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Challenges in navigating long-term uncertainty.

Chapter 4:Processes with Markovian increments described additive functionals of a Markov process. This

chapter describes exponentials of additive functionals that we call multiplicative functionals. We can use
them to model stochastic growth, stochastic discounting, belief distortions and their interactions. After
adjusting for geometric growth or decay, a multiplicative functional contains a martingale component
that turns out to be a likelihood ratio process that is itself a special type of multiplicative functional called
an exponential martingale. By simply multiplying random variables of interest by the multiplicative
martingale prior to computing conditional expectations under a baseline probability, we construct an
alternative probability measure. It functions as a relative density that alters the baseline probability
measure. For an initial application of multiplicative functionals to asset valuation and investor preferences,

see [Anderson et al, 2003]. We will explore these and other applications in discussions that follow. We will

see that multiplicative functionals has several applications. They allow us to characterize components of
stochastic growth and stochastic discounting that persist over long time horizons. They show how
macroeconomic shocks with long-term impacts are reflected in asset pricing. They provide a tractable
modeling tool for models in which investors have subjective beliefs that may deviate from a baseline
probability and allow for measuring their magnitudes using statistical discrimination measures. We will
encounter several other applications of multiplicative functionals, including models of returns and positive
cash flows that compound over multiple horizons, cumulative stochastic discount factors are used to

long-horizon, risk-return tradeoffs.
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7.1. Geometric growth and decay

To construct a multiplicative functional, we start with an underlying Markov process X that has a
stationary distribution @), and we suppose that Yy and X depend only on date zero information

summarized by 2.

A Definition 7.1

def
letY = {Y:} be an additive functional that as in Chapter 4 is described by

Yivn Y = R(Xta Wt—i—l)a

where X4 is the time t component of a Markov state vector satisfying X1 = qb(Xt, Wt+1) and

W4 is the time ¢t + 1 value of a martingale difference process (E (W, | ;) = 0) of
def
unanticipated shocks. We say that M - {M; :t >0} = {exp(Y3) : t > 0} is a multiplicative

functional parameterized by &.

An additive functional grows or decays linearly, so the exponential of an additive functional grows or

decays geometrically. We construct a multiplicative functional recursively by

M1 = Nip1 M. (7.1)

We may solve for Ny, 1,

When M, is zero, so is My 1. In this case, the random variable, IV; 1, is not uniquely defined by (7.1). Our
decision to set it to unity is simply a convenient normalization. In light of (7.1), we refer to N as the

multiplicative increment of the process M.

Chapter 4 stated a Law of Large Numbers and a Central Limit Theorem for additive functionals. In this

chapter, we use other mathematical tools to analyze the limiting behavior of multiplicative functionals.

7.2. Special multiplicative functionals

We define the three primitive multiplicative functionals.

A Example 7.1
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Suppose that k = 1 is constant and that M, is a Borel measurable function of X. Then

M; = exp (tn) M.

This process grows or decays geometrically.

A Example 7.2
Suppose that
E [eXp [K} (Xt7 Wt—l—l)] ‘ Q’[t] = 1.
Then
E (Mgy1|24:) = My (7.2)
so that

E (Nt+1’mt) =1

A multiplicative functional that satisfies (7.2) is called a multiplicative martingale. We denote

def
such a process as M = L because it is appropriate to view it as likelihood ratio process. We will

have more to say about this in some of the discussion that follows. It will often be convenient to

initialize this process at My = Lo = 1.

A Example 7.3

Suppose that M; = exp [h(X})] where h is a Borel measurable function. The associated

additive functional satisfies

Yii1 — Y, =log M — log M,
= h(Xe1) — h(X¢)
=h [Qb(Xt, Wt+1)] - h(Xt)

and is parameterized by k(Xt, Wit1) = h [¢(Xt, Wer1)] — h(X:) with initial condition
Yy = h(X)).

When the process { X;} is stationary and ergodic, multiplicative functional Example 7.1 displays expected

growth or decay, while multiplicative functionals Example 7.2 and Example 7.3 do not. Multiplicative

functional Example 7.3 is stationary, while Example 7.1 and Example 7.2 are not.




We can construct other multiplicative functionals simply by multiplying instances of these primitive ones.
Soon we shall reverse that process by taking an arbitrary multiplicative functional and (multiplicatively)
decomposing it into instances of our three types of multiplicative functionals. Before doing so, we explore

multiplicative martingales in more depth.

7.3. Multiplicative martingales

We can use multiplicative martingales to represent alternative probability models. We can characterize an
alternative model with a set of implied conditional expectations of all bounded random variables, B; 1,

that are measurable with respect to 2l;. 1. The constructed conditional expectation is

E (Nt+]_Bt_|_1 ‘ Q[t). (73)

We want multiplication of B¢;1 by N¢;1 to change the baseline probability to an alternative probability

model. To accomplish this, the random variable N;,1 must satisfy:

1. Ny >0
2. K (Nt_|_1 ‘ Q[t) = ].;

3. Ni 1 is ;1 measurable.

Property 1 is satisfied because conditional expectations map positive random variables B; 1 into positive
random variables that are 2; measurable. Properties 2 and 3 are satisfied because IV is the multiplicative
increment of a multiplicative martingale. The resulting process L can be viewed as a likelihood ratio or
Radon-Nikodym derivative process for the alternative probability measure relative to the baseline

measure.

Representing an alternative probability model in this way is restrictive. For instance, if a nonnegative
random variable has conditional expectation zero under the baseline probability, it will also have zero
conditional expectation under the alternative probability measure, an indication of absolute continuity of
the implied probability measure with respect to the baseline measure. Two models that violate absolute
continuity can be distinguished with probability one from only finite samples. To avoid this degenerate

outcome, likelihood-based statistically inference typically imposes this form of absolute continuity.

Given the multiplicative construction, the implied alternative conditional probability measure over 7

periods uses the random variable

.
1] ¥
j=1

to compute the 7 time-period-ahead conditional expectation. With this construction, the 7-period

conditional expectation may be computed by iterating on the one-period conditional expectations in



accordance with the Law of Iterated expectations.

Multiplicative martingales provide a way to model diverse subjective beliefs of private agents or policy-
makers within dynamic, stochastic equilibrium models when these beliefs are allowed to depart from the

model builder's model. As [Hansen and Scheinkman, 2009] show, they also offer a way to value

cumulative returns. Let R; be a multiplicative process that measures a cumulative return between date ¢
and date zero. Let S} be a corresponding equilibrium discount factor between these same two dates. That

L = RS is a multiplicative martingale follows from equilibrium restrictions on one-period returns. That is,

(%) (%) 12—

where St+1/St is the one-period stochastic discount factor and Rt+1/Rt is the one-period gross return.

For the application, we construct

Here are some examples of multiplicative martingales constructed from some standard probability

models.

A Example 7.4

Consider a baseline Markov process having transition probability density 7, with respect to a

measure \ over the state space X

P,(dz"|z) = w,(z" | z)A(dz™)

Let m denote some other transition density that we represent as

m(z" | z)

To(xt | )

w(z" | 2)Mde") = [ ]Wo(sc+ | 2)A(dz )

where we assume that m,(z" | ) = 0 implies that 7(z* | ) = 0 forall z™ and z in X.

Construct the multiplicative increment process as:

A Example 7.5
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Let an alternative model for a vector X be a vector autoregression:

X1 = AXy +BWi

where A is a stable matrix, {W31 : t > 0} is an i.i.d. sequence of N'(0, I) random vectors
conditioned on X, and B is a square, nonsingular matrix. Assume that a baseline model for X
has the same functional form but different settings (A,, B,) of its parameters. Construct Ny, 4

as the one-period conditional log-likelihood ratio

1 ~1
log Ny y1 = —E(Xtﬂ - AXy) (BB') (X1 — AXy)

1 —
5 (Xer1 = AoX0) (BoBS) ' (X1 — AoX2)
_ % log det (BB') + % log det (B,B,’)

Notice how the matrices (A,,B,) of the baseline model and parameters (A, B) of the

alternative model both appear.

A Remark 7.1

Because B is a nonsingular square matrix, model Example 7.5 has the same number of shocks,

i.e., entries of W, as there are components of X. A more general setting would be a hidden

Markov state model like one presented in Section Kalman Filter and Smoother of Chapter

Hidden Markov Models that has a time-invariant representation with an “information state

vector” constructed as a way to condition on an infinite past of an observation vector.

We can elicit a limiting behavior of multiplicative martingales by applying Jensen’s inequality to the

concave function log L depicted in Fig. 7.1 based on

E (log Lt [ 2o) <0

where we normalize Ly = 1.
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v

—6 1= log(L)

Fig. 7.7 Jensen's Inequality. The logarithmic function is a concave function that equals zero when evaluated at
unity. The line segment lies below the logarithmic function.An interior average of endpoints of the straight

line lies below the logarithmic function.

Moreover, by Jensen’s inequality,

E (log Nis1 | %) < logE (Npyq | 2;) = 0.

for Ny satisfying Ly 1 = N;1L;.. Note that

E (log Li11 | A¢) = log Ly + E (log Net1 | t) < log L.

This implies that under the baseline model the log-likelihood ratio process L is a supermartingale relative

to the information sequence {2l; : ¢ > 0}.

From the Law of Large Numbers as described Chapter 1:Laws of Large Numbers and Stochastic Processes

, @ population mean is well approximated by a sample average from a long time series. That opens the
door to discriminating between two models. Under the baseline model, the log likelihood ratio process
scaled by 1/t converges to a negative number. If the baseline model, actually generates the data, the
expected log likelihood ratio constructed with data will (at least eventually) be negative except in the
degenerate case in which N¢11 = 1 with probability one. Such a calculation justifies discriminating
between the two models by calculating log L; and checking if it is positive or negative. This procedure

amounts to an application of the method of maximum likelihood. Sometimes

—E (lOgNt_|_1 ‘ Q[t) Z 0
is used as a measure of statistical divergence.

Suppose now that we reverse the roles of the baseline and alternative probability measures.
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A Definition 7.2

The conditional relative entropy of a martingale increment is defined to be:

E (Nt_|_1 log Nt+1 ‘ Q[t) Z 0.

This entity is sometimes referred as Kullback-Leibler divergence. To understand why conditional relative
entropy is nonnegative, observe that multiplication of log N¢1 by IN¢1+1 changes the conditional
probability distribution for which the conditional expectation of log Ny is calculated from the baseline
model to the alternative model. The function nlogn is convex and equal to zero for n = 1. Therefore,
Jensen’s inequality implies that conditional relative entropy is nonnegative and equal to zero when
Nii1 = 1 conditioned on ;.

Notice that

1D (Lt_|_1 log Lt+1 ’ Q[t) = LtE (Nt_|_1 log Nt+1 ’ Q[t) —+ Lt 10g Lt
Z Lt log Lt'

Thus L log L is a submartingale. The expression

E (Lilog Ly | o) > 0,

and is a measure of relative entropy over a t-period horizon. Relative entropy is often used to analyze
model misspecifications and also appears in statistical characterizations of “large deviations” for Markov

processes and in information theory.

A Remark 7.2

Consider a simple version of likelihood-based model identification. Suppose that a decision-
maker does not know whether a baseline or alternative model generates the data. Attach a
subjective prior probability 7, to the baseline probability model and probability 1 — 7, on the
alternative. Let L be a likelihood ratio process with L; reflecting information available at date t.

Date t posterior probabilities for the baseline and alternative probability models are:

ﬂ-o Lt(]. - ﬂ-o)
and :
L,(1—m,)+m, L,(1—m,)+m,

When % log L; converges to a negative number under the baseline probability, the first
probability converges to one. But when % log L; converges to a positive number under the
alternative probability, the second probability converges to one. When the data are generated

by the baseline probability model, the Law of Large Numbers implies the former; and when the




data are generated by the alternative probability model, the Law of Large Numbers implies the
latter. This shows that model selection based on posterior probabilities will eventually determine
which model generated the data, the baseline model or the alternative model. This analysis can

be extended to situations in which some other model generates the data.

A Remark 7.3

The tools provided here open the door to the economic analysis of asset pricing models in
which investors have so-called “subjective” beliefs. These beliefs could deviate from a baseline
probability, sometimes motivated via rational expectations. Much of the behavioral finance
literature appeals to insights from psychology to motivate such distortions. The tools here can
complement such analyses by providing ways to think about the complexity of the environment
within which investors reside. In the behavioral finance literature, you will often read about over
and under reaction, but over and under reaction relative to what? The data generating process
may itself be very difficult for investors to learn about and for econometricians to isolate. So
should that be the relevant benchmark or baseline to measure belief distortions? Moreover,
presumable so called distortions are more likely to persist when statistical challenges for the
investors and econometricians are substantial. Tools from probability and statistics thus are

pertinent for the study belief impacts on asset prices.

A Remark 7.4

These tools are also pertinent to the study of models in which investors have heterogeneous

beliefs. [Alchian, 1950] and [Friedman, 1953], among others, have argued that investors with

distorted beliefs will eventually be driven out of the market by investors with more accurate
perceptions of the future because of the relative success of the latter type of investors. This has

been one argument for imposing rational expectations in asset pricing models. [Kogan et al.,

2006] refine this view by breaking a simple link between survival and price impact of the

investors with distorted beliefs. [Borovicka, 2020] goes further by characterizing families of

investor preferences for which the investors with the distorted beliefs survive in the long run.
These latter two contributions feature differences in how investors look at stochastic growth. A
continuous-time counterpart to the martingale representation for belief distortions that we

describe and characterize in this chapter are featured in both the [Kogan et al,, 2006] and the

[Borovicka, 2020] papers.

7.4. Factoring a multiplicative functional

Following [Hansen and Scheinkman, 2009] and [Hansen, 2012], we factor a multiplicative functional into

three multiplicative components having the primitive types Example 7.1, Example 7.2, Example 7.3.
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As in definition Definition 7.1, let Y be an additive functional, and let M = exp(Y). Apply a one-period

operator M defined by

def

Mf(z) = E[exp(Yii1 — Y2) f(Xer1) | Xt = 2
=E K AjZl )f(Xm)th - :c] | (7.4)

to bounded Borel measurable functions f of the Markov state. By applying the Law of Iterated

expectations, a two-period operator iterates M twice to obtain:

def

MEf(2) 2 E fexp(Yien — Yi) f(Xer) | X, =]
—E [( Mo )f(Xm) X, =al, )
t

with corresponding definitions of j-period operators M. The family of operators is a special case of what
is called a “semi-group.” The domain of the semigroup can typically be extended to a larger family of
functions, but this extension depends on further properties of the multiplicative process used to construct
it.

We next derive a revealing representation of this semigroup by factoring the multiplicative functional M
in an interesting way. We achieve this by applying what is referred to in mathematics as Perron-Frobenius

theory based on the following equation:

Eigenvalue-eigenfunction Problem: Solve

Meé(z) = exp (77)é(x) (7.6)
for an eigenvalue exp(7) and a positive eigenfunction é.

Consistent with Perron-Frobenius theory, call the positive eigenvalue, the principal eigenvalue, and the

associated positive eigenvector, the** principal eigenfunction**, of the operator M.

Use the principal eigenvalue and eigenvector, and define:

Ny = exp(—) Meael %)
t — — ~
" Me(Xy)

— €Xp [’%(Xt, Wt—i—l)])

Note that we constructed ]\~/'t+1 so as to have a conditional expectation equal to unity. Using N as a

martingale increment process, build

Liy = Ny Ly, Lo=1.



A Theorem 7.1

Let M be a multiplicative functional. Suppose that the principal eigenvalue-eigenfunction
Problem has a solution with principal eigenfunction é(X). Then the multiplicative functional is
the product of three components that are instances of the primitive functionals in examples

Example 7.1, Example 7.2, and Example 7.3:

(7.7)

where Zt is a multiplicative martingale.

The factorization of a multiplicative functional described in Theorem 7.1 is a counterpart to the Chapter 4

Proposition 4.1 decomposition of an additive functional. We used the Proposition 4.1 martingale to

identify the permanent component of an additive functional in Chapter 4. In this chapter, we shall use the

multiplicative martingale isolated by Theorem 7.1 to represent a change of probability measure, but one

that will help us understand long-term risk return tradeoffs.

Models in which X is a finite-state Markov chain are givea direct computation in which the principal

eigenvalue calculation reduces to finding an eigenvector of a matrix with all positive entries.

A Example 7.6

The stochastic process X is governed by a finite-state Markov chain on state space
{s1,S2,-..,S,}, Where s; is the n x 1 vector whose components are all zero except for 1 in the

sth

3™ row. The transition matrix is I, where p;; = Prob(X;; = s;|X; =s;). We represent the

Markov chain as

X1 =P X + Wiy

where E( X, 1|X;) = P’ X}, P! denotes the transpose of I, and W1 is an n x 1 vector
process that satisfies E(W; 1| X;) = 0, which is therefore a martingale-difference sequence

adapted to X3, Xy—1,..., Xo. Think of W1 as the vector of errors when forecasting X1

based on current information.

Let G be an n x m matrix whose (¢, j) entry g;; is an additive contribution to the growth that
Y. 1 — Y: experiences when X, ; = s; and X; = s;. The stochastic process Y is governed by

the additive functional

Vi1 — Y = (X1) GXy 1 = (Xy)'GP' Xy 4 (X¢) GWiga
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Let M = exp(Y). Define a matrix Ml whose (i, j)*" element is m;; = exp(g;;). The stochastic

process M is governed by the multiplicative functional.

My
M;

— €Xp [(Xt)IGXt-I—l} = (Xt)/MXt-l—l- (7.8)
Associated with this multiplicative functional is the principal eigenvalue problem

My .

E € - Xi1| Xy = x| = exp ()€ - .

t
To convert this to a linear algebra problem, write the j* entry of & as €;. Since X, always

assumes the value of one of the coordinate vectors s;,2 =1,...,n,

(Xt)'MXtH = My;

when X; =s; and X; 1 = s;. This allows us to rewrite the principal eigenvalue problem as

> pijmy;&; = exp(i))é;
j

or

Mé = exp(#)é (7.9)

def
where m;; = p;jm;; and €; is entry ¢ of €. We want the largest eigenvalue and the one

associated with a positive eigenvector of (7.9).

After solving the principal eigenvalue problem, compute

- o €
lij = exp (—7)M; — (7.10)
2
and form the matrix L = [sz] We have now constructed a matrix L that behaves as a transition

matrix for a different finite-state Markov chain. Its entries are nonnegative, and

n
j=1

We can use this matrix for form increments (Xt)’f[:XtH in a positive multiplicative martingale

process {L;}:



Nij1 = (X)) LX; 1.

To achieve a Theorem 7.1 representation of the multiplicative functional M, use formula (7.10)

for m;; to get m;; = exp (ﬁ)r’ﬁij:—;. This allows us to write (7.8) as

INT e - X
= exp (ﬁ) [(Xt) MXt+1] (ée—t) . (7.11)

A Remark 7.5

Using the previous example, note that the matrix M could be inferred from the so-called Arrow
prices. Specifically, given prices of all of the state contingent claims for next period, we can infer
the column of M associated with the current state. By observing prices for all of the current
states, all of the columns of M. We only need to know M to pose and solve the principal
eigenvalue problem and hence to construct transition probabilities as given by (7.10), but not

the p;;'s and the s;;. This gives us a way to. recover a transition probabilities from asset prices in

the language of [Ross, 2015]. Notice, in particular, that the p;;'s and s;;'s cannot be inferred
uniquely from the m;;'s. In particular, the Arrow prices are insufficient to identify the transition
probabilities. Ross imposed restrictions on s;;'s that implied that the recovered probabilities are
actually the p;;'s. In general, the recovered probabilities will differ from the baseline transition
probability matrix. We will have more to say about this difference and investigate why the

recovered probabilities remain interesting. See [Borovicka et al,, 2016] for an extended

discussion of this claim.

The following log-linear, log-normal specification displays relevant mechanics of the multiplicative

factorization with direct connection to the corresponding additive decomposition

A Example 7.7
Consider a stationary X process and an additive Y process described by the VAR

X1 =AXy +BW
Yiigin - Yi=v+ DX +FWia

where A is a stable matrix and {W;,1 : t > 0} is a sequence of independent and identically
normally distributed random vectors with mean zero and covariance matrix II. In Proposition

Proposition 4.1 of Chapter 4, we described the decomposition
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(7.12)
Yi—-Yy=tv+ ZHW]] — 9(Xi1) + 9(Xo)
=1
where
H=F + D(I - A")'B
g(z) =D — A) 'z
Let My = exp(Y%). Use equation (7.12) to deduce
M; ~ [ é(Xo)
— = nt).L
MO exp (77 ) t [é(Xt)
where
o lmp
77 =V 2 9
~ | H |2 ~
N1 =exp | HW; g — 5 , Lg=1, (7.13)
and

é(xz) = explg(x)] = exp {ID)(JI — A)_laz}.

While the additive martingale of Y = log(M) has a variance that grows linearly over time, this
variance contributes a component to the exponential trend of the multiplicative functional M

along with an adjustment to the martingale component.

A Example 7.8

Consider the following stochastic volatility example. Suppose that a scalar state variable evolve

as first-order autoregression:

X1 =aXy + bWy
Yiei — Y =v+ (fo+ f1.Xe) Wi

where {W;,1 : t > 0} is an iid sequence of normally distributed random variables. The state
variable X; gives the source of volatility fluctuations. Guess a principle eigenfunction of the

form:



é(x) = exp (elm + %2:1:2),

and construct

def €2 o

é(xz,w) = €1ax + e1bw + éa z? + esabzw + £

b2 w?
5 :
Write the principle eigenfunction equation as:

logE (exp [1/ + (fo + f1. X)Wy + € (Xq, Wtﬂ)} | X = a:)

where we took logarithms of both sides of the equation. The computation on left side of this

equation has a tractable formula for expressing the outcome as a quadratic function of the state.

We may solve this equation in three steps. Solve the equation in three steps. First, equate
coefficients on 2 and deduce a quadratic equation for €5.. Next, equate coefficients on & and
obtain a linear equation for €;. Finally, equate constants obtain an equation for 7}. The initial

quadratic equation is

b2(€2)2 + (32 + 2fiab — 1)62 —+ (f1)2 = 0.

When it has a solution, there is will typically be two possible choices. For the solution to be of

interest, 1 — eab? must be positive.

For this example,

~ €
N1 X exp [(fo + f1)XtWt+1 + e1bWiiq1 + ?2132(Wt+1)2 —+ EzabXtWt+1]

where o< means proportional to up to a scale factor that depends on X;. Under the implied

change in measure, Wy, 1 is distributed as normal random variable with conditional mean

f() + f1Xt + €1b + GzabXt
1-— 62b2

and precision 1 — esb?. Under the change of probability measure, Wy, ; remains normally
distributed with a different variance and state-dependent mean. Under this change in
probability measure, the X remains a first-order autoregression but with different dynamics. It

could, for instance, be an explosive autoregression.



A Remark 7.6

The martingale component of the multiplicative functional has “peculiar behavior.” It has
expectation one by construction. The Martingale Convergence Theorem guarantees that sample
paths converge, typically to zero. The Martingale Convergence Theorem is operative because
the positive martingale is bounded from below. Since its date zero conditional expectation is
one, for long horizons this process necessary has a fat right tail. Fig. 7.2 plots probability density

functions of the martingale component for different values of .

—— t=100
5 /\ —— t=500
—— t=1000
—— t=2000

0.0 0.5 1.0 1.5 2.0

Fig. 7.2 Density of L, for different values of ¢.

A Remark 7.7

Consider a positive cumulative return process, R, modeled as a stochastic functional. As we
noted previously, for such a process, R;/ R, for 7 < tis at — 7-period return for any such ¢
and 7. Consider also the associated cumulative stochastic discount factor process, S, which we
also take to be a multiplicative functional. For this process, S;/S for T < t is the t — T-period
stochastic discount factor for any such ¢ and 7. Normalize Ry = 1 and Sy = 1. Repeating what
we stated previously, by standard asset pricing logic, SR is a multiplicative martingale. [Martin,
2012] studies tail behavior of cumulative returns. Since its date zero conditional expectation is

one, for long horizons this process necessary has a fat right tail as illustrated by Fig. 7.2.
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While the multiplicative martingale has peculiar sample path properties, we are primarily interested in this

martingale component as a change of probability measure. For instance, in Example 7.7, formula (7.13) for

N; tells how the change in probability measure induces mean H in the conditional distribution for the
shock Wy 1. Similarly, L, with entries given in formula (7.10), provides an alternative transition matrix in
Example 7.6.

1.5. Stochastic stability

Our characterization of a change of probability measure as the solution of a Perron-Frobenius problem
determines only transition probabilities. Since the process is Markov, it is of interest to seek an initial

distribution of X, under which the process is stationary and satisfies a stochastic stability property that
we will define and explore. Stochastic stability opens the door the study of a variety of limiting behavior

and hence justifies our interest in the multiplicative factorization. The eigenfunction problem can have

multiple solutions, it turns out, however, that there is a unique solution for which the process X is
stochastically stable under the implied change of measure, in particular, the solution associated with the

minimum eigenvalue. See [Hansen and Scheinkman, 2009] and [Hansen, 2012] for formal analyses of this

problem in a continuous-time Markov setting.

In what follows we investigate the discrete-time counterpart to their investigations.

A Definition 7.3

A process X is stochastically stable under a probability measure P if it is stationary and

o~

lim; .o I [A(X) | Xo = 2] = E [h(X,)] for any Borel measurable h satisfying

A Theorem 7.2

Let M be a multiplicative functional. Suppose that (7, €) solves the eigenfunction problem and

that under the change of measure p implied by the associated martingale M the stochastic

process X is stationary and ergodic. Consider any other solution (n*, e*) to eigenfunction

problem with implied martingale {M,*}. Then
1T.n" >

2. If X is stochastically stable under the change of measure Pr* implied by the martingale
M*, then n* = 7}, e* is proportional to & and M* = M forallt = 0,1,. ...

A Proof

First we show that n* > 7. Write:
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Mte* (z) = exp (7it)E ([Zg(g ] e*(X,)| X, = x) — exp (n*t)e* (x).
Thus,
E (| Sy | [0 —2) mowtrt-m | 53]
If 7 > 7%, then

fim, & ([((jf)) | ‘X" ~z) <o

But this equality cannot be true because under Pr X is stochatically stable and % is strictly

positive. Therefore, n* > n.

Consider next the case in which n* > 7. Write

Thus,

= (el =s) ewte o [5)

Suppose that 7 < n*, then

lim]E*([ ”X():m) —0,
t—o00

so that X cannot be stochastically stable under the Pr* measure.

é(X¢)
e*(Xt)
é(x)

Finally, suppose that n = n* and that =@ Is not constant. Then



= (el =) = o

and X cannot be stochastically stable under the Pr* measure.

Stochastic stability under the change of measure provides way to think about some interesting long-term

approximations. Suppose that

f>OandO<fE‘j [{(Xt)] < 00. (7.14)
e(Xt)
Then
1 ~ [ f(X; 1
— log M f(x :77—|——10g]]f£[~ nga:]——,logeaz
; () )| + logé()
Since X is stochastically stable under Pr,
R D _
lim — log M f(z) = 7. (7.15)
j—00 g

This limit justifies the Perron Frobenius eigenvalue as the long-term growth or decay rate of the

multiplicative functional.

As we have mentioned previously, cumulative returns and cumulative stochastic discount factor processes

can often be measured, conveniently, by multiplicative functionals. Suppose that

~ (1
E<T><OO
e

In the case of a cumulative return process, the implied p > 0 is the long-term logarithm of the expected
return on the corresponding investment. The division by j in (7.15) adjusts for the horizon of the expected
return. For a cumulative stochastic discount factor process, the resulting p < 0 is the negative of the yield

on a long-term discount bond.

Under the restriction, after adjusting for the growth or decay in the semigroup, we obtain a more refined

approximation:

lim exp(—7j)M’ f(z) = lim & [ (?) ‘XO — w] &(z) = E [f (X1) ] &(z),

j—00 Jj—00 2



f(X4)
e(Xt)

where we assume that E [ ] < 00. Once we adjust for the impact of 7, the limiting function is

proportional to é. The function f determines only a scale factor E [ g&(z)) ]é(w).

We will apply the limiting results in a variety of ways in this and subsequent chapters. The multiplicative
factorization can help us understand implications of stochastic equilibrium models for valuations of
random payout processes. In addition, such factorizations can help organize empirical evidence in ways

that make contact with such stochastic equilibrium asset pricing models.

7.6. Inferences about permanent shocks

Macroeconomists often study dynamic impacts of shocks to systems of variables measured in logarithms.

For example, [Alvarez and Jermann, 2005] suggest looking at asset prices using a multiplicative

representation of a cumulative stochastic discount factor, though without the tools provided by this
chapter. The additive decomposition derived and analyzed in Chapter 4 are a convenient tool for models

like theirs.

We start with a factorization of a stochastic discount factor process as given in Theorem 7.1.

S S S €
— = exp(tn”)L; [e

S, (7.16)

Take logarithms and form:

log St —log Sp = tn® + log L; + loge®(Xo) — loge®(Xy).

This looks like an additive decomposition of the type analyzed in Chapter 4, but it is actually different.
While L? is a multiplicative martingale, log L? is typically a super martingale, but not a martingale. This

leads us to write the additive decomposition as:

log S; — log Sy = tA° + Lj + &°(X,) — &*(X;)

where L® is an additive martingale. As [Hansen, 2012] argues, a weaker result holds. If L® is not
degenerate (i.e., equal to one), then L* is not degenerate and conversely. A prominent multiplicative
martingale component implies a prominent role for permanent shocks in the underlying economic
dynamics. A formal probability model lets us link the two representations via the results we have
described in this chapter and Chapter 4. Log normal models, at least as approximations, are often used by

applied macroeconomists. Example 7.7 provides an example with explicit formulas linking the two

representations. While distinct, the two martingales, in this special case, are closely linked. In general, this

simplicity vanishes, unfortunately.
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71.7. Observable counterparts to a factorization of
stochastic discount factors

Consider stochastic discount factorization (7.16) again. A date zero price of a long-term bond is:

St
E _-
(So

Compute the corresponding yield by taking 1/t times minus the logarithm:

1
e®(Xt)

2(0) — exp(n°t)E [

X0] e’ (Xp).

1 ~ 1 1
—n° — —logE X —1 *(Xo).
n PR [eS(Xt) 0] + ;08¢ (Xo)
Provided that
E < 00,
LS(Xt)]

the limiting yield on a discount bond is —n®, as we noted previously.

Next consider a one-period holding period return on a t period discount bond:

expli*(t — DIE | ey | X1 | e*(X1)

Xo} e*(Xo)

Using stochastic stability and taking limits as ¢ tends to oo gives the limiting holding-period return:

def eS(Xl)

R = exp(—n°) (7.17)

A simple calculation shows that R satisfies the following equilibrium pricing restriction on a one-period

()] - o 253 25 ) -

These long-horizon limits provide approximations to the eigenvalue for the stochastic discount factor and

return:

the ratio of the eigenfunctions. In a model without a martingale component [Kazemi, 1992], observed that

the inverse of this holding-period return is the one-period stochastic discount factor. [Alvarez and
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Jermann, 2005] extend this insight by showing that the reciprocal reveals the component of one-period

stochastic discount factor net of its martingale component.

A Remark 7.8

Within the [Kazemi, 1992] setup, R{° equals the one-period stochastic factor. Let Y; be a vector

of asset payoffs and Q) is a vector of corresponding prices. Then

E (R°Y: | o) = Qo.

Take the baseline probability measure to the data generating process as is often done under

rational expectations. We may sidestep measuring this baseline probability by using the

approach delineated by [Hansen and Singleton, 1982] and [Hansen and Richard, 1987] and

converts our generalization of Kazemi's insight into a testable restriction using generalized
method of moments. See [Hansen, 1982].

Notice that rational expectations is imposed empircally under partial information, as it often is
for Euler equation methods. This is very distinct from imposing rational expectations as an
outcome determined by a fully-specified model. This full information approach can be imposed
without feeding back on data. The expectations are model implied. Indeed many applied theory
contributions embrace this approach to rational expectations. With the full information
approach, maximum likelihood estimation and testing can be done as a second step in the
analysis, as is featured in research by Sargent and others. See, for instance, the methods
described in [Hansen and Sargent, 1980].

Within the [Kazemi, 1992] setup, a subjective belief specification as multiplicative martingale expressed in

terms of a baseline probability specification could rationalize the martingale component of a cumulative
stochastic discount factor process and capture the empirical failure using the approach just described.
Thus the distinction between probability measures can be sufficient to induce a martingale component
relative to baseline probabilities even though this component is absent when valuations are depicted with

the subjective probabilities.

In practice, we have only have bond data with a finite payoff horizon, whereas the characterizations

[Kazemi, 1992] and [Alvarez and Jermann, 2005] use bond prices with a limiting payoff horizon. Empirical

implementations using such characterizations assume that the observed term structure data have a

sufficiently long duration component to provide plausible proxy for the limiting counterpart.
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7.8. Long-term risk-return tradeoff for cash flows

Following [Hansen and Scheinkman, 2009] and [Hansen et al., 2008], we consider the valuation of

stochastic cash flows, GG, that are multiplicative functionals. Such cash flows are determinants of prices of

both equities and bonds.

We now study long-term limits of prices of such cash flows. In addition to the stochastic discount process

(7.16), form:
log Gt — log Gy = tn? +log L + loge®(Xy) — loge’(X3),

with a corresponding cash-flow return over horizon t:

Gy Go

Bl(&%)eqn] (3

Note that as a special case, the cash-flow return on a unit date ¢ cash-flow is:

1

St
E (4

x)

Define the proportional risk premium on the initial cash-flow return as the ratio of the expected return
divided by the riskless counterpart for the same horizon. Taking logarithms and adjusting for the time

horizon gives:

1 G
“loeE [ =L
4 08 (Go

1 S:Gy
Xo | — —logkk
O) t 8 (S()G()

1 St
X —loglE | —
0) + ; og (So

Xo>, (7.18)

where the first term is the logarithm of the expected payoff, the second term is minus the logarithm of
the price, and the third term is minus the logarithm of the riskless cash-flow return for horizon ¢. Scaling

by 1/t adjusts for the investment horizon.

The product SG is itself a multiplicative functional. Let 9 denote its geometric growth component. Then

from (7.18), the limiting cash-flow risk compensation is:

0 —n".

This expression resembles the negative of covariance as is often found in asset pricing, but it differs from

a covariance because we are working with proportional measures of the risk compensations.
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We also investigate the limiting behavior of one-period holding period returns. An empirical asset pricing

literature has explored these returns starting with [van Binsbergen et al, 2012]. See [Golez and Jackwerth,

2024] for a recent update of this evidence. Use the factorization of SG to get

log G; — log Gy + log S; — log Sy
= n* +log L;? 4 log e (Xy) — log e?* (Xy),

Based as it is on a multiplicative factorization of SG, this typically does not the difference between the
logarithm of the factorization of .S and the logarithm of the factorization of G. We provide a
characterization of the limiting one-period holding period return for the cash flow by imitating and
extending our analysis of a limiting holding-period return for riskless bond. This gives the following cash-
flow analogue to (7.17):

for the long-horizon cash flow holding period return. The eigenvalue and eigenfunction adjustments
come from studying SG instead of S. The limiting holding-period return now inherits a stochastic growth
term G1/G. By multiplying this return by S; /Sy we obtain N;¥, the date one martingale increment for

SG. The one-period pricing relation for the cash-flow holding-period return follows immediately.

Finally, suppose that L® = 1 so that the martingale component of the stochastic discount factor process

is degenerate. Then SG inherits the martingale component of GG, implying that

= 47
e¥(z) = e*(z)e’(z)

As a consequence, the long-term risk-return tradeoff is zero, since in the limit proportional risk

compensation is

n+n’ —n¥ =0

Thus when the stochastic discount factor process fails to have a martingale component, the long-term,

risk-return tradeoff is degenerate.

7.9. Bounding investor beliefs

We use the cumulative stochastic discount factorization to analyze two distince approaches to drawing

inferences about investor beliefs.
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7.9.1. Subjective beliefs in the absence of long-term risk

Suppose that we have data on prices of one-period state-contingent claims. We can use these data to
infer the one-period operator, M. Recall that we represent this operator using a baseline specification of
the one-period transition probabilities. One possibility is that the one-period baseline transition
probabilities agree with the data generation. Rational expectations models equate transition probabilities
to those used by investors. More generally, investors could have subjective beliefs that can differ from the

baseline specification:

e investors think there are no permanent macroeconomic shocks;

e investors don't have risk-based preferences that can induce a multiplicative martingale in a

cumulative stochastic discount factor process./!!

Under these two restrictions, we could identify the L? as the likelihood ratio for investor beliefs relative to
the baseline probability distribution. Thus, the implied martingale component in the cumulative stochastic
discount factor identifies the subjective beliefs of investors. Using this change of measure, the limiting
long-term risk compensations derived in the previous section are zero. These assumptions allow for the

“Ross recovery” of investor beliefs .2

7.9.2. Restricting the martingale increment with limited asset
market data

Suppose we impose rational expectations by endowing investors with knowledge of the data generating
process. With limited asset market data we cannot identify the martingale component to cumulative
stochastic discount factor process without additional model restrictions. We can, however, obtain
potentially useful bounds on the martingale increment. For some applications, in addition to that of

[Alvarez and Jermann, 2005], see [Jand [], among others. We know that as a stochastic process the implied

martingale has some peculiar behavior and the martingale and transient components can be correlated
the transient components Nevertheless, the implied probability measure can be well behaved.

Consequently, in contrast to [Alvarez and Jermann, 2005], [], and [], we use the increment as a device to

represent conditional probabilities instead of just as a random variable. Extensions of these same

methods can be used to study restrictions on subjective beliefs implied by asset prices.

There is a substantial literature on divergence measures for probability densities. Relative entropy is an
important example. More generally, consider a convex function ¢ that is zero when evaluated at one.

Jensen's inequality implies that

E[¢p(N1) | Xo] > 0,

and equal to zero when N is one, provided that N7 is a multiplicative martingale increment (has

conditional expectation one). This gives rise to a family of ¢ divergences that can be used to assess
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departures from baseline probabilities. Relative entropy, ¢(n) = nlogn is an example that is particularly
tractable and has been used often. Both n logn and — log n can be interpreted as expected log-

likelihood ratios.
One way of assessing the magnitude of NlL solves:

Minimum divergence Problem

Jrgizr(l)]E [p(N1) | Xo]

subject to:

E(N: | Xo) =1

E (N1 [exp(ns) Zgi’;]n Xo) = Qo

where Y7 is a vector of asset payoffs and Q) is a vector of corresponding prices.

Recall that the term

exp) | = (B

can be approximated by the reciprocal of the one-period holding-period return on a long-term bond.
This makes such an approach implementable. Such a computation is an example of partial identification
because the vector Y7 of asset payoffs may not be sufficient to reconstruct all potential one-period asset
payoffs and prices. This could be because data limitations lead an econometrician to choose to use
incomplete data on financial markets.

e*(Xo)
e*(X1)

By relaxing rational expectations and replacing [exp(ns) ] in this minimization problem with a

candidate one-period stochastic discount factor, S1/S0, the bounds apply to the subjective beliefs of the

investors.

A Remark 7.9

To avoid having to estimate conditional expectations, applications often study an unconditional
counterpart to this problem. In such situations, conditioning can be brought in through the
"back door” by scaling payoffs and prices with variables in the conditioning information set; for
example, see [Hansen and Singleton, 1982] and [Hansen and Richard, 1987]. See [Bakshi and
Chabi-Yo, 2012] and [Bakshi et al., 2017] for some related implementations.
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A Remark 7.10

[Alvarez and Jermann, 2005] use —E (log S; + log Sy) as the objective to be minimized. Notice
that

log Ny = log S1 —log So + [n° + loge®(X1) — loge®(Xo)],

where the term in square brackets is the logarithm of the limiting holding-period bond return.
The criterion thus equals that in the minimum divergence problem, but with an additive

translation. Rewrite the constraints as:

Thus we are left with an equivalent minimization problem in which the translation term is

subtracted off to obtain the bound of interest.

Applied researchers have sometimes omitted the first constraint, which weakens the bound.

Moreover, [Chen et al,, 2024] isolate a potentially problematic aspect of monotone decreasing

divergences such as — log n because they can fail to detect certain limiting forms of deviations

from baseline probabilities.

A Remark 7.11

[Chen et al,, 2020] propose extensions of the one-period divergence measures to multi-period

counterparts that remain tractable and enlightening. Their method for accommodating
conditioning information for bounding such divergences has a direct extension to the problem

considered here.

A figure from [Chen et al., 2020]:
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Fig. 7.3 Proportional risk compensations computed as log ERY — log ER/ scaled to an annualized
percentage. The es are the empirical averages and the boxes give the imputed bounds when we inflated the

minimum relative entropy by 20%.

[1] This second restriction is violated by recursive utility models of investor preference that we will

analyze in a subsequent chapter. See discussions in [Alvarez and Jermann, 2005], [Hansen and
Scheinkman, 2009], and [Borovicka et al., 2016].

[2] Our presentation is consistent with the formal analysis in [Ross, 2015], although Ross’s derives and

motivates his result somewhat differently.
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