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Chapter 1:Laws of Large Numbers and Stochastic Processes defined random vectors to be functions that map

sample points into vectors of real numbers. To construct a stochastic process that describes fluctuations of

random vectors over time, we used a transformation that maps sample points into sample points.

In practice, applied researchers often do things differently. When they want to specify a stochastic process,

they directly specify a parameterized joint distribution of a sequence of random vectors. We sometimes call

that directly specified joint distribution an “induced distribution” to indicate that in principle it could be inferred

from a Chapter 1 formulation that lies beneath it. We showed in Chapter 1 that if a collection of joint

distributions is specified in a consistent way, then we can work backwards and construct a “canonical”

probability space that has a mathematical structure that justifies applying the Chapter 1 limit theorems.

This chapter starts with a widely used way of specifying an induced distribution as a Markov process, then

shows how to verify key constructs such as measure-preserving, stationarity, invariant events, and ergodic

building blocks from Chapter 1.

In Markov process theory, we call a random vector,  the state because it probabilistically specifies the

position of a dynamic system at time  from the perspective of a model builder or an econometrician. We

construct a consistent sequence of probability distributions  for a sequence of random vectors
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for all nonnegative integers  by specifying the two elementary components of a Markov process: (i) a

probability distribution for , and (ii) a time-invariant distribution for  conditional on  for . The

vector  suffices for conditioning on the entire history of the process. Conditional probabilities for  for

 are all functions of these two distributions. By creatively defining the state vector , many models

used in applied research can be cast as a Markov process.

2.1. Constituents
Assume a state space  and a transition distribution . For example,  could be  or a subset of

. The transition distribution  is a conditional probability measure for each  in the state space. The

conditional probability measure  assigns probabilities to next period’s state given that this period’s

state is . Since it is a conditional probability measure, it satisfies

for every  in the state space. Thus, integration is over  and conditioning is captured by , where  is a

possible realization of next period’s state and  is a realization of this period’s state.

If in addition we specify a marginal distribution  for the initial state  over , then we have completely

specified all joint distributions for the stochastic process .

Often, but not always, the conditional distributions have densities against a common distribution  to be

used to integrate over states. That lets us use a transition density to represent the conditional probability

measure:

where the conditional densities with respect to the measure  satisfy:

for every  in the state space.

X [ℓ] ≐

⎡⎢⎣X0

X1

⋮
Xℓ

⎤⎥⎦ℓ
X0 Xt+1 Xt t ≥ 0

Xt Xt+j

j ≥ 1 Xt

X P(dx∗|x) X R
n

R
n P Xt = x

P(dx∗|x)
x

∫
{x∗∈X}

P(dx∗|x) = 1

x x∗ x x∗

x

Q0 x0 X

{Xt : t = 0, 1, …}

λ(dx∗)

P(dx∗|x) = p(x∗|x)λ(dx∗)

λ

∫
{x∗∈X}

p(x∗|x)λ(dx∗) = 1

x

Example 2.1



A first-order vector autoregression is a Markov process. Consider  such processes, indexed by .

The index  represents a discrete form of parameter uncertainty. We can include  as an additional

time-invariant component of the state.

Here  is a normal distribution with mean  and covariance matrix  for square

matrices  and matrices  with full column rank.[1] These assumptions imply a vector

autoregressive representation (VAR) for 

for , where  is a multivariate standard normally distributed random vector that is

independent of .

Here we have chosen to specify a collection of Markov processes. We could instead to have

expressed this collection as a single first-order Markov process with an augmented state . The

evolution of the second component of the state vector would be viewed as an invariant random

variable, making it a degenerate component to the composite Markov process. That second

component could be initialized at any of the  parameter configurations.

To construct a discrete-state Markov chain, suppose that  consists of  possible states. We can

label these states in a variety of ways, but for mathematical convenience, suppose that state  is

the coordinate vector consisting entirely of zeros except in position , where there is a . Represent

 as vector  probabilities for each of the states, and represent the transition probabilities as a

matrix  with one row and one column for each possible value of the state . Entry  is the

probability of moving from state  to state  in a single period.

It is useful to construct an operator by applying a one-step conditional expectation operator to functions of a

Markov state. Let . For bounded , define:

(2.1)

The Law of Iterated Expectations justifies iterating on  to form conditional expectations of the function  of

the Markov state over longer horizons:

As an alternative approach for modeling a Markov process, we begin with an operator  appropriately

restricted as follows. Indeed, by applying  to a suitable range of ``test functions,’’ , we can construct a

conditional probability measure, .

m i

i i

P(dx∗|x, i) Aix BiBi
′

Ai Bi

i = 1, 2, . . . ,m.

Xt+1 = AiXt + BiWt+1,

t ≥ 0 Wt+1

Xt, i

(x, i)

m

X n

xj

j 1
Q0 q

P = [pij] x i, j
i j

f : X → R f

Tf(x) = E [f(Xt+1)|Xt = x] = ∫
{x∗∈X}

f(x∗)P(dx∗|x).

T f

T
jf(x) = E [f(Xt+j)|Xt = x].

T

T f

P(dx∗|x)
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Let  be an operator that maps a space of (Borel measurable) bounded functions into itself. We can

use  to construct a conditional probability measure  provided that  is (a) well-defined

on the space of bounded functions, (b) preserves the bound, (c) maps nonnegative functions into

nonnegative functions, and (d) maps the unit function into the unit function.

test

We can use Example 2.2 to illustrate the preceding theorem. We can represent the conditional

expectation operator by using the transition matrix  Think of a function of the Markov state as an 

-dimensional vector with each coordinate giving the value of function at the respective coordinate.

Thus, we use a vector  to represent a function from the state space to the real line. Each coordinate

of  gives the value of the function at the corresponding coordinate vector. Then the conditional

expectation operator  can be represented in terms of the transition matrix :

Conditional expectations are obtained by applying the matrix  to vectors that depict functions of

interest. In particular, applying  to the alternative coordinate vectors recovers transition

probabilities.

2.2. Stationarity
We can construct a stationary Markov process by carefully choosing the distribution of the initial state .

A probability measure  over a state space  for a Markov process with transition probability  is a

stationary distribution if it satisfies

We will sometimes refer to a stationary density . A density is always relative to a measure. With this in mind,

let  be a measure used to integrate over possible Markov states on the state space . Then a density  is a

nonnegative (Borel measurable) function of the state for which .

T

T P(dx∗|x) T

P. n

f

f

T P

E(f ⋅ Xt+1|Xt = x) = (T (f) ⋅ x) = x′
Pf .

P

P

X0

Q X P

∫
{x∈X}

P(dx∗|x)Q(dx) = Q(dx∗).

q

λ X q

∫ q(x)λ(dx) = 1

Theorem 2.1

Example 2.2 (cont’d)
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A stationary density over a state space  for a Markov process with transition probability  is a

probability density  with respect to a measure  over the state space  that satisfies

We again revisit Example 2.2. The stationary probabilities satisfy:

where  is the probability of state  and  is the probability of going from state  to state . Using

the matrix representation for the transition probabilities, the vector, , of stationary probabilities

satisfies:

where the entries of  are restricted to be nonnegative and sum to one. Thus the vector  is a row

eigenvector of the matrix .

Various sufficient conditions imply the existence of a stationary distribution. Given a transition

distribution , one such condition that is widely used to justify some calculations from numerical

simulations is that the Markov process be time reversible, which means that

(2.2)

for some probability distribution  on . Because a transition distribution satisfies

,

so  is a stationary distribution by Definition 2.1. Restriction (2.2) implies that the process is time

reversible in the sense that forward and backward transition distributions coincide. Time reversibility

X P

q λ X

∫ P(dx∗|x)q(x)λ(dx) = q(x∗)λ(dx∗).

qj =
n

∑
i=1

qipij

qj j pij i j

q

q′
P = q′,

q q

P

P

P(dx∗|x)Q(dx) = P(dx|x∗)Q(dx∗)

Q X

∫{x∈X} P(dx|x∗) = 1

∫
{x∈X}

P(dx∗|x)Q(dx) = ∫
{x∈X}

P(dx|x∗)Q(dx∗) = Q(dx∗),

Q

Definition 2.2
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is special, so later we will explore other sufficient conditions for the existence of stationary

distributions.[2]

When a Markov process starts at a stationary distribution, we can construct the process

 with a measure-preserving transformation  of the type featured in Chapter 1,

Section Representing a Stochastic Process.

2.3.  Eigenfunctions, and Invariant Events
We connected Laws of Large Numbers to a statistical notion of invariance in Chapter 1. The word invariance

brings to mind a generalization of eigenvectors called eigenfunctions. Eigenfunctions of a linear mapping

characterize an invariant subspace of functions such that the application of a linear mapping to any element of

that space remains in the same subspace. Eigenfunctions associated with a unit eigenvalue are themselves

invariant under the mapping. So perhaps it is not surprising that such eigenfunctions of  come in handy for

characterizing invariant events implied by a Markov processes.

2.3.1. Eigenfunctions with Unit Eigenvalues
A mathematically convenient space for our analysis uses a given a stationary distribution  to form the space

of functions

It can be verified that  and that

is a well-defined norm on .[3]

We now study eigenfunctions of the conditional expectation operator .

A function  that solves  is an eigenfunction of  associated with a unit eigenvalue.

{Xt : t = 1, 2, . . . } S

L2,

T

Q

L2 = {f : X → R : ∫ f(x)2Q(dx) < ∞}.

T : L2 → L2

∥f∥ = [∫ f(x)2Q(dx)]
1/2

L2

T

f ∈ L2 Tf = f T

Remark 2.1

Definition 2.3
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The following proposition asserts that an eigenfunction  associated with a unit eigenvalue is constant

as  moves through time.

Suppose that  is an eigenfunction of  associated with a unit eigenvalue. Then

 is constant over time with probability one.

Proof.

where the first equality follows from the Law of Iterated Expectations. Then because  is a stationary

distribution,

From Proposition 2.1 we know that time-series averages formed using an eigenfunction  are invariant

over time, so

However, when  varies across sets of states  that occur with positive probability under , a time series

average  can differ from . This happens when observations of  along a

sample path for  convey an inaccurate impression of how  varies across the stationary distribution

.

This proposition verifies that we can use such eigenfunctions to study invariant events since the resulting

stochastic processes are constant over time.

2.3.2. Invariant events for a Markov process

In this section, we describe how to construct invariant events for a Markov process expressed in terms of

subsets of the state space. We suggest how to construct such sets using eigenfuctions associated with unit

eigenvalues.

~
f(Xt)

Xt

f T

{f(Xt) : t = 0, 1, . . . }

E [f(Xt+1)f(Xt)] = ∫ (Tf)(x)f(x)Q(dx) = ∫ f(x)2Q(dx) = E [
~
f(Xt)2]

Q

E ([f(Xt+1) − f(Xt)]2) = E [f(Xt+1)2] + E [f(Xt)2]
− 2E [f(Xt+1)f(Xt)]

= 0.

Tf = f

1
N

N

∑
t=1

f(Xt) = ~
f(X).

f(x) x Q
1
N

∑N
t=1 f(Xt) ∫ f(x)Q(dx) f(Xt)
{Xt} f(X)

Q(dx)

Proposition 2.1



Given one eigenfunction with a unit eigenvalue, we start by showing how to construct other ones. Let 

denote such an eigenfuction, and let  be a bounded Borel measurable function. Since

 is invariant over time, so is  and it is necessarily

true that

Therefore, from an eigenfunction  associated with a unit eigenvalue, we can construct other eigenfunctions.
[4] A class of examples of  that are particularly interesting are indicator functions expressed as:

(2.3)

for some Borel set  in .

It follows that

is an invariant event in . Note that by constructing the Borel set,  in 

we can represent  as

(2.4)

Thus we have shown how to construct many eigenfunctions, starting from an initial such function. This in turn

gives us a way to construct invariant events represented by the initial  residing in subsets of the state

space 

For Markov processes, all invariant events can be represented as in (2.4), which is expressed in terms of the

initial state . See Doob [1953]. Moreover, indicator functions of such invariant events are eigenfunctions of

 associated with a unit eigenvalue. Specifically, if  is an invariant event, then the indicator function

(2.5)

satisfies

f

ϕ : R → R

{f(Xt) : t = 0, 1, 2, . . . } {ϕ [f(Xt)] : t = 0, 1, 2, …}

T(ϕ ∘ f) = ϕ ∘ f.

f

ϕ

ϕ[f(x)] = {
1 if f(x) ∈ ~

b

0 if f(x) ∉ ~
b

~
b R

Λ = {ω ∈ Ω : f[X0(ω)] ∈ ~
b}

Ω b X

b = {x : f(x) ∈ ~
b}

Λ

Λ = {ω ∈ Ω : X0(ω) ∈ b}.

X0

X .

X0

T {X0 ∈ b}

f(x) = {
1 if x ∈ b

0 if x ∉ b
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with  probability one.

2.4. Ergodic Markov Processes
Chapter 1 studied special statistical models that, because they are ergodic, are affiliated with a Law of Large

Numbers in which limit points are constant across sample points . Section Ergodic Decomposition

described other statistical models that are not ergodic and that are components of more general probability

specifications that we used to express the idea that a statistical model is unknown. As we described, even

when the statistical model is unknown, ergodic processes remain of interest as they are building blocks

(specific statistical models) that are revealed over time. We now investigate ergodicity in the context of Markov

processes.

When the only solutions to the equation

are constant functions (with  measure one), then it is possible to construct

 as a stationary and ergodic Markov process with  as the one-period

conditional expectation operator and  as the initial distribution for .

Evidently, ergodicity is a property that obtains relative to a stationary distribution  of the Markov process. If

there are multiple stationary distributions, it is possible that there is a function  that is constant under one

stationary probability distribution,  and ceases to be constant with probability one and still solves 

with other choices of a stationary distribution. All of this is consistent with our decomposition of measure-

preserving probabilities discussed in Chapter 1. Our aim in this section is to provide an interpretable sufficient

condition for constructing initial probabilities for a Markov process that imply an ergodic ``building block.’’

Suppose now we consider any Borel set  of  that has  measure that is neither zero nor one. Let  be

constructed as in (2.5) without restricting  to be an invariant event in . Then  applied to  is the

conditional probability of  as of date zero. If we want time series averages to converge to

unconditional expectations, we must require that the set  be visited eventually with positive probability. To

account properly for all possible future dates we use a mathematically convenient resolvent operator defined

by

Tf = f

Q

ω ∈ Ω

Tf = f

Q

{Xt : t = 0, 1, 2, . . . } T

Q X0

Q

f

Q, Tf = f

b X Q f

b J T
j f

{Xj ∈ b}
b

Proposition 2.2
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for some constant discount factor . As an economist, we recognize  as a discounted conditional

expectation as of date zero of current and future ’s scaled by  This scaling convert the expected

discounted value into a geometric average with weights,  for 

Notice that If  is an eigenfunction of  associated with a unit eigenvalue, then the same is true for  and

hence for . Suppose that  is an indicator function for a set  with positive  probability. The conditional

expectation,  compute probabilities of the Markov process visiting  in future time periods given a current

state . Applying  to this indicator function and asking that it be strictly positive, gives a formal sense that

the Markov process eventually visits the set . The following proposition extends this restriction to all

nonnegative functions that are distinct from zero. This is sufficient for the Markov process to be ergodic.

Suppose that for any  such that ,  for all  with 

measure one. Then any solution  to  is necessarily constant with  measure one.

Proof. Consider an eigenfunction  associated with a unit eigenvalue. The function 

necessarily satisfies:

for any  of the form (2.3). If such an  also satisfies , then  with 

probability one. Since this holds for any Borel set  in ,  must be constant with  probability one.

Proposition 2.3 supplies a sufficient condition for ergodicity. A more restrictive sufficient condition is

that there exists an integer  such that

on a set with  measure one, for any  such that 

The sufficient conditions imposed in Proposition 2.3 imply a property called irreducibility relative to

the probability measure . While this proposition presumes that  is a stationary distribution, the

concept of irreducibility allows for a more general specification of the measure .

Mf(x) = (1 − λ)
∞

∑
j=0

λj
T
jf(x).

0 < λ < 1 M

F(Xt) 1 − λ.
(1 − λ)λj j = 0, 1, … .

f T T
j

M f b Q

T
j b

x M

b

f ≥ 0 ∫ f(x)Q(dx) > 0 Mf(x) > 0 x ∈ X Q

f Tf = f Q

~
f f = ϕ ∘

~
f

Mf = f

ϕ f ∫ f(x)Q(dx) > 0 f(x) = 1 Q

b R f Q

m ≥ 1

T
mf(x) > 0

Q f ≥ 0 ∫ f(x)Q(dx) > 0.

Q Q

Q

Proposition 2.3
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The process  is said to be irreducible with respect to  if for any  such that

,  for all  with  measure one.

We summarize our ergodic characterization by the following proposition.

When  is a stationary distribution and  is irreducible with respect to , the process is

necessarily ergodic.

Proposition 2.4 provides a way to verify ergodicity. As discussed in Chapter 1, ergodicity is a property of a

statistical model. As statisticians or econometricians we often entertain a set of Markov models, each of which

is ergodic. For each model, we can build a probability  using the canonical construction given at the outset

of Chapter 1. These alternative probability models are captured by alternative statationary distributions .

Convex combinations of these probabilities are stationary probabilities, but the resulting Markov processes not

necessarily ergodic. With this construction, we can take the ergodic Markov models to be the building blocks

for a specification to be used in a statistical investigation. There can be a finite number of these building

blocks or even a continuum of them represented in terms of an unknown parameter vector.

2.5. Periodicity
Next, we study a notion of periodicity of a stationary and ergodic Markov process.[5] To define periodicity of a

Markov process, for a given positive integer  we construct a new Markov process by sampling an original

process every  time periods. This is sometimes called ‘skip-sampling’ at sampling interval .[6] With a view

toward applying Proposition 2.1 to , solve

(2.6)

for a function . We know from Proposition 2.1 that for an  that solves (2.6),  is

invariant and so is . The process  is periodic with period  or 

for any positive integer .

The periodicity of an irreducible Markov process  with respect to  is the smallest positive

integer  such that there is a solution to equation (2.6) that is not constant with  measure one.

When there is no such integer , we say that the process is aperiodic.

{Xt} Q f ≥ 0
∫ f(x)Q(dx) > 0 Mf(x) > 0 x ∈ X Q

Q {Xt} Q

Pr

Q

p

p p

T
p

T
pf = f

f f {f(Xt) : t = 0, p, 2p, …}
{f(Xt) : t = 1, p + 1, 2p + 1, . . . } f(Xt) p np

n

{Xt} Q

p Q

p

Definition 2.4

Proposition 2.4

Definition 2.5
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2.6. Finite-State Markov Chains
We reconsider Example 2.2 where  consists of  possible states. We use a vector  to represent a function

from the state space to the real line. Each coordinate of  gives the value of the function at the corresponding

coordinate vector. Recall that the conditional expectation operator  can be represented in terms of the

transition matrix :

As noted previously, a stationary distribution  satisfies:

where  has nonnegative entries and the sum of the entries is one.

Now consider column eigenvectors called right eigenvectors of  that are associated with a unit eigenvalue.

Assume that there exists a real number  such that the right eigenvector  associated with a unit

eigenvalue and a stationary distribution  satisfy

Then the process is stationary and ergodic.

Notice that if  is zero, the contribution of  to the least squares objective can be neglected. This allows for

non-constant ’s, albeit in a limited way.

Three examples illustrate ideas in these propositions.

Recast Example 1.2 as a Markov chain with transition matrix . This chain has a unique

stationary distribution  and the invariant functions are  for any scalar .

Therefore, the process initiated from the stationary distribution is ergodic. The process is periodic

with period two since the matrix  is an identity matrix and all two dimensional vectors are

eigenvectors associated with a unit eigenvalue.

X n f

f

T

P

E(f ⋅ Xt+1|Xt = x) = (Tf) ⋅ x = x′
Pf .

Q

q′
P = q′

q

P

r f

q

min
r

n

∑
i=1

(fi − r)2qi = 0.

qi fi

f

P = [ ]
0 1
1 0

q = [ ]′.5 .5 [ ]′
r r r

P
2

Theorem 2.2

Example 2.4
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Recast Example 1.3 as a Markov chain with transition matrix . This chain has a

continuum of stationary distributions  for any  and invariant

functions  for any scalars . Therefore, when  the process is not ergodic

because if  the resulting invariant function fails to be constant across states that have

positive probability under the stationary distribution associated with . When ,

nature chooses state  or  with probabilities , respectively, at time . Thereafter,

the chain remains stuck in the realized time  state. Its failure ever to visit the unrealized state

prevents the sample average from converging to the population mean of an arbitrary function of the

state.

A Markov chain with transition matrix

has a continuum of stationary distributions

for  and invariant functions

for any scalars . Under any stationary distribution associated with , the chain is not

ergodic because some invariant functions are not constant with probability one. But under stationary

distributions associated with  or , the chain is ergodic.

2.7. Limiting Dependence using a Strong Contraction
Recall the conditional expectations operator  defined in equation (2.1) for a space  of functions  of a

Markov process with transition probability  and stationary distribution  and for which  has a finite

second moment under :

P = ( )
1 0
0 1

π( ) + (1 − π)( )
1
0

0
1

π ∈ [0, 1]

( )
r1

r2
r1, r2 π ∈ (0, 1)

r1 ≠ r2

π ∈ (0, 1) π ∈ (0, 1)
i = 1 i = 2 π, 1 − π 0

0

P =
⎡⎢⎣.8 .2 0

.1 .9 0
0 0 1

⎤⎥⎦π[ ]
′
+ (1 − π)[ ]′1

3
2
3 0 0 0 1

π ∈ [0, 1]

[ ]′r1 r1 r2

r1, r2 π ∈ (0, 1)

π = 1 π = 0

T L2 f

P Q f(Xt)
Q

Example 2.5

Example 2.6
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We suppose that under the stationary distribution , the process is ergodic.

Because it is often useful to work with random variables that have been ‘centered’ by subtracting out their

means, we define the following subspace of :

(2.7)

We use the same norm  on both  and  too.

The conditional expectation operator  is said to be a strong contraction on  if there exists

 such that

for all .

When  is a strong contraction for some positive integer  and some , the Markov process is

said to be -mixing conditioned on the invariant events.

 being a strong contraction on  limits intertemporal dependence of the Markov process . It

is an example what is often referred to as a weakly dependent stochastic process.

Let  be the identity operator. When the conditional expectation operator  is a strong contraction, the

operator  is well defined, bounded on , and equal to the geometric sum:[7]

Using this example, we investigate the strong property using the finite Markov chain example,

Example 2.2. Recall that a stationary density  is a nonnegative vector that satisfies

Tf(x) = E [f(Xt+1) ∣ Xt = x] = ∫
{x∗∈X}

f(x∗)P(dx∗|x).

Q

L2

N = {f ∈ L2 : ∫ f(x)Q(dx) = 0}.

∥f∥ = [∫ f(x)2Q(dx)]
1/2

L2 N

T N

0 < ρ < 1

∥Tf∥ ≤ ρ∥f∥

f ∈ N

T
m m ρ ∈ (0, 1)
ρ

T N {Xt}

I T

(I − T)−1 N

(I − T)−1f(x) =
∞

∑
j=0

T
jf(x) =

∞

∑
j=0

E [f(Xt+j)|Xt = x].

q

Theorem 2.3

Remark 2.4

Example 2.2 (cont’d)



and . Construct a subspace,  of  such that all vectors  are orthogonal to .

If the only column eigenvector of  associated with a unit eigenvalue is constant over states  for

which , then the implied Markov process is ergodic. If in addition, the only eigenvector of 

that is associated with an eigenvalue that has a unit norm (the unit eigenvalue might be minus one or

complex) is constant over states  for which , then  is a strong contraction on  for some

integer .[8] The unit norm eigenvalue restriction rules out the presence of periodic

components that can be forecast perfectly.

2.8. Limited Dependence and the Convergence of
Multi-Period Forecasts
We explore a rather different approach to limiting dependence that we view as form of stochastic stability.

Let  be a stationary distribution. Throughout, we suppose that the Markov process is aperiodic and we study

situations in which

(2.8)

for some , where convergence is either pointwise in  or in the  norm. Limit (2.8) asserts that long-

run forecasts do not depend on the current Markov state. Meyn and Tweedie [1993] provide a comprehensive

treatment of such convergence. Then using the definition of a stationary probability, it is necessarily true that

for all , and thus

so that the limiting forecast is necessarily the mathematical expectation of  under the assumed stationary

distribution. Notice that if (2.8) is satisfied, then any function  that satisfies

is necessarily constant with  probability one.

A set of sufficient conditions for the convergence outcome

q′
P = q′

q ⋅ 1n = 1 Q⊥
R

n f q

T i

qi > 0 P

i qi > 0 T
m Q

m ≥ 1

Q

lim
j→∞

T
jf(x) = r

r ∈ R x L2

∫ T
jf(x)Q(dx) = ∫ f(x)Q(dx)

j

r = ∫ f(x)Q(dx),

f(x)
f

Tf = f

Q
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(2.9)

for each  and each bounded  is:

Stability conditions:

An aperiodic Markov process with stationary distribution  satisfies:

(i)  maps bounded continuous functions into bounded continuous functions, i.e., the Markov process is said

to satisfy the Feller property.

(ii) The support of  has a nonempty interior in .

(iii)  outside a compact subset of  for some nonnegative function .

Condition (iii) is a drift condition for stability that requires that we find a function  that satisfies the requisite

inequality. Heuristically, the drift condition says that outside a compact subset of the state space, application

of the conditional expectation operator pushes the function inward. The choice of  as a comparison point is

made only for convenience, since we can always multiply the function  by a number greater than one. Thus,

 could be replaced by any strictly negative number. In section Vector Autoregressions, we will apply

conditions (i) - (iii) to verify ergodicity of a vector autoregression.

2.9. Vector Autoregressions
We consider two specifications of a vector autoregression (VAR). The first is ergodic and the second is not.

2.9.1. An Ergodic VAR

A square matrix  is said to be stable when all of its eigenvalues have absolute values that are strictly less

than one. For a stable , suppose that

where  is an i.i.d. sequence of multivariate normally distributed random vectors with

mean vector zero and covariance matrix  and that . This specification constitutes a first-

order vector autoregression.

Let . Notice that

lim
j→∞

T
jf(x∗) → ∫ f(x)Q(dx)

x∗ ∈ X f

Q

T

Q X

TV (x) − V (x) ≤ −1 X V

V

−1
V

−1

A

A

Xt+1 = AXt + BWt+1,

{Wt+1 : t = 1, 2, . . . }
I X0 ∼ N (μ0, Σ0)

μt = EXt

μt+1 = Aμt.



The mean  of a stationary distribution satisfies

(2.10)

Because we have assumed that  is a stable matrix,  is the only solution of (2.10), so the mean of the

stationary distribution is .

Let  be the covariance matrix of . Then

For  to be invariant over time, it must satisfy the discrete Lyapunov equation

(2.11)

When  is a stable matrix, this equation has a unique solution for a positive semidefinite matrix .

Suppose that  (a matrix of zeros) and for  define the matrix

The limit of the sequence  is

which can be verified to satisfy Lyapunov equation (2.11). Thus,  equals the covariance matrix of the

stationary distribution.[9] Similarly, for all 

converges to zero, the mean of the stationary distribution. The linear structure implies that the stationary

distribution is Gaussian with mean  and covariance matrix .

To verify ergodicity, we suppose that the covariance matrix  of the stationary distribution has full rank and

verify Stability conditions. Condition (ii) holds since the covariance matrix has fully rank. As a candidate for

 in condition (iii), take . Then

μ

μ = Aμ.

A μ = 0
μ = 0

Σt = E(Xt − μt)(Xt − μt)′ Xt

Σt+1 = AΣtA
′ + BB

′.

Σt = Σ

Σ = AΣA′ + BB
′.

A Σ

Σ0 = 0 t ≥ 1

Σt =
t−1

∑
j=0

A
j
BB

′(Aj)′.

{Σt}∞
t=0

Σ =
∞

∑
j=0

A
j
BB

′(Aj)′,

Σ
μ0 = EX0

μt = A
tμ0,

μ Σ

Σ

V (x) V (x) = |x|2

TV (x) = x′
A

′
Ax + trace(B′

B)



so

That  is a stable matrix implies that  is negative definite, so that drift condition iiii is satisfied for 

sufficiently large. The Feller property (i) can also be verified by applying the The Dominated Convergence

Theorem, since the functions used for the verification are bounded and continuous. Thus, having checked

Stability conditions, we have verified the ergodicity of the VAR.

2.9.2. A Stationary VAR that is Not Ergodic
Suppose that the matrix  is given by

where  is a stable matrix and  is a vector. The matrix  is restricted to satisfy:

Partition the state vector,  consistent with this construction:

and observe that  is invariant over time. Thus, we may write

Conditioned on , the process  is normally distributed with conditional mean,  that satisfies:

and conditional covariance matrix,  that satisfies:

The solutions to these recursive representations are:

TV (x) − V (x) = x′(A′
A − I)x + trace(B′

B).

A A
′
A − I |x|

A

[ ]
A11 A12

0 1

A A12 B

B = [ ]
B1

0

Xt,

Xt = [ ],
X1,t

X2,t

X2,t+1 = X2,t =, … ,X2,0

X1,t+1 = A11X1,t + A12X2,0 + B1Wt+1

X2,0 {X1,t} μ1

μ1 = A11μ1 + A12X2,0

Σ11,

Σ11 = A11Σ11A11 + B1(B1)′



[1]

A Law of Large Numbers for this process conditions on . Since the conditional mean of  depends on

 the state vector process is only ergodic when  has a degenerate, one value, distribution. More

generally, we can specify the distribution for  arbitrarily.

Suppose that only  is observed and not  Think of  as an unknown parameter with a

subjective prior distribution. The Law of Large Numbers conditioned on  opens the door to estimating this

unknown parameter, and the prior distribution allows for precise inferential statements, pertinent to a statistical

analysis.

2.10. Inventing a Past Again
In section Inventing an Infinite Past, we invented an infinite past for a stochastic process. Here we invent an

infinite past for a vector autoregression in a way that is equivalent to drawing an initial condition  at time

 from the stationary distribution , where  solves the discrete Lyapunov equation (2.11),

namely, .

Thus, consider the vector autoregression

where  is a stable matrix,  is now a two-sided infinite sequence of i.i.d.  random

vectors, and  is an integer. We can solve this difference equation backwards to get the moving average

representation

Then

where  is also the unique positive semidefinite matrix that solves {eq} eq:Sylvester .

When  is singular, a density may not exist with respect to Lebesgue measure. The covariance matrix

 is typically singular for a first-order vector autoregression constructed by rewriting a higher-order

μ1 =[I − A11]−1
A12X2,0

Σ11 =
∞

∑
j=0

(A11)jB1B1
′(A11

′)
j

+ [I − A11]−1
A12.

X2,0 X1,t

X2,0, X2,0

X2,0

{X1,t} X1,0. X2,0

X2,0

X0

t = 0 N (0, Σ∞) Σ∞

Σ∞ = AΣ∞A
′ + BB

′

Xt+1 = AXt + BWt+1

A {Wt+1}∞
t=−∞ N (0, I)

t

Xt =
∞

∑
j=0

A
j
BWt−j.

E [Xt(Xt)
′] =

∞

∑
j=0

A
j
BB

′(Aj)
′

= Σ∞

Σ∞

BiB
′
i

BiB
′
i
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[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

vector autoregression.

Numerical Bayesian statistical analysis often computes a posterior probability distribution by iterating to

convergence a reversible Markov process whose stationary distribution is that posterior distribution.

Formally, speaking in this chapter we are using a measure-theoretic extension of the collection of

invariant events. An invariant event is one for which the probability of the symmetric difference between

 and  given by , is zero where the superscript  denotes a

complement. While this gives a way to use probability measure one statements, the definition of an

invariant event becomes linked the probability, which we avoided previously.

This construction also works for unbounded functions  provided that  is square integrable under

the  measure.

Our definition of periodicity is confined to a stationary distribution. Actually, periodicity can be defined

more generally. We limit our treatment of periodicity to specifications of transition probabilities for which

there exist stationary distributions for convenience here.

See Hansen and Sargent [1993] and Hansen and Sargent [2013].

The geometric series after the first equality sign is well defined under the weaker restriction that  is a

strong contraction for some integer .

This follows from Gelfand’s Theorem, which asserts the following. Let  be the  dimensional space

of vectors that are orthogonal to .  maps  into itself. The spectral radius of  restricted to  is the

maximum of the absolute values of the eigenvalues. Gelfand’s Theorem asserts that the spectral radius

governs the behavior as  gets large of the decay factor of the  transformation applied  times.

Provided that the spectral radius is less than one, the strong contraction property prevails for any 

that is larger than the spectral radius.

To verify the asserted equality, notice that .

Λ S
−1Λ (Λ ∩ S

−1(Λc)) ∪ (Λc ∩ S
−1(Λ)) c

ϕ ϕ ∘
~
f

Q

T
m

m ≥ 1

N n − 1
q T N T N

m T m

ρ < 1

∑∞
j=0 A

j
BB

′
A

j′ = A(∑∞
j=0 A

j
BB

′
A

j′)A′ + BB
′

file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id217
file:///Users/haoyangsun/Dropbox/QuantMFR/_build/html/book/cite.html#id234

