additive decomposition

Consider a stationary  process and an additive  process described by the VAR

where  is a stable matrix and  is a sequence of independent and identically
normally distributed random vectors with mean zero and covariance matrix . In Proposition
Proposition 4.1 of Chapter 4, we described the decomposition

Ñt+1 = (Xt)
′
L̃Xt+1.

Mt

m̃ij mij = exp (~η)m̃ij
ei
ej

.

Mt+1

Mt
= exp (~η) [(Xt)

′
M̃Xt+1](

~e ⋅ Xt

~e ⋅ Xt+1
).

M̃

M̃

M̃ M̃

pij sij

pij sij

mij

sij

pij

X Y

Xt+1 = AXt + BWt+1

Yt+1 − Yt = ν + DXt + FWt+1

A {Wt+1 : t ≥ 0}

I
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(7.12)

where

Let . Use equation (7.12) to deduce

where

(7.13)

and

While the additive martingale of  has a variance that grows linearly over time, this
variance contributes a component to the exponential trend of the multiplicative functional 
along with an adjustment to the martingale component.

Consider the following stochastic volatility example. Suppose that a scalar state variable evolve
as first-order autoregression:

where  is an iid sequence of normally distributed random variables. The state
variable  gives the source of volatility fluctuations. Guess a principle eigenfunction of the
form:

Yt − Y0 = tν + [
t

∑
j=1

HWj] − g(Xt−1) + g(X0)

H =F+ D(I− A
′)−1

B

g(x) =D(I− A)−1
x.

Mt = exp(Yt)

Mt

M0
= exp (~ηt)L̃t [

~e(X0)
~e(Xt)

]

~η = ν +
∣ H ∣2

2
,

Ñt+1 = exp(HWt+1 −
∣ H ∣2

2
), L̃0 = 1,

~e(x) = exp[g(x)] = exp [D(I− A)−1
x].

Y = log(M)

M

Xt+1 = aXt + bWt+1

Yt+1 − Yt = ν + (f0 + f1Xt)Wt+1

{Wt+1 : t ≥ 0}

Xt

Example 7.8



and construct

Write the principle eigenfunction equation as:

where we took logarithms of both sides of the equation. The computation on left side of this
equation has a tractable formula for expressing the outcome as a quadratic function of the state.

We may solve this equation in three steps. Solve the equation in three steps. First, equate
coefficients on  and deduce a quadratic equation for . Next, equate coefficients on  and
obtain a linear equation for . Finally, equate constants obtain an equation for . The initial
quadratic equation is

When it has a solution, there is will typically be two possible choices. For the solution to be of
interest,  must be positive.

For this example,

where  means proportional to up to a scale factor that depends on . Under the implied
change in measure,  is distributed as normal random variable with conditional mean

and precision . Under the change of probability measure,  remains normally
distributed with a different variance and state-dependent mean. Under this change in
probability measure, the  remains a first-order autoregression but with different dynamics. It
could, for instance, be an explosive autoregression.

~e(x) = exp(ϵ1x +
ϵ2

2
x2),

ê(x,w)
def
= ϵ1ax + ϵ1bw +

ϵ2

2
a2x2 + ϵ2abxw +

ϵ2

2
b2w2.

logE (exp [ν + (f0 + f1Xt)Wt+1 + ê (Xt,Wt+1)] ∣ Xt = x)

= ~η + ϵ1x +
ϵ2

2
x2,

x2 ϵ2. x

ϵ1
~η

b2(ϵ2)2 + (a2 + 2f1ab − 1)ϵ2 + (f1)
2

= 0.

1 − ϵ2b2

Ñt+1 ∝ exp [(f0 + f1)XtWt+1 + ϵ1bWt+1 +
ϵ2

2
b2(Wt+1)2 + ϵ2abXtWt+1]

∝ Xt

Wt+1

f0 + f1Xt + ϵ1b + ϵ2abXt

1 − ϵ2b2

1 − ϵ2b2 Wt+1

X



The martingale component of the multiplicative functional has “peculiar behavior.” It has
expectation one by construction. The Martingale Convergence Theorem guarantees that sample
paths converge, typically to zero. The Martingale Convergence Theorem is operative because
the positive martingale is bounded from below. Since its date zero conditional expectation is
one, for long horizons this process necessary has a fat right tail. Fig. 7.2 plots probability density
functions of the martingale component for different values of .

Fig. 7.2 Density of  for different values of .

Consider a positive cumulative return process,  modeled as a stochastic functional. As we
noted previously, for such a process,  for  is a -period return for any such 
and . Consider also the associated cumulative stochastic discount factor process,  which we
also take to be a multiplicative functional. For this process,  for  is the -period
stochastic discount factor for any such  and . Normalize  and . Repeating what
we stated previously, by standard asset pricing logic, SR is a multiplicative martingale. [Martin,
2012] studies tail behavior of cumulative returns. Since its date zero conditional expectation is
one, for long horizons this process necessary has a fat right tail as illustrated by Fig. 7.2.

t

L̃t t

R,

Rt/Rτ τ < t t − τ t

τ S,

St/Sτ τ < t t − τ

t τ R0 = 1 S0 = 1

Remark 7.6
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While the multiplicative martingale has peculiar sample path properties, we are primarily interested in this
martingale component as a change of probability measure. For instance, in Example 7.7, formula (7.13) for

 tells how the change in probability measure induces mean  in the conditional distribution for the
shock . Similarly,  with entries given in formula (7.10), provides an alternative transition matrix in
Example 7.6.

7.5. Stochastic stability
Our characterization of a change of probability measure as the solution of a Perron-Frobenius problem
determines only transition probabilities. Since the process is Markov, it is of interest to seek an initial
distribution of  under which the process is stationary and satisfies a stochastic stability property that
we will define and explore. Stochastic stability opens the door the study of a variety of limiting behavior
and hence justifies our interest in the multiplicative factorization. The eigenfunction problem can have
multiple solutions, it turns out, however, that there is a unique solution for which the process  is
stochastically stable under the implied change of measure, in particular, the solution associated with the
minimum eigenvalue. See [Hansen and Scheinkman, 2009] and [Hansen, 2012] for formal analyses of this
problem in a continuous-time Markov setting.
In what follows we investigate the discrete-time counterpart to their investigations.

A process  is stochastically stable under a probability measure  if it is stationary and
 for any Borel measurable  satisfying

.

Let  be a multiplicative functional. Suppose that  solves the eigenfunction problem and
that under the change of measure  implied by the associated martingale  the stochastic
process  is stationary and ergodic. Consider any other solution  to eigenfunction
problem with implied martingale . Then

1. .
2. If  is stochastically stable under the change of measure  implied by the martingale

, then ,  is proportional to , and  for all .

First we show that . Write:

Ñt H

Wt+1 L̃,

X0

X

X
~
P

limj→∞ Ẽ [h(Xj) ∣ X0 = x] = Ẽ [h(X0)] h

Ẽ|h(Xt)| < ∞

M (~η, ~e)

P̃ M̃

X (η∗, e∗)

{M ∗
t }

η∗ ≥ ~η

X Pr∗

M ∗ η∗ = ~η e∗ ~e M ∗ = M̃ t = 0, 1, . . .

η∗ ≥ ~η

Definition 7.3

Theorem 7.2

Proof
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Thus,

If , then

But this equality cannot be true because under   is stochatically stable and  is strictly
positive. Therefore, 

Consider next the case in which . Write

which implies that

Thus,

Suppose that , then

so that  cannot be stochastically stable under the  measure.

Finally, suppose that  and that  is not constant. Then

M
te∗(x) = exp (~ηt)Ẽ([

~e(X0)
~e(Xt)

]e∗(Xt) X0 = x) = exp (η∗t)e∗(x).∣Ẽ([
e∗(Xt)
~e(Xt)

] X0 = x) = exp (η∗t − ~ηt) [
e∗(x)
~e(x)

].∣~η > η∗

lim
t→∞

Ẽ([ e
∗(Xt)
~e(Xt)

] X0 = x) = 0.∣P̃r X e∗

~e

η∗ ≥ ~η.

η∗ > ~η

Mt

M0
= exp (η∗t)(M ∗

t

M ∗
0

)( e∗(X0)

e∗(Xt)
),

M
t~e(x) = exp (η∗t)E ∗ [(

e∗(X0)

e∗(Xt)
)~e(Xt) X0 = x] = exp (~ηt)~e(x).∣E

∗ ([
~e(Xt)

e∗(Xt)
] X0 = x) = exp (~ηt − η∗t) [

~e(x)

e∗(x)
].∣~η < η∗

lim
t→∞

E
∗ ([

~e(Xt)

e∗(Xt)
] X0 = x) = 0,∣X Pr∗

~η = η∗
~e(x)

e∗(x)



and  cannot be stochastically stable under the  measure.

Stochastic stability under the change of measure provides way to think about some interesting long-term
approximations. Suppose that

(7.14)

Then

Since  is stochastically stable under ,

(7.15)

This limit justifies the Perron Frobenius eigenvalue as the long-term growth or decay rate of the
multiplicative functional.

As we have mentioned previously, cumulative returns and cumulative stochastic discount factor processes
can often be measured, conveniently, by multiplicative functionals. Suppose that

In the case of a cumulative return process, the implied  is the long-term logarithm of the expected
return on the corresponding investment. The division by  in (7.15) adjusts for the horizon of the expected
return. For a cumulative stochastic discount factor process, the resulting  is the negative of the yield
on a long-term discount bond.

Under the restriction, after adjusting for the growth or decay in the semigroup, we obtain a more refined
approximation:

E
∗ ([

~e(Xt)

e∗(Xt)
] X0 = x) =

~e(x)

e∗(x)∣X Pr∗

f > 0 and 0 < Ẽ [
f(Xt)
~e(Xt)

] < ∞.

1

j
logMjf(x) = ~η +

1

j
log Ẽ [

f(Xj)
~e(Xj)

X0 = x] −
1

j
log ~e(x)∣X P̃r

lim
j→∞

1

j
logMjf(x) = ~η.

Ẽ( 1
~e
) < ∞.

~ρ > 0

j
~ρ < 0

lim
j→∞

exp(−~ηj)Mjf(x) = lim
j→∞

Ẽ [
f(Xj)
~e(Xj)

X0 = x]~e(x) = Ẽ [ f(Xt)
~e(Xt)

]~e(x),∣



where we assume that . Once we adjust for the impact of , the limiting function is

proportional to . The function  determines only a scale factor .

We will apply the limiting results in a variety of ways in this and subsequent chapters. The multiplicative
factorization can help us understand implications of stochastic equilibrium models for valuations of
random payout processes. In addition, such factorizations can help organize empirical evidence in ways
that make contact with such stochastic equilibrium asset pricing models.

7.6. Inferences about permanent shocks
Macroeconomists often study dynamic impacts of shocks to systems of variables measured in logarithms.
For example, [Alvarez and Jermann, 2005] suggest looking at asset prices using a multiplicative
representation of a cumulative stochastic discount factor, though without the tools provided by this
chapter. The additive decomposition derived and analyzed in Chapter 4 are a convenient tool for models
like theirs.

We start with a factorization of a stochastic discount factor process as given in Theorem 7.1.

(7.16)

Take logarithms and form:

This looks like an additive decomposition of the type analyzed in Chapter 4, but it is actually different.
While  is a multiplicative martingale,  is typically a super martingale, but not a martingale. This
leads us to write the additive decomposition as:

where  is an additive martingale. As [Hansen, 2012] argues, a weaker result holds. If  is not
degenerate (i.e., equal to one), then  is not degenerate and conversely. A prominent multiplicative
martingale component implies a prominent role for permanent shocks in the underlying economic
dynamics. A formal probability model lets us link the two representations via the results we have
described in this chapter and Chapter 4. Log normal models, at least as approximations, are often used by
applied macroeconomists. Example 7.7 provides an example with explicit formulas linking the two
representations. While distinct, the two martingales, in this special case, are closely linked. In general, this
simplicity vanishes, unfortunately.

Ẽ [ f(Xt)
~e(Xt)

] < ∞ ~η

~e f Ẽ [ f(Xt)
~e(Xt)

]~e(x)

St

S0
= exp(tηs)Ls

t [
es(X0)

es(Xt)
]

logSt − logS0 = tηs + logLs
t + log es(X0) − log es(Xt).

Ls logLs

logSt − logS0 = tη̂s + L̂s
t + ês(X0) − ês(Xt)

L̂s Ls

L̂s
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7.7. Observable counterparts to a factorization of
stochastic discount factors
Consider stochastic discount factorization (7.16) again. A date zero price of a long-term bond is:

Compute the corresponding yield by taking  times minus the logarithm:

Provided that

the limiting yield on a discount bond is  as we noted previously.

Next consider a one-period holding period return on a  period discount bond:

Using stochastic stability and taking limits as  tends to  gives the limiting holding-period return:

(7.17)

A simple calculation shows that  satisfies the following equilibrium pricing restriction on a one-period
return:

These long-horizon limits provide approximations to the eigenvalue for the stochastic discount factor and
the ratio of the eigenfunctions. In a model without a martingale component [Kazemi, 1992], observed that
the inverse of this holding-period return is the one-period stochastic discount factor. [Alvarez and

E( St

S0
A0) = exp(ηst)Ẽ [ 1

es(Xt)
X0]es(X0).∣ ∣1/t

−ηs −
1

t
log Ẽ [ 1

es(Xt)
X0] +

1

t
log es(X0).∣Ẽ [ 1

es(Xt)
] < ∞,

−ηs,

t

exp[ηs(t − 1)]Ẽ [ 1
es(Xt)

X1]es(X1)

exp(ηst)Ẽ [ 1
es(Xt)

X0]es(X0)∣∣t ∞

R∞
1

def
= exp(−ηs)

es(X1)

es(X0)
.

R∞
1

E [( S1

S0
)R∞

1 A0] = Ẽ(exp(ηs) [
es(X0)

es(X1)
] exp(−ηs) [

es(X1)

es(X0)
] X0) = 1.∣ ∣
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Jermann, 2005] extend this insight by showing that the reciprocal reveals the component of one-period
stochastic discount factor net of its martingale component.

Within the [Kazemi, 1992] setup,  equals the one-period stochastic factor. Let  be a vector
of asset payoffs and  is a vector of corresponding prices. Then

Take the baseline probability measure to the data generating process as is often done under
rational expectations. We may sidestep measuring this baseline probability by using the
approach delineated by [Hansen and Singleton, 1982] and [Hansen and Richard, 1987] and
converts our generalization of Kazemi’s insight into a testable restriction using generalized
method of moments. See [Hansen, 1982].

Notice that rational expectations is imposed empircally under partial information, as it often is
for Euler equation methods. This is very distinct from imposing rational expectations as an
outcome determined by a fully-specified model. This full information approach can be imposed
without feeding back on data. The expectations are model implied. Indeed many applied theory
contributions embrace this approach to rational expectations. With the full information
approach, maximum likelihood estimation and testing can be done as a second step in the
analysis, as is featured in research by Sargent and others. See, for instance, the methods
described in [Hansen and Sargent, 1980].

Within the [Kazemi, 1992] setup, a subjective belief specification as multiplicative martingale expressed in
terms of a baseline probability specification could rationalize the martingale component of a cumulative
stochastic discount factor process and capture the empirical failure using the approach just described.
Thus the distinction between probability measures can be sufficient to induce a martingale component
relative to baseline probabilities even though this component is absent when valuations are depicted with
the subjective probabilities.

In practice, we have only have bond data with a finite payoff horizon, whereas the characterizations
[Kazemi, 1992] and [Alvarez and Jermann, 2005] use bond prices with a limiting payoff horizon. Empirical
implementations using such characterizations assume that the observed term structure data have a
sufficiently long duration component to provide plausible proxy for the limiting counterpart.

R∞
1 Y1

Q0

E (R∞
1 Y1 ∣ A0) = Q0.
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7.8. Long-term risk-return tradeoff for cash flows
Following [Hansen and Scheinkman, 2009] and [Hansen et al., 2008], we consider the valuation of
stochastic cash flows, , that are multiplicative functionals. Such cash flows are determinants of prices of
both equities and bonds.

We now study long-term limits of prices of such cash flows. In addition to the stochastic discount process
(7.16), form:

with a corresponding cash-flow return over horizon :

Note that as a special case, the cash-flow return on a unit date  cash-flow is:

Define the proportional risk premium on the initial cash-flow return as the ratio of the expected return
divided by the riskless counterpart for the same horizon. Taking logarithms and adjusting for the time
horizon gives:

(7.18)

where the first term is the logarithm of the expected payoff, the second term is minus the logarithm of
the price, and the third term is minus the logarithm of the riskless cash-flow return for horizon . Scaling
by  adjusts for the investment horizon.

The product  is itself a multiplicative functional. Let  denote its geometric growth component. Then
from (7.18), the limiting cash-flow risk compensation is:

This expression resembles the negative of covariance as is often found in asset pricing, but it differs from
a covariance because we are working with proportional measures of the risk compensations.

G

logGt − logG0 = tηg + logL
g
t + log es(X0) − log es(Xt),

t
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Gt
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E( StGt

S0G0
X0)

.∣ ∣t

1

E( St

S0
X0)∣1

t
logE( Gt

G0
X0) −

1

t
logE( StGt

S0G0
X0) +

1

t
logE( St

S0
X0),∣ ∣ ∣ t

1/t

SG ηsg

ηg + ηs − ηgs.
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We also investigate the limiting behavior of one-period holding period returns. An empirical asset pricing
literature has explored these returns starting with [van Binsbergen et al., 2012]. See [Golez and Jackwerth,
2024] for a recent update of this evidence. Use the factorization of  to get

Based as it is on a multiplicative factorization of , this typically does not the difference between the
logarithm of the factorization of  and the logarithm of the factorization of . We provide a
characterization of the limiting one-period holding period return for the cash flow by imitating and
extending our analysis of a limiting holding-period return for riskless bond. This gives the following cash-
flow analogue to (7.17):

for the long-horizon cash flow holding period return. The eigenvalue and eigenfunction adjustments
come from studying  instead of . The limiting holding-period return now inherits a stochastic growth
term . By multiplying this return by  we obtain , the date one martingale increment for

. The one-period pricing relation for the cash-flow holding-period return follows immediately.

Finally, suppose that  so that the martingale component of the stochastic discount factor process
is degenerate. Then  inherits the martingale component of , implying that

As a consequence, the long-term risk-return tradeoff is zero, since in the limit proportional risk
compensation is

Thus when the stochastic discount factor process fails to have a martingale component, the long-term,
risk-return tradeoff is degenerate.

7.9. Bounding investor beliefs
We use the cumulative stochastic discount factorization to analyze two distince approaches to drawing
inferences about investor beliefs.

SG

logGt − logG0 + logSt − logS0

= ηsg + logL
sg
t + log egs(X0) − log egs(Xt),

SG

S G

exp(−ηsg)(G1

G0
)[ e

sg(X1)

esg(X0)
]

SG S

G1/G0 S1/S0 N
sg
1

SG

Ls = 1

SG G

ηsg = ηs + ηg

esg(x) = es(x)eg(x)

ηs + ηg − ηsg = 0.

file:///C:/Users/faisalquaiyyum/Chicago%20Booth%20Dropbox/Faisal%20Quaiyyum/QuantMFR/_build/html/book/cite.html#id58
file:///C:/Users/faisalquaiyyum/Chicago%20Booth%20Dropbox/Faisal%20Quaiyyum/QuantMFR/_build/html/book/cite.html#id58
file:///C:/Users/faisalquaiyyum/Chicago%20Booth%20Dropbox/Faisal%20Quaiyyum/QuantMFR/_build/html/book/cite.html#id58
file:///C:/Users/faisalquaiyyum/Chicago%20Booth%20Dropbox/Faisal%20Quaiyyum/QuantMFR/_build/html/book/cite.html#id59
file:///C:/Users/faisalquaiyyum/Chicago%20Booth%20Dropbox/Faisal%20Quaiyyum/QuantMFR/_build/html/book/cite.html#id59


7.9.1. Subjective beliefs in the absence of long-term risk
Suppose that we have data on prices of one-period state-contingent claims. We can use these data to
infer the one-period operator,  Recall that we represent this operator using a baseline specification of
the one-period transition probabilities. One possibility is that the one-period baseline transition
probabilities agree with the data generation. Rational expectations models equate transition probabilities
to those used by investors. More generally, investors could have subjective beliefs that can differ from the
baseline specification:

investors think there are no permanent macroeconomic shocks;

investors don’t have risk-based preferences that can induce a multiplicative martingale in a
cumulative stochastic discount factor process.[1]

Under these two restrictions, we could identify the  as the likelihood ratio for investor beliefs relative to
the baseline probability distribution. Thus, the implied martingale component in the cumulative stochastic
discount factor identifies the subjective beliefs of investors. Using this change of measure, the limiting
long-term risk compensations derived in the previous section are zero. These assumptions allow for the
“Ross recovery” of investor beliefs.[2]

7.9.2. Restricting the martingale increment with limited asset
market data
Suppose we impose rational expectations by endowing investors with knowledge of the data generating
process. With limited asset market data we cannot identify the martingale component to cumulative
stochastic discount factor process without additional model restrictions. We can, however, obtain
potentially useful bounds on the martingale increment. For some applications, in addition to that of
[Alvarez and Jermann, 2005], see []and [], among others. We know that as a stochastic process the implied
martingale has some peculiar behavior and the martingale and transient components can be correlated
the transient components Nevertheless, the implied probability measure can be well behaved.
Consequently, in contrast to [Alvarez and Jermann, 2005], [], and [], we use the increment as a device to
represent conditional probabilities instead of just as a random variable. Extensions of these same
methods can be used to study restrictions on subjective beliefs implied by asset prices.

There is a substantial literature on divergence measures for probability densities. Relative entropy is an
important example. More generally, consider a convex function  that is zero when evaluated at one.
Jensen’s inequality implies that

and equal to zero when  is one, provided that  is a multiplicative martingale increment (has
conditional expectation one). This gives rise to a family of  divergences that can be used to assess

M.

Ls

ϕ

E [ϕ(N1) ∣ X0] ≥ 0,

N1 N1

ϕ
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departures from baseline probabilities. Relative entropy,  is an example that is particularly
tractable and has been used often. Both  and  can be interpreted as expected log-
likelihood ratios.

One way of assessing the magnitude of  solves:

Minimum divergence Problem

subject to:

where  is a vector of asset payoffs and  is a vector of corresponding prices.

Recall that the term

can be approximated by the reciprocal of the one-period holding-period return on a long-term bond.
This makes such an approach implementable. Such a computation is an example of partial identification
because the vector  of asset payoffs may not be sufficient to reconstruct all potential one-period asset
payoffs and prices. This could be because data limitations lead an econometrician to choose to use
incomplete data on financial markets.

By relaxing rational expectations and replacing  in this minimization problem with a

candidate one-period stochastic discount factor,  the bounds apply to the subjective beliefs of the
investors.

To avoid having to estimate conditional expectations, applications often study an unconditional
counterpart to this problem. In such situations, conditioning can be brought in through the
“back door” by scaling payoffs and prices with variables in the conditioning information set; for
example, see [Hansen and Singleton, 1982] and [Hansen and Richard, 1987]. See [Bakshi and
Chabi-Yo, 2012] and [Bakshi et al., 2017] for some related implementations.

ϕ(n) = n logn

n logn − logn

N L
1

min
N1≥0

E [ϕ(N1) ∣ X0]

E (N1 ∣ X0) = 1

E(N1 [exp(ηs)
es(X0)

es(X1)
]Y1 X0) = Q0∣Y1 Q0

[exp(ηs)
es(X0)

es(X1)
] = (R∞

1 )
−1

Y1

[exp(ηs)
es(X0)

es(X1)
]

S1/S0,
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[Alvarez and Jermann, 2005] use  as the objective to be minimized. Notice
that

where the term in square brackets is the logarithm of the limiting holding-period bond return.
The criterion thus equals that in the minimum divergence problem, but with an additive
translation. Rewrite the constraints as:

Thus we are left with an equivalent minimization problem in which the translation term is
subtracted off to obtain the bound of interest.

Applied researchers have sometimes omitted the first constraint, which weakens the bound.
Moreover, [Chen et al., 2024] isolate a potentially problematic aspect of monotone decreasing
divergences such as  because they can fail to detect certain limiting forms of deviations
from baseline probabilities.

[Chen et al., 2020] propose extensions of the one-period divergence measures to multi-period
counterparts that remain tractable and enlightening. Their method for accommodating
conditioning information for bounding such divergences has a direct extension to the problem
considered here.

A figure from [Chen et al., 2020]:

−E (logS1 + logS0)

logN s
1 = logS1 − logS0 + [ηs + log es(X1) − log es(X0)],

E( S1

S0
R∞

1 ) = 1

E( S1

S0
Y1) = Q0.

− logn
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[1]

[2]

Fig. 7.3 Proportional risk compensations computed as  scaled to an annualized
percentage. The s are the empirical averages and the boxes give the imputed bounds when we inflated the
minimum relative entropy by 20%.

This second restriction is violated by recursive utility models of investor preference that we will
analyze in a subsequent chapter. See discussions in [Alvarez and Jermann, 2005], [Hansen and
Scheinkman, 2009], and [Borovička et al., 2016].

Our presentation is consistent with the formal analysis in [Ross, 2015], although Ross’s derives and
motivates his result somewhat differently.

logERw − logERf
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